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DNA-binding proteins (DBPs) play vital roles in all aspects of genetic activities. However, the identification of DBPs by using wet-
lab experimental approaches is often time-consuming and laborious. In this study, we develop a novel computational method,
called PredDBP-Stack, to predict DBPs solely based on protein sequences. First, amino acid composition (AAC) and transition
probability composition (TPC) extracted from the hidden markov model (HMM) profile are adopted to represent a protein.
Next, we establish a stacked ensemble model to identify DBPs, which involves two stages of learning. In the first stage, the four
base classifiers are trained with the features of HMM-based compositions. In the second stage, the prediction probabilities of these
base classifiers are used as inputs to the meta-classifier to perform the final prediction of DBPs. Based on the PDB1075 benchmark
dataset, we conduct a jackknife cross validation with the proposed PredDBP-Stack predictor and obtain a balanced sensitivity and
specificity of 92.47% and 92.36%, respectively. This outcome outperforms most of the existing classifiers. Furthermore, our method
also achieves superior performance and model robustness on the PDB186 independent dataset. This demonstrates that the
PredDBP-Stack is an effective classifier for accurately identifying DBPs based on protein sequence information alone.

1. Introduction

DNA-binding proteins (DBPs) are fundamental in the pro-
cess of composing DNA and regulating genes. They execute
intercellular and intracellular functions such as transcription,
DNA replication, recombination, modification, and other
biological activities associated with DNA [1]. As the signifi-
cant role of DBPs undertaken, it has become one of the hot
research topics to effectively identify DBPs in the field of pro-
tein science. The past decade has witnessed tremendous
progress in the DBP recognition, including experimental
methods, and computational methods [2]. In the early
researches, DBPs were detected by laborious experimental
techniques such as filter binding assays, genetic analysis,
X-ray crystallography, chromatin immune precipitation
on microarrays, and nuclear magnetic resonance [3]. With
the rapid development of high-throughput sequencing

technology and growing extension of protein sequence
data, more efficient and accurate machine learning (ML)
methods are implemented and applied for the classifica-
tion of DBPs [4, 5].

Feature encoding schemes and classification algorithms
have great impacts on the performance of ML-based
methods. Feature representation numerically formulates
diverse-length protein sequences as fixed-length feature vec-
tors, which could be categorized into structure-based models
and sequence-based models. Structure-based methods rely
on the structure information of proteins such as the spatial
distribution, net charge, electrostatic potential, the dipole
moment, and quadrupole moment tensors [6, 7]. However,
the great difficulty of acquiring the high-resolution crystal
structure of proteins and the insufficient quantity of proteins
with known structure information heavily limit the use of
structure-based predictors [8].
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In contrast, the sequence-based methods have become
more popular since sequence features are usually easier to
extract and more convenient to use. These sequence-based
features of proteins are classified into three types: (1)
composition-based features, such as amino acid composition
(AAC) [9], dipeptide composition [10], and pseudo AAC
[11–13]; (2) autocorrelation-based features, including auto-
cross covariance [14, 15], normalizedMoreau-Broto autocorre-
lation [8], and physicochemical distance transformation [16];
and (3) profile-based features, including position-specific score
matrix (PSSM) [17–19] and hidden markov model (HMM)
[20]. Generally, autocorrelation-based features perform better
than composition-based features, and profile-based features
outperform autocorrelation-based features [21].

Previous studies have demonstrated the importance of
PSSM-based features for enhancing DBPs prediction. For
example, Kumar et al. initially adopted evolutionary infor-
mation embedded in the PSSM profile to identify DBPs and
achieved a well-performed result [17]. Waris et al. produced
an ingenious classifier by integrating the PSSM profile with
dipeptide composition and split AAC [18]. Zou et al. pro-
posed a fuzzy kernel ridge regression model to predict DBPs
based on multiview sequence features [22]. Ali et al. intro-
duced the DP-BINDER model for the discrimination of
DBPs by fusing physicochemical information and PSSM-
based features [23]. In the recent study, Zaman et al. built
an HMMBinder predictor for the DBP recognition prob-
lem by extracting monogram and bigram features derived
from the HMM profile [20]. They also experimentally
proved that the HMM-based features are more effective
for the prediction of DBPs than the PSSM-based features,
especially on the jackknife test. Nevertheless, HMMBinder
achieved relatively poor performance on the independent
test. Accordingly, there is still more scope to improve the
DBP prediction by exploring highly recognizable features
from the HMM profile.

Prediction of DBPs is usually formulated as a supervised
learning problem. In recent years, many classification algo-
rithms have been adopted to solve this problem, including
support vector machine (SVM) [24–26], random forest
(RF) [27, 28], naive Bayes classifier [3], ensemble classifiers
[29–31], and deep learning [32–34]. Among these models,
stacked generalization (or stacking) is an ensemble learning
technique that takes the outputs of base classifiers as input
and attempts to find the optimal combination of the base
learners to make a better prediction [35]. Xiong et al. con-
structed a stacked ensemble model to predict bacterial type
IV secreted effectors from protein sequences by using the
PSSM-composition features [36]. Recently, Mishra et al.
developed a StackDPPred method for the effective prediction
of DBPs, which utilized a stacking-based ML method and
features extracted from the PSSM profiles [29].

Inspired by the work of Zaman and Mishra, respectively,
we propose a stacked ensemble method, called PredDBP-
Stack, to further improve the performance of DBP prediction
by exploring valuable features from the HMM profiles. First,
we convert the HMM profiles into 420-dimensional feature
vectors by fusing AAC and transition probability composi-
tion (TPC) features. Next, six types of ML algorithms are

adopted to implement base classifiers in the first stage. Then,
the optimal combination of base learners is searched, and the
prediction probabilities of these selected base learners are
used as inputs to the meta-classifier to make the final predic-
tion in the second stage. Compared with existing state-of-
the-art predictors, our method performs better on the jack-
knife cross validation as well as on the independent test.

2. Materials and Methods

In this section, we describe all details about the proposed pre-
diction model for identifying DBPs. The system diagram of
the PredDBP-Stack methodology is illustrated in Figure 1.
Several major intermediate steps in the development process
of PredDBP-Stack are specified in the following subsections.

2.1. Datasets. The construction of a high-quality benchmark
dataset is crucial for building a robust and reliable ML-
based predictive model. In this study, two well-established
datasets, i.e., PDB1075 [5] and PDB186 [3], are adopted to
examine the performance of our predictor. The PDB1075
dataset consists of 1075 protein sequences with 525 DBPs
and 550 non-DBPs, which are applied for model training
and testing by using the jackknife cross validation. The
PDB186 dataset is designed as an independent test dataset
that contains 93 DBPs and 93 non-DBPs. All protein
sequences in these two datasets were downloaded from the
Protein Data Bank [37] and have been filtered rigorously by
removing those with relatively high similarity (≥25%) or
those with too small length (<50 amino acids) or involving
unknown residues such as “X”.

2.2. Feature Extraction

2.2.1. HMM Profiles. HMM profiles are supposed to contain
rich evolution information of the query proteins and have
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Figure 1: System diagram of PredDBP-Stack.
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been widely used in bioinformatics, such as protein remote
homology detection [38], DBP prediction [20], and protein
fold recognition [39]. In this study, HMM profiles are gener-
ated from the multiple sequence alignments by running four
iterations of the HHblits program [40] against the latest Uni-
Prot database [41] with default parameters. Similar to PSSM
profile, we only use the first 20 columns of the HMM profile
in the form of an L × 20matrix where L represents the length
of the query protein sequence. Each element from the HMM
profile is normalized by using the following function:

f xð Þ =
0, if x = ∗,

2−x/1000, else,

(
ð1Þ

where x is the original value of the HMM profile.

2.2.2. Feature Extraction from HMM Profiles. Feature extrac-
tion often plays an important role in most protein classifica-
tion problems, which has a direct impact on the prediction
accuracy of ML-based predictors. In this study, a simple
and powerful feature encoding scheme by extracting AAC
and TPC features is adopted to convert the HMM profiles
into fixed-length feature vectors.

Since DNA-binding preference of a protein is closely
related to its AAC [9], we first obtain AAC features from
the HMM profile by using the following formula:

xj =
1
L
〠
L

i=1
hi,j j = 1, 2,⋯,20ð Þ, ð2Þ

where hi,j is the value in the i th row and j th column of the
HMMprofile. xj (1 ≤ j ≤ 20) is the composition of amino acid
type j in the HMM profile and represents the average
score of the amino acid residues in the query protein
being changed to amino acid type j during the evolution
process. AAC based on the HMM profile is a simple and
intuitive feature; however, it ignores the role of sequence-
order information.

To partially reflect the local sequence-order effect, TPC
features are computed from the HMM profile as follows:

yi,j =
∑L−1

k=1hk,i × hk+1,j
∑20

j=1∑
L−1
k=1hk,i × hk+1,j

  1 ≤ i, j ≤ 20ð Þ: ð3Þ

To include evolution information and sequence-order
information, a 420-dimensional vector is finally employed
to represent a protein by fusing AAC and TPC features. We
call this feature encoding method AATP-HMM in this study.

2.3. Classification Algorithm. In this study, we apply one of
the effective ensemble techniques called stacking [35] to
achieve the performance improvement of the DBP predictor.
Stacking makes up the limitation of the single classifier by
integrating prediction results from multiple classification
algorithms. There are two stages in our stacked ensemble
scheme (Figure 2). For the first stage, various classification
algorithms are employed individually as base classifiers to

produce prediction class probabilities. For the second stage,
these probabilities as inputs are taken into the meta-
classifier in different combinations to generate desired pre-
diction results.

To construct the well-behaved stacked model (SM) with
the optimal combination of base classifiers, we explore six
classification algorithms: (i) SVM with radial basis kernel
function (RBF) [42], (ii) K Nearest Neighbor (KNN) [43],
(iii) Logistic Regression (LR) [44], (iv) RF [45], (v) Decision
Tree (DT) [46], and (vi) extreme Gradient Boosting (XGB)
[47]. All of these algorithms are implemented by using
scikit-learn library [48] in Python with the ideal parameters
tuned based on the grid search strategy.

Taking into account the underlying principle of each
classification algorithm and their prediction performance,
we select three top learners, i.e., SVM (RBF), RF, and XGB,
to, respectively, combine with other base classifiers. Also,
we build the SM with these three best-performed classifiers
and the one with all classification models. The following
SMs are five combinations of base classifiers in this study:

(i) SM1: KNN, LR, DT, SVM (RBF)
(ii) SM2: KNN, LR, DT, XGB
(iii) SM3: KNN, LR, DT, RF
(iv) SM4: SVM (RBF), XGB, RF, and
(v) SM5: KNN, LR, DT, SVM (RBF), RF, XGB
In our stacked ensemble scheme, we adopt Gradient

Boosting Decision Tree (GBDT) [49] as the meta-classifier
to perform the final prediction of DBPs. Gradient boosting
is a powerful ML technique, which produces a prediction
model in the form of an ensemble of weak learners, typically
DT [50]. Due to the arbitrary of choosing the loss function,
GBDT could be customized to any particular ML task.

2.4. Performance Evaluation. To evaluate the performance of
PredDBP-Stack, we first implement the jackknife cross-
validation test on the PDB1075 dataset. In the jackknife test,
every protein is tested one by one by the predictor trained
with the remaining proteins in the benchmark dataset. Next,
the independent test on the PDB186 dataset is also per-
formed to examine the generalization ability of the proposed
model. In this study, four widely used performance metrics
are employed to compare PredDBP-Stack with several
state-of-the-art models for identifying DBPs, including Over-
all Accuracy (OA), Sensitivity (SN), Specificity (SP), and
Matthew’s correlation coefficient (MCC) [51–54]. These
metrics are formulated as follows:

OA = TP + TN
TP + FP + TN + FN

, ð4Þ

SN =
TP

TP + FN
, ð5Þ

SP =
TN

TN + FP
, ð6Þ

MCC =
TP × TN − FP × FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP + FPð Þ × TP + FNð Þ × TN + FPð Þ × TN + FNð Þp ,

ð7Þ
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where TN, FN, TP, and FP indicate the number of true neg-
ative, false negative, true positive, and false positive samples,
respectively. Additionally, the area under the Receiver Oper-
ating Characteristic (ROC) Curve (AUC) is also computed as
it is a powerful metric for evaluating the performance of a
binary predictor. The larger the AUC value, the better the
performance of the model.

3. Results and Discussion

3.1.PerformanceofBaseClassifiers.Basedon theAATP-HMM
feature representation, we first analyze the predictive power of
six classifiers, i.e., DT,KNN, LR,XGB,RF, and SVMemployed
in the base level of stacking. The models are tested on the
PDB1075 dataset by using the jackknife cross validation and
experimental results are shown in Table 1.

Table 1 indicates that the optimized SVM with RBF-
kernel provides the highest performance in terms of OA,
MCC, and AUC compared to the other methods for the pre-
diction of DBPs. Moreover, the RF method obtains the best
SN value of 83.4%, and the XGBmethod gives an outstanding
SP value of 80.69%. It is also evident that the DT model per-
forms worst in this task. In addition, the algorithms of KNN
and LR show the acceptable performance with the AUC value
larger than 0.8. To assure the distinct and high quality of the
target figure, only three ROC curves corresponding with LR,
DT, and SVMmodels are shown in Figure 3, which illustrates
the consistent findings with Table 1.

3.2. Performance of Meta-Classifiers. To find out the optimal
combination of base learners, we construct five SMs with dif-
ferent classifiers as follows. As SVM, XGB, and RF are the top
three competitive classifiers in the above tests; each one of
them is combined with the remaining classifiers to formulate
an SM, namely SM1, SM2, and SM3, respectively. The com-
bination of the three outstanding classifiers and all classifiers
are formulated as SM4 and SM5. For all the SMs, the meta-
classifier in the second stage is GBDT. The performance of
five SMs on the PDB1075 dataset using the jackknife test is
shown in Table 2.

From Table 2, we observe that SM1, SM2, SM3, and SM5
provide similar performance with the OA larger than 90%.
However, SM4 produces less competitive scores on the five
evaluation measures. It may imply that the combination of
the top three competitive classifiers does not mean an

LR DT SVM

Fused features

KNN RF

Prediction 1 Predction 2 Predction 3 Predction 4

Predction results

GBDT

Predction 5 Predction 6

First stage

Second stage

XGB

Figure 2: The framework of a two-stage stacked ensemble scheme.

Table 1: Performance comparison of six base classifiers on the
PDB1075 dataset using the jackknife test.

Method OA (%) SN (%) SP (%) MCC AUC

DT 74.53 74.71 74.36 0.4906 0.7838

KNN 76.22 75.68 76.73 0.5240 0.8364

LR 78.18 78.19 78.18 0.5635 0.8508

XGB 78.74 75.64 80.69 0.5634 0.8624

RF 78.28 83.4 73.45 0.5702 0.8648

SVM 80.34 81.66 79.27 0.6091 0.8774
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advantageous result. Additionally, SM1, which employs
KNN, LR, DT, and SVM (RBF) as base learners and GBDT
as a meta-classifier, achieves the highest scores on the OA,
SN, MCC, and AUC, respectively. SM2 gives the best SP
of 92.55%. We also plot the ROC curves for SM1 and its
four base classifiers in Figure 4, which demonstrates that
stacked generalization can indeed improve the perfor-
mance of base-level learners. Thus, SM1 is adopted as
the final predictor for the identification of DBPs in the
subsequent analysis.

3.3. Comparison with Existing Methods. In this section, we
evaluate the performance of PredDBP-Stack by performing
the following two testing protocols for a fair comparison with
the existing methods, including DNABinder [17], DNA-Prot
[4], iDNA-Prot [28], iDNA-Prot|dis [5], Kmer1+ACC [14],
iDNAPro-PseAAC [19], Local-DPP [27], HMMBinder
[20], and StackDPPred [29].

The jackknife test is first implemented on the benchmark
dataset PDB1075, and the detailed results are reported in
Table 3. As shown in Table 3, HMMBinder, StackDPPred,
and the proposed PredDBP-Stack provide outstanding per-
formance with the OA higher than 85% and the AUC value
more than 0.9. However, our method shows the best predic-

tive power on the five metrics: OA (92.42%), SN (92.47%), SP
(92.36%), MCC (0.85), and AUC (0.9677). This is likely
attributable to the effective feature extraction technique from
the HMM profile and the powerful stacked ensemble classi-
fier adopted in the PredDBP-Stack model.

To further assess the robustness of the proposed
method, we perform an independent test on the PDB186
dataset, where PredDBP-Stack is beforehand trained on
the benchmark dataset. Table 4 lists the predictive results
of our method and nine existing state-of-the-art predictors
mentioned above. From Table 4, we observe that our
method, together with StackDPPred, performs better than
the other methods on the PDB186 dataset, with the OA
of 86.56%. Specifically, our method achieves the highest
SP (86.02%) and AUC (0.8932) among the evaluated
methods. In addition, the proposed PredDBP-Stack attains
the second-best SN (87.10%) and MCC (0.731), which are
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Figure 3: ROC curves of LR, DT, and SVM classifiers on the
PDB1075 dataset using the jackknife test.

Table 2: Performance comparison of five SMs on the PDB1075
dataset using the jackknife test.

Method OA (%) SN (%) SP (%) MCC AUC

SM1 92.42 92.47 92.36 0.8482 0.9677

SM2 92.23 91.89 92.55 0.8444 0.9664

SM3 91.76 91.31 92.18 0.8350 0.9635

SM4 79.87 82.82 77.09 0.5993 0.8745

SM5 90.54 90.93 90.18 0.8108 0.9560

0.0

0.2

0.4

0.6

Tr
ue

 p
os

iti
ve

 ra
te

0.8

1.0

0.0 0.2 0.4 0.6 0.8

LR (AUC = 0.8508)
KNN (AUC = 0.8364)

DT (AUC = 0.7838)

SVM (AUC = 0.8774)
SM1 (AUC = 0.9677)

1.0
False positive rate

Figure 4: ROC curves of SM1 and its base classifiers on the
PDB1075 dataset.

Table 3: Performance comparison on the benchmark dataset
PDB1075.

Method OA (%) SN (%) SP (%) MCC AUC

DNA-Prot 72.55 82.67 59.76 0.44 0.7890

iDNA-Prot 75.40 83.81 64.73 0.50 0.7610

iDNA-Prot|dis 77.30 79.40 75.27 0.54 0.8260

DNABinder 73.95 68.57 79.09 0.48 0.8140

Kmerl+ACC 75.23 76.76 73.76 0.50 0.8280

iDNAPro-PseAAC 76.76 75.62 77.45 0.53 0.8392

Local-DPP 79.20 84.00 74.50 0.59 —

HMMBinder 86.33 87.07 85.55 0.72 0.9026

StackDPPred 89.96 91.12 88.80 0.80 0.9449

Our method 92.42 92.47 92.36 0.85 0.9677
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slightly lower than those of StackDPPred. It should be
pointed that the StackDPPred also applies a stacking tech-
nique to establish a powerful predictor for the identifica-
tion of DBPs, which utilizes two different types of
features, i.e., PSSM profile and residue wise contact energy
profile [29]. However, our method also obtains favorable
prediction accuracy when only the HMM profile is used.
The successful applications of StackDPPred and PredDBP-
Stack show that the stacking-based ML technique might yield
a competitive tool for the prediction of DBPs and other pro-
tein classification tasks.

From the above comparisons, our method outper-
forms the existing models based on both the jackknife
test and the independent test. This indicates that our
method is a very promising tool for identifying DBPs and
may at least play an important complementary role to
existing methods.

4. Conclusions

Even though considerable efforts have been devoted so far,
prediction of DBPs solely from sequence information still
remains a challenging problem in bioinformatics. In this
study, we develop a stacking-based ML model PredDBP-
Stack to further improve prediction accuracy of DBPs,
which employs an ensemble of base learners, such as
KNN, LR, DT, and SVM, to generate outputs for the
meta-classifier. Firstly, a hybrid feature encoding model,
called AATP-HMM, is proposed to transform the HMM
profiles to fixed-length numeric vectors, which incorporate
evolution information and sequence-order effects. Next,
these feature vectors are used to train the base-level predic-
tors in the first stage. Then, GBDT is adopted as the meta-
classifier in the second stage to implement the final predic-
tion of DBPs. Finally, the jackknife cross validation and the
independent test are performed on the two benchmark
datasets to evaluate the predictive power of the proposed
method. Comparison with the other existing predictors
indicates that our method provides the outstanding
improvement and could serve as a useful tool for predicting
DBPs, given the sequence information alone.

Data Availability

The datasets and source codes for this study are freely avail-
able to the academic community at: https://github.com/
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