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Evaluation of brain dynamics elicited by motor imagery (MI) tasks can contribute to

clinical and learning applications. The multi-subject analysis is to make inferences on

the group/population level about the properties of MI brain activity. However, intrinsic

neurophysiological variability of neural dynamics poses a challenge for devising efficient

MI systems. Here, we develop a time-frequency model for estimating the spatial

relevance of common neural activity across subjects employing an introduced statistical

thresholding rule. In deriving multi-subject spatial maps, we present a comparative

analysis of three feature extraction methods: Common Spatial Patterns, Functional

Connectivity, and Event-Related De/Synchronization. In terms of interpretability, we

evaluate the effectiveness in gathering MI data from collective populations by introducing

two assumptions: (i) Non-linear assessment of the similarity between multi-subject data

originating the subject-level dynamics; (ii) Assessment of time-varying brain network

responses according to the ranking of individual accuracy performed in distinguishing

distinct motor imagery tasks (left-hand vs. right-hand). The obtained validation results

indicate that the estimated collective dynamics differently reflect the flow of sensorimotor

cortex activation, providing new insights into the evolution of MI responses.

Keywords: multi-subject analysis, motor imagery, common spatial patterns, event-related synchronization,

functional connectivity

1. INTRODUCTION

Motor imagery (MI) is a dynamic mental state in which an individual performs a mental rehearsal
of motor action without any overt output. It is believed that real movements and those performed
mentally (imaginary movements) are functionally similar (Stolbkov et al., 2019). Therefore, there
is sufficient experimental evidence that MI contributes to substantial improvements in motor
learning and performance (Aymeric and Ursula, 2019), games and entertainment, sports training,
therapy to induce recovery and neuroplasticity in neurophysical regulation and rehabilitation,
and activation of brain neural networks as the basis of motor learning (Machado et al., 2019),
and education scenarios (Boe and Kraeutner, 2018; MacIntyre et al., 2018; Suica et al., 2018),
where the Media and Information Literacy methodology proposed by UNESCO includes many
competencies that are vital for people to be effectively engaged in human development (Frau-Meigs,
2007). These applications reinforce the importance of studying the evolving brain organization to
model plastic changes accurately, putting strength on dynamic modeling of temporal, spectral, and
spatial features extracted from single channels due to most MI systems rely on them to distinguish
distinctive neural activation patterns (Hamedi et al., 2016; Allen et al., 2018).
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MI systems handle brain data recorded with
electroencephalography (EEG), which is a non-invasive
measurement of neural activation and interactions, encoding
brain dynamics with high temporal granularity, but at a
relatively low spatial resolution (Feng et al., 2019). Integrating
spatial filtering techniques can reverse the volume conduction
effects to some degree, increasing the EEG spatial resolution.
Nevertheless, to enhance the analysis of triggering mental
activity, feature extraction approaches are performed to derive
distinct EEG spatial maps with varying frequency and time
characteristics (Tiwari et al., 2018). To begin with, Filter-
Bank Common Spatial Patterns are a popular algorithm
in MI systems that discriminate multichannel EEG signals
by highlighting differences while minimizing similarities,
selecting frequency bands appropriately (Baig et al., 2019).
Also, Functional Connectivity (FC) networks are extracted
because a better understanding of MI mechanisms requires
knowledge of the way the co-activated brain regions interact
with each other (Stavrinou et al., 2007). Accordingly, the
wPLI metric of EEG functional connectivity can account for
linear brain interactions but is also expected to be sensitive
to non-linear couplings Imperatori et al. (2019). Another
approach for characterizing the imaged hand movements is
to quantify frequency alterations in time-varying responses
to a stimulus (event) through the so-termed Event-Related
De/Synchronization (ERD/S), presenting a significant correlate
of localized cortical oscillatory activity (Juan et al., 2019). When
imagining one hand moving, an increase/decrease in the power
of µ and β rhythms becomes more potent in the sensorimotor
(electrodes C3 and C4) and pre-motor (Cz) areas located
contralaterally to the hand involved in the task (Wierzgała
et al., 2018). Due to the non-stationarity of EEG data, however,
the effectiveness of feature extraction procedures is reduced
in deriving distinct EEG spatio-spectral patterns. Several
factors can affect, among others, the following: movement
artifacts during recording, temporal stability of mirroring
activation over several sessions differs notably between MI time
intervals (Friedrich et al., 2013; Pattnaik and Sarraf, 2018), low
EEG signal-to-noise ratio, poor performance in small-sample
settings (Park and Chung, 2019), and inter-subject variability
in EEG dynamics (Saha et al., 2018). Along with variability in
the signal acquisition, another circumstance that leads to low
accuracy scores is that some subjects may have brain networks,
not sufficiently developed for practicing MI tasks (Ahn and
Jun, 2015). As a result, the performance of MI systems varies
considerably across and within-subjects, severely degrading
their reliability.

To compensate for the variability of EEG dynamics, novel
approaches are being developed to integrate information
across subjects within a collective framework, combining
individual feature sets of neural dynamics to improve the brain
representation robustness, as explained in Bigdely-Shamlo et al.
(2018). Thus, under the assumption that temporal signatures
from an evoked neural activity are similar across subjects, group
models can be extracted for decoding the multi-subject mental

responses to complex stimuli without explicitly representing the
elicitation (Fazli et al., 2015). Several strategies for raw data
aggregation can be implemented for building group inferences,
including serial/parallel combinations of subject-level feature
sets to form a more extensive multi-subject array (Lio and
Boulinguez, 2016). Instead, data-driven approaches have also
been employed to infer collective feature structures, like joint
diagonalization (Gong et al., 2018), temporally constrained
sparse representation (Zhang et al., 2019), canonical correlation
analysis (de Cheveigné et al., 2019), and versions derived from
independent Component Analysis (Emge et al., 2018; Huster and
Raud, 2018; Bhinge et al., 2019), among others.

For interpretation purposes, the topographic representation
is commonly computed to display the spatial distribution of the
extracted common neural dynamics. Nonetheless, the building of
multi-subject models implies the accurate aggregation of time-
frequency patterns extracted from EEG dynamics across the
subjects by adequately selecting the domain parameters (i.e.,
time window length and filter bandwidth setup) (Huster and
Raud, 2018). Moreover, the aggregation can face a different
dimensionality derived from the feature extraction methods
involved. Due to the difference in captured dynamics, each
engaged extraction method differently reflects the flow of
sensorimotor, being one of the issues that arise in identifying
group relationships confidently (Bridwell et al., 2018). Besides,
to evaluate computational network models, there is a need to
establish the meaning of the aggregation of extracted brain-
activity patterns (Kriegeskorte et al., 2008). Hence, another issue
to consider is to assess the ability of multi-subject sets to preserve
the main properties (i.e., the spatial distribution of brain neural
activity throughout time and spectral domains) extracted from
single-subject models.

Here, we develop a dynamic model for estimating the
common neural activity across subjects to provide new insights
into the evolution of collective mental imagery processes.
After the preprocessing stage, the t-f EEG signal set is fed
into a feature extraction algorithm to improve the efficiency
of triggering activity representation. Then, we employ a
statistical thresholding algorithm to extract a multi-subject
model that provides a set of confident estimates contributing
the most to discriminating between MI tasks. We present
a comparative analysis of the feasibility of three popular
feature extraction methods in deriving multi-subject spatial
maps: Common Spatial Patterns, Functional Connectivity, and
event-related de/synchronization. The obtained validation results
indicate that the estimated collective dynamics reflect the flow
in the sensorimotor cortex activation differently. Therefore,
the common model addresses inter-subject and inter-trial
variability sources individually, depending on the engaged
extraction method.

The paper is organized as follows: section 2 describes the
validated database and methods that are carried out; section
3 presents the experimental setup as well as the performed
outcomes; section 4 introduces a detailed discussion of the
attained results, providing the main conclusions of this work.
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2. MATERIALS AND METHODS

2.1. Description Tested of Bi-task MI
Databases
2.1.1. Dataset D-I
We perform experimental validation in nine subjects (M = 9) of
Dataset 2a1, holding EEG signals acquired from the scalp by a
C-channel montage (C = 22). Every raw EEG channel x(c)∈RT

was sampled at 250 Hz (i.e., at the sample rate 1t = 0.004 s).
To perform each MI task (left and right hand with labels noted
as λ∈{l, l′}, respectively), a short beep noticed the trial beginning,
followed by a fixation cross that appeared on the black screen
within the first 2 s-interval. An arrow (cue) appeared during
1.25 s, and pointed to the induced direction. Then, each subject
performed a demandedMI task while the cross reappeared within
the next time interval, starting from 3.25 s to the recording end.
All signals were collected in six runs separated by short breaks,
performing Nλ = 72 trials per class and each lasting T = 7 s.
Of note, we only examined the labeled trials for which artifact
removal had been applied.

2.1.2. Dataset D-II
We also examine this collection that holds EEG data obtained
from fifty-two subjects (although only M = 50 are available)
using a 10– 10 placement electrode systemwithC= 64 channels2.
Every channel x(c) lasted T = 7 s and sampled at Fs = 512 Hz.
At the trial beginning, a fixation cross was presented on a black
screen within a period that lasted 2 s. Then, a cue instruction
(related to either label—l or l′) appeared randomly on the screen
for 3 s that inquired each subject to imagine moving his/her
fingers, starting to form the index finger and proceeding to the
little finger and touching each to their thumb. Afterward, a blank
screen was shown at the beginning of a break period, lasting
randomly between 4.1 and 4.8 s. For completing a single run,
this procedure was repeated over 20 times and stopped at the
end to fulfill a written cognitive questionnaire (Cho et al., 2017).
Every subject performed five or six runs. Figure 1 displays the
trial timing used to implement the MI paradigm of the tested
databases: D-I and D-II.

2.2. Subject-Level Extraction of t-f Feature
Dynamics
Using a sliding window approach, the short-time feature
set is extracted from multiple frequency bands to build the
labeled subject-level model of feature dynamics. At this stage,
we compare the following methods of t-f feature extraction:
Common Spatial Patterns, Functional Connectivity, and Event-
Related De/Synchronization.

2.2.1. Estimation of Common Spatial Patterns
Given a filter-band-passed trial matrix Xλ

nf τ
∈RC×T , n∈Nλ, f∈Nf ,

CSP finds within the time-windowed partition τ∈Nτ the
linear transformation vector wf τ∈R

C that maximizes the
Rayleigh Quotient (RQ) between both labels λ, defined as

1BCI Competition IV, publicly available at: www.bbci.de/competition/iv/.
2http://gigadb.org/dataset/100295.

follows (Aghaei et al., 2016):

max
∀wf τ

J =
w
⊤
f τ

Σ l
f τ
wf τ

w
⊤
f τ

Σ l
f τ

+ Σ l′

f τ
wf τ

, s.t.: ‖w‖2 = 1 (1)

where the matrix Σλ
f τ = E

{

X
λ
nf τ

X
λ⊤
nf τ

:∀n∈Nλ

}

is the simplest

estimate of the class data variance, computed at a frequency f and
sliding window τ . The notations ‖ · ‖p and E {·:∀n} stand for ℓp-
norm and expectation operator across a variable n, respectively.
Then, the sampled EEG data X

λ
nf τ

are filtered through the

learned spatial matrixW f τ∈R
K̂×C, holding K̂≤C transformation

components. Further, the projected data Z
λ
nf τ = W f τX

λ
nf τ

are

obtained using only K̂ = 2k representative terms (namely, k first
and k last rows), from which the feature vector dnf τ∈R

2k is then
extracted as below (Brandl et al., 2016):

dnf τ = log
(

diag(var{Zλ
nf τ })

)

, dnf τ⊂D∈R(Nl+Nl′ )×Q (2)

where var{·} denotes the variance operator. Note that the
obtained feature matrix D = [dnf τ:n∈Nλ] holds Q = Nf×Nτ×2k
concatenated features, which are extracted from each MI
recording trial.

Relying upon the inverse transformation matrix W
−
f τ
,

ultimately, we model the CSP-based dynamics of the spatial t–f
patterns of brain activation, which are computed as below:

θ J(f , τ ) = vec{W−
f τ
}⊤ (3)

where the vector θ J(f , τ )∈R
C gathers the t-f contribution from

c-th EEG channel in terms of distinguishing between both labels,
being learned over the whole trial set and calculated by the
highest variance value (i.e., K̂ = 1).

2.2.2. Computation of Functional Connectivity of

Brain Networks
To investigate the pairwise inter-channel relationship, we use
the weighted Phase Locking Index (wPLI) as an FC metric that
quantifies the asymmetry of the phase difference distribution
between two specific channels c, c′ (with ∀c, c′∈C, c 6=c′), being
each one estimated across the trial set, ∀n∈Nλ, as follows (Bastos
and Schoffelen, 2016):

φcc′ (f , τ |λ)

=

∣

∣E

{

|1Φ
(n)
cc′ (f , τ ; c, c

′|λ)| sgn
(

1Φ
(n)
cc′ (f , τ ; c, c

′|λ)
)

:∀n
}

∣

∣

E

{

|1Φ
(n)
cc′ (f , τ ; c, c

′|λ)| :∀n
} ,

(4)

where notation sgn stands for sign function and

1Φ
(n)
c,c′ (; |)∈R[0,π] is the instantaneous phase

difference computed through the continuous wavelet

transform coefficients W
(n)
cc′ (f , τ ; c, c

′|λ)∈R+ by the ratio

1Φ
(n)
cc′ (; |)=W

(n)
c (; |)W

(n)
c′ (; |)/|W

(n)
c (; |)||W

(n)
c′ (; |)|.
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FIGURE 1 | Trial timing used to implement the MI paradigm of the tested databases.

The wPLI metric, φcc′ (f , τ |λ)∈R
v, is normalized to highlight

the connectivity patterns generated by each evoked task, being
each mean-value averaged over the trial set within a given
baseline interval 1T0. Thus, we obtain the inter-channel
connectivity vector through the following marginal across

the node set: φ̂(f , τ |λ)=
∑

v∈V φ(f , τ ; v|λ) and the pairwise
variable v∈{c, c′∈V , c 6=c′}, where V =C(C–1)/2 is the number
of considered paired links. Therefore, we model the dynamics

extracted from φ̂(, |)∈RC according to the following rule:

θ
φ̂
(f , τ |λ) = [φ̂(f , τ ; c|λ):c∈C] (5)

2.2.3. Assessment of Event-Related

(De-)Synchronization
This time-locked change of ongoing EEG is a somatotopical
organized control mechanism that can be generated
intentionally by mental imagery and has specific frequency-band
interpretation. Using each c-th measured EEG recording x

λ
nf
(c),

the ERD/S estimation is performed, at a frequency band f and
sample τ , by squaring of samples and averaging over EEG trials
to compute the variational percentage (decrease or increase)
in the EEG signal power regarding a reference interval as
follows (Dai and Wei, 2017):

ζ (f , τ ; c|λ) = (ξ (f , τ ; c|λ)− ξ̄ (f ; c|λ))/ξ̄ (f ; c|λ) (6)

where ξ (f , τ ; c|λ)=E

{

|xλ
τ (c)|

2
nf
∈xλ

nf
(c):∀n

}

is the

power scatter averaged across the trial set and
ξ̄ (f ; c|λ)=E

{

ξ (f , τ ; c|λ):∀τ∈1T0

}

, with ξ̄ (f ; c|λ)∈R, is
the trial power scatter averaged over the reference time interval
τ0⊂T, being T∈R+ the recording time span.

Given a label λ, therefore, we represent its corresponding
ERD/S-based dynamics by computing the functional
in Equation. (6) across all channels, that is:

θ ζ (f , τ |λ) = [ζ (f , τ ; c|λ)∈R : ∀c ∈ C], θ ζ (; |) ∈ R
C (7)

As a result, we estimate the subject-level model of t-f feature

dynamics {θ (m)
η (f , τ |λ):∀f ,∀f τ } extracted by each method (noted

by η={J, ζ ,φ}) for m-th individual. The model contains
the electrode set contribution, θ (m)

η (, |)∈RC[0, 1], estimated at
frequency f , time τ , and given a label λ (besides the CSP-based
spatial filtering that resumes in a single model the joint influence
of both labels).

2.3. Group-Level Extraction of
Multi-Subject t-f Dynamics
The goal is to capture the inter-subject t-f feature dynamics,
which are to be considered as prevalent in the group/population
level, guaranteeing that the MI responses are measured from
subjects under the equivalent conditions of the experimental
paradigm. We assume that the data collected are statistically
independent between individuals. Under this assumption, the
common assessments of the extracted feature sets become
confident as they are present in a higher number of subjects. In
this regard, the subject-level model provides a set of confident
estimates that contributes the most to discriminating between
tasks using the following supervised, statistical thresholding
algorithm (Padilla-Buritica et al., 2020):

κ
f
m(c) =

{

1, M{θ cfm(τ )|λ : ∀1Ti}<p

0, Otherwise,

Frontiers in Neuroscience | www.frontiersin.org 4 November 2020 | Volume 14 | Article 714

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Velasquez-Martinez et al. Multi-Subject Dynamics in MI

where the rule M{·|λ:∀1Ti} computes the statistical
discrepancy/consitency along 1Ti time window using a
non-parametric Mann-Whitney test under the null hypothesis

that the distribution of all channels is equal. Thus, κ
f
m∈

C holds
the p-values for all considered channels. Besides, we apply
the Kolmogorov-Smirnov and Bartlett’s tests to address these
issues since the estimated set can present failures related to
normality and homoscedasticity. Finally, because we know the
channel’s discriminant capacity of each subject, and assuming
the independence of the performed validation, we accomplish
a group-level analysis using the positive False Discovery
Rate as a robust statistical correction in the multiple-subject
comparison testing.

We also evaluate the ability of multi-subject sets to
preserve the main properties obtained from the single-subject
model sets. Namely, we quantify the variations in the spatial
distribution of common brain neural activity raised by the
heterogeneity between subjects due to the reported dependence
of individual skills for adequately practicing the MI tasks. As
mentioned before, we build a group-level model for BCI-literacy
group in either tested database. Thus, we appraise the inter-
group topographical variability between attained multi-subject
dynamics. Besides, the intra-similarity of the extracted individual
dynamics is presented to estimate the influence of each subject
on the performed dynamic multi-subject model. So, we compute
multi-subject models over all subjects. Then, the multi-subject
model is computed by removing the subject having the worst
accuracy. Next, the multi-subject model is evaluated by removing
the tow worst subjects, and so on, desegregating each individual
by the ranked accuracy.

Here, we calculate the topographical similarity using a
generalized inner product measured between a couple of spatial
dynamics, η and η′, projecting the difference of data onto a
reproducing kernel Hilbert space through a Gaussian kernel as
follows (Mikalsen et al., 2018):

〈η, η′〉σ = exp
(

−‖η − η′‖2/σ 2
)

(8)

where σ∈R+ is a ruling parameter for which the estimate is
obtained from the MI segment.

3. EXPERIMENTAL SET-UP

Validation of the proposed approach for common-dynamics
modeling of brain neural activity comprises three stages (see the
pipeline in Figure 2): (i) Decomposition of input EEG time-series
into a frequency-specific temporal representation; (ii) Subject-
level feature extraction of t-f dynamics, encoding the electrode
contribution, (iii) Extraction of multi-subject t-f dynamics.
We performed the pairwise distance between individuals on
the subject-level and group-level stages during the evaluation.
Also, visual inspection of the obtained extracted t-f dynamics
is presented, stressing on the physiological interpretability
of results.

3.1. Pre-processing of EEG Signals
Initially, every raw EEG channel x(c) is band-pass filtered in the
frequency range f∈[4–40] Hz using a filterbank ofNf = 17 filters
with 2 Hz bandwidth overlap. For either considered database, the
bandwidths are selected as to cover µ and β , widely reported for
practicing MI tasks (Dai and Wei, 2017). However, as suggested
in Graimann et al. (2002), we split β oscillation into three
bandwidths, namely, [16–20], [20–24], and [24–28] Hz. Spectral
partitioning is carried out within the following time-window
lengths (namely, τJ =[0.5, 1, 1.5, 2] s with 90% overlapping).
Then, to provide physiological interpretation according to the
implemented experimental paradigm of MI, the dynamics are
analyzed at the following representative intervals of interest:
1T1 =[0–2] s (interval prior to cue-onset or task-negative state),
1T2 =[0.8–2] s (cue-onset interval), 1T3 =[2.6–4.6] s (motor
imagery interval), 1T4 =[3.8–5.8] s (decaying motor imagery
interval), and 1T5 =[4.4–6.4] s (break period).

For addressing the volume conduction problem, all t-
f patterns are computed by performing the Laplacian filter
previously over the input EGG data to improve the spatial
resolution of EEG recordings, avoiding the influence of noise
coming from neighboring channels (Carmen et al., 2011). We
implemented the spatial filtering using Biosig Toolbox3.

One aspect significantly influencing the extraction of
dynamics is the subject’s ability to evoke high-quality and
recognizable MI responses. To manage inter-subject variability,
we assume the rationale by which the more developed
the individual brain network, the higher the accuracy in
distinguishing between MI tasks. Accordingly, depending on
whether a subject has skills to master MI applications, both
databases are split into two subject assemblies: BCI-literacy and
BCI-illiteracy.

3.2. Single-Subject Dynamics Performed
by Common Spatial Patterns
After selecting the bandwidth setup, the starting point to
implement the short-time feature extraction of t-f CSP dynamics
is the computation of RQ time-series by adequately tuning
the time window length τJ and by fixing the variance of the
surrogate space to the first eigenvectors (k = 3) of the matrix
W f τ . Therefore, using a tailored software, we extract two feature

sets from each time-frequency segment: D∈R144×102 for D-I and
D∈R200×102 for D-II.

For illustration purposes, we present the extracted CSP
dynamics just for several representative subjects, who have been
reported as having high accuracy (BO8T for database D-I, and
S43, S14, S46 for D-II) and low accuracy (BO2T for D-I, and
S10, S38, and S2 for D-II). Figure 3 presents the t-f features
performed individually, revealing a very changing behavior of the
assessments. This fact becomes evident in the accuracy evolution
over time displayed under each plot of CSP-based dynamics.
The time-evolving accuracy reveals that the optimal value of
τJ provides the best accuracy and varies widely across subjects
and ranges within the entire span of the tested window length.
Table 1 presents the mean and standard deviation of accuracy,

3http://biosig.sourceforge.net.
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FIGURE 2 | Scheme illustrating the stages of common dynamic modeling proposed for brain neural activity in motor imagery tasks. The evaluated t-f feature

extraction methods are contained in the dashed box.

averaged across the subject set, indicating that the average
performance tends to increase as the length τJ shortens. However,
the accuracy degrades for the smallest window. Because one
more concern in choosing τJ is the need for sufficient statistics
to estimate the collective dynamics, we fix the optimal window
to τ ∗J = 1 s as a tradeoff between accuracy and an adequate
number of samples on the interval of interest in implementing
the multi-subject modeling.

To manage the significant impact of inter-subject variability
on the reached accuracy, we employ a neurophysiological
predictor of BCI performance to divide the evaluated subjects
into two clustered assemblies: BCI-literacy, or users with the
ability to produce reliable and reasonably robust differences
in neural activity between distinct MI tasks (e.g., left-hand
vs. right-hand) (Allison and Neuper, 2010), and BCI-illiteracy,
or individuals who are not accurate enough to control the
MI application.

As suggested in Blankertz et al. (2010), we cluster the whole
subject set into two mutually exclusive assemblies by removing
points of the sample that have the 10% largest Malahanobis
distance to the data center. For each tested database, Figure 4
presents the obtained scatter plots using the neurophysiological
predictor, having as input data the average values of mean and
standard deviation computed in each case of τJ . To clarify the
clustering results, we rank the subject set in decreasing order of
the average discrimination accuracy in Figures 5A,B (D-I,D-II),
where a dashed vertical line separates both assessed assemblies,
displaying the individual performance estimated at different
window lengths. As a result, the D-I collection holds five BCI-
literacy subjects and four BCI-illiterate. In turn, D-II contains 15
BCI-literacy subjects, and the remaining 35 are BCI-illiterate.

Also, we appraise the spectral contribution by the marginal
values of CSP dynamics on each bandwidth of f , as seen

on the plots depicted in Figure 3. Thus, the individuals with
high accuracy (yellow spots) have a few spectral components
powerfully localized, showing that the more contributing
waveforms are µ and β . In contrast, the low-accuracy subjects
have a weak contribution that tends to spread over all
bandwidths, increasing the variability of estimated CSP patterns.

Another aspect to consider is the representative intervals of
interest that influence the most in the MI responses. Thus, in the
cases of individuals with higher performance (BCI-literacy), the
best accuracy is estimated within 1T3, when the most increased
neural activation is expected to take place according to the
used trial timing. By the opposite, subjects with lower accuracy
(BCI-illiteracy) deliver better estimates of performance outside
the MI period 1T3; their high irregularity may explain this
incorrect time localization of relevant MI responses in following
the experimental paradigm (Brockmeier, 2014). Consequently,
the more scattered over time and frequency domains the
extracted CSP patterns, the lower the accuracy achieved by
the subjects.

From Figure 3, it may be concluded that every subject rules
the RQ evolution through τ separately. This restriction poses
a challenge for extracting multi-subject dynamics, for which a
unique value of time window must be determined across the
whole subject set. Another critical point hindering the estimation
of RQ maps is the use of CSP-based filtering that demands a
long window τ , decreasing the accuracy of the performed t-f
feature dynamics so that the variability of inter-subject dynamics
increases notably due to inherent non-stationarity, artifacts, a
low signal-to-noise ratio of EEG signals, individual differences
in cortical activity resulting in variations covariance matrix and
consequently estimated spatial filters (Wang and Zheng, 2008).

Once the domain parameters (i.e., time window length
and filter bandwidth setup) are selected, we compute the
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FIGURE 3 | t-f CSP dynamics computed for representative individuals (BCI-literate and BCI-illiterate) belonging to each tested dataset (D-I and D-II). Under each plot,

the accuracy evolution over the interval of neural activation T is displayed for a fixed value of window τJ.

topographical representation of brain neural dynamics θ J(f , τ )
performed by CSP. For the sake of illustration, Figure 6 displays
the neural dynamics performed by representative subjects of

both data subsets, that is, BO8T and BO2T in D-I, and S14
and S27 for Dataset D-II. As seen, the filter-bank bandwidths
of BCI-literacy individuals that contribute the most fall into
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TABLE 1 | Accuracy of the extracted RQ time-series, varying τJ.

D-I D-II

τJ All Literate Illiterate All Literate Illiterate

0.5 83.8 ± 6.6 91.3 ± 5.3 80.5 ± 4.0 85.6 ± 9.0 92.1 ± 7.6 77.6 ± 3.2

1.0 84.1± 7.9 94.1 ± 4.1 79.8 ± 4.5 85.7± 10.9 94.1 ± 5.5 75.2 ± 7.5

1.5 82.8 ± 9.8 93.0 ± 5.4 78.0 ± 7.1 87.6 ± 11.3 96.0 ± 4.0 77.2 ± 10.0

2.0 82.1 ± 11.3 95.0 ± 5.3 76.5 ± 8.3 87.2 ± 11.6 95.4 ± 3.9 77.0 ± 11.8

All stands for averaging across the while group, while Literate and Illiterate represent the corresponding subject subset computation.

The bold values indicate the accuracy performed by the optimal window fixed to τ ∗J=1 s.

A B

FIGURE 4 | Division into BCI-literacy and BCI-illiteracy. Scatter plots performed by the neurophysiological predictor for each database, D-I (A) and D-II (B).

A

B

FIGURE 5 | Individual classifier accuracy of MI tasks estimated for D-I (A) and D-II (B) at different window lengths (Subjects are ranked in decreasing order of

performance at τ ∗
J = 1). The dashed line separates the BCI-literate subjects from BCI-illiterate ones.

µ and β oscillations, involving activity in the centro-lateral
primary motor area, supplementary motor area, and primary
somatosensory area, as reported in Catharina et al. (2015).
On the contrary, the illiterate subjects BO2T and S27 hold
the spectral contribution that is more localized over the pre-
frontal to the mid-central area, being lower on µ and spreading

extensively, but with a much lower contribution. Overall, the
neural activation dynamics θ J(f , τ ) are mostly confined within
the cue-onset and MI intervals but rising distinctly in the latter
MI period of either subject. Note a few spurious activities
within 1T1, which may be caused by the overlapping window
of estimation.
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FIGURE 6 | Topographical arrangement presenting the t-f dynamics of CSP patterns θJ (f , τ ) for the subjects performing the best and worst accuracy of each

validated database.

3.3. Single-Subject Dynamics Extracted by
Functional Connectivity
Before extracting the t-f functional connectivity features, we
perform the preprocessing stage of Laplacian filtering, fixing
channel Cz as reference (Daly et al., 2012). Nevertheless, the
influential non-stationarity nature of EGG data rules a high
variability between trial sets, fluctuating on multiple time-
scales that range from milliseconds to seconds (Lang et al.,
2012). To meet this condition, the estimator in Equation (4) is
performed by adjusting the short-time window to a small length,
τζ = 0.1 s as presented in Padilla-Buritica et al. (2019). Of note,
all connectivity assessments are computed using the FielTrip
toolbox (Oostenveld et al., 2011).

Figure 7 displays the dynamic of t-f features extracted
from B08T (upper plots) and S14 (lower plots) that explain
a high inter-subject variance of the performed FC patterns.
Also, a considerable number of acting nodes is achieved by
either individual within the segment before onset, 1T1. This
background FC activity has been previously associated with some

resting-state networks (overlapping the primary motor, visual
and auditory networks, the default mode network, and higher-
order attention networks), which are distributed over the frontal,
central, parietal, and occipital areas (Van Den Heuvel and Pol,
2010). The FC activity presents a similar behavior over the
neighboring interval (1T3 and 1T4), including the ending of
each MI task and the break period.

In the representative MI interval, 1T3, the FC patterns

performed by B08T and S14 differ between both classes,

covering multiple cortical regions. Thus, neural connectivity is

more powerful over the corresponding contralateral hemisphere

associated with the parameter-parietal network, as detailed
in Hanakawa et al. (2008). Specifically, as stated in Kasahara et al.
(2015), the Supplementary motor area, the Pre-motor cortex, and
the posterior parietal cortex are interconnected. An additional
aspect to highlight is the evenness of FC dynamics performed
by individuals belonging to DB-I due to the lower number
of electrodes, yielding lower resolution than the one assessed
in DB-II.
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FIGURE 7 | Labeled brain neural dynamics, θφ (f , τ |λ), extracted by the functional connectivity method using wPLI and performed by the representative literate

individuals: B08T (upper plots) and S14 (lower plots).

3.4. Single-Subject Dynamics Extracted by
Event-Related De/Synchronization
Further, we extract the ERD/S dynamics from the filtered
trial matrix X

λ
NfNτ

by fixing the following parameter values:

τζ = 0.004s (i.e., time window equals the sample rate), the
reference interval 1T0 = 0.5–1.5 s, and the significance value is
chosen as 1% in z-score approach (see Equation 6), as suggested
by Scherer andVidaurre (2018). Figure 8 presents the t-f patterns
of ERD modulation performed individually, marking with a red
line the cue onset time at 2 s, and with gray dotted line the MI
segment, 1T3.

The rhythmmodulation of ERD/S patterns allows interpreting
the experimental paradigm of MI tasks, as seen in Figure 8 that
displays the representative changes of t-f patterns estimated for
several representative individuals. In the case of literate subjects
(B08T, B01T, S43, S14, and S46), the modulation amplitudes
are placed over the sensorimotor cortex area. That is, the
contralateral electrode power (i.e., electrode C3 for right-hand
and C4—left-hand) decreases step-wise, just before the task
onset (marked with a red line), and then gradually increases
after the corresponding task ends. This behavior holds within

the MI interval and is significant in [8–12] and [16–24] Hz
bandwidths. Nevertheless, the synchronization patterns are
different from each other regardless of their achieved very close
accuracy, confirming the widely reported inter-subject variability
in practicing MI tasks (Samek et al., 2012).

For the illiterate subset (B02T, S01, S38, S27), the ERD/S
dynamics have weak amplitudes clustered in irregular shape
patterns so that the difference in time-locked responses between
contralateral and ipsilateral tends to disappear, as it is the case for
B06T and B02T for which the neural synchronization effect can
be barely observed because of their high inter-subject variability.

Another result to point out is the variational increase in the
ERD modulation perceived on either electrode of sensorimotor
cortical areas. As observed in Figure 8, a robust right-hand
modulation appears at the contralateral C3 electrode in most
of the individuals. In fact, the higher the accuracy, the more
intense the modulation amplitudes. This effect may be linked
to left hemisphere dominance, which is commonly reported for
motor sequencing tasks (Haaland et al., 2004). Alternatively,
the left-hand modulation located at C4 is less evident at µ

and β bands, appearing in S38 and S27. Furthermore, in some
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FIGURE 8 | ERDs maps of channels placed above the sensorimotor cortex areas (C3, Cz, and C4) performed by each subject. The rhythm modulation amplitudes are

presented for label l—left hand (upper row) and l′—right hand (bottom row). (A) B08T, (B) B01T, (C) B02T, (D) S43, (E) S14, (F) S46, (G) S01, (H) S38, and (I) S27.

cases, the modulation is also presented at the ipsilateral C3
electrode, lessening the ERD/S mechanism, and probably leading
to poor accuracy.

As seen in Figure 9, while there is no neural activity
measured before the cue 1T1 regardless of the frequency band
and performed tasks. The main dynamics take place over the
interval 1T3, showing a higher contribution of MI-related bands
(namely, [8–12], [16–20], and [20–24] Hz) as reported for hand
movement tasks (Pfurtscheller et al., 2000). Afterward, the ERDS-
based dynamics decrease over time (1T4 and 1T5). Note the
asymmetrical contribution of the contralateral electrodes for
each label.

3.5. Results of Multi-Subject Dynamic
Models
Finally, we compute the collective task-related dynamics
extracted from the t-f feature patterns {θ (m)

η (f , τ |λ):∀f∈Ω , τ∈Nτ }

with η = {J, ζ ,φ} using a time-window length, fixed for each
extraction method differently. Namely, τJ = 1s, τφ = 0.1s, and

τζ = 0.004s, resulting in the following volumes of time samples:
J→Nτ = 60, φ→Nτ = 66, ζ→Nτ = 1751. Then, we assess the
similarity of each accomplished model of collective dynamics
with the corresponding subject-level dynamics. However, for
interpretability purposes, the similarity measure is computed just
over the primary motor area as the most representative in motor
imagery tasks (Neuper and Pfurtscheller, 2001).

The topographic representation in Figure 10 shows that the
CSP-based multi-subject model does not vary remarkably along
with µ and β oscillations, within the MI interval 1T3. Although
the RQ relation resumes the influence of both labels into a single
value, the neural activation is reflected over the primary motor
and parietal areas, which should be strongly activated inMI tasks.

In the case of the Rayleigh Quotient, the topographic
representation shows that the multi-subject model of extracted
CSP dynamics for dataset D-I changes remarkably along with
µ and β oscillations, within the MI interval 1T3, as seen in
Figure 12. Also, the neural activation is reflected in the primary
motor and parietal areas, which should be strongly activated in
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FIGURE 9 | ERD/S analysis. Topoplots of the extracted dynamics θ ζ (f , τ ; c|λ), showing the dominance to different extents, performed by B08T (class l left side) and

(class l′ right side).

MI tasks. For the database D-II, the contribution is placed in the
sensorimotor area too, but the β oscillation influences the most.

The calculated topograms of the common functional
connectivity dynamics (see top row in Figure 11) reveal
perceptible differences between tasks. Figure 11 (second row)
shows the influence of stepwise removing the subjects with
lower accuracy from the performed group analysis. As observed,
the multi-subject model of DI (see the second row) changes
significantly, meaning that the RQ time-series does not preserve
enough the observed relationship between the subject-level
dynamics (see the bandwidths [16–20] and β). This finding can
be better understood in the third row that displays the scatter
plots of the performed similarity measure estimated for the
resulting groups. Several reasons may account for this result: the
low number of subjects, the low resolution of EEG montage, and
the high heterogeneity between their dynamics, as previously
reported. In the case of DII, the procedure of subject’s removal
reveals that their influence gathers into several groups depending
on the spectral bandwidth.

For the multi-subject models of ERD/S-based dynamics,
the topograms of both datasets in Figure 12 show a relevant

contribution that is located in the primary motor area,
supplementary motor cortex, and parietal cortex. These facts
may have a physiological interpretation related to MI practice.
Thus, channels present a notable neural activity through the
considered frequencies, excluding the highest bandwidth [20–24]
and [24–28] Hz.

Extracted from the ERD/S-based dynamics, the applied inter-
subject similarity measure allows identifying the presence of
subgroups very accurately, having a close resemblance between
their produced neural connectivity patterns (see second-row
of Figure 12). Thus, the subjects with the highest accuracy
gather the first subdivision, while the individuals with lower
accuracy are the last instance. Moreover, the scatter plots
(third row) make evident of subgroups for the bandwidths
[8–12], [16–20], and [20–24] Hz for bot datasets. Therefore,
the multi-subject performed by ERD/S-based dynamics are
effective in reducing subject aggregation. Thus, the group-
level model preserves the main properties of similarity, even
after removing subjects with lower accuracy in discriminating
between MI tasks, although the efficiency depends on the
frequency bandwidth.
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FIGURE 10 | Common neural dynamics of Rayleigh Quotient, estimated over the subject set within the MI interval 1T3. (a) Topographic t-f representation of

multi-subject model. (b) Pairwise distances estimated by desegregating individuals from the multi-subject model. (c) Scatter plot of normalized distances values of

assessed group dynamics.
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FIGURE 11 | Common neural dynamics of Functional connectivity, estimated over the subject set within the MI interval 1T3. (a) Topographic t-f representation of

multi-subject model. (b) Pairwise distances estimated by desegregating individuals from the multi-subject model. (c) Scatter plot of normalized distances values of

assessed group dynamics.
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FIGURE 12 | Common neural dynamics of Event-related de/synchronization, estimated over the subject set within the MI interval 1T3. (a) Topographic t-f

representation of multi-subject model. (b) Pairwise distances estimated by desegregating individuals from the multi-subject model. (c) Scatter plot of normalized

similarities values of assessed group dynamics.
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4. DISCUSSION AND CONCLUDING
REMARKS

Here, we develop a dynamic model for estimating the common
neural activity across subjects to provide new insights into
the evolution of collective mental imagery processes. After
the preprocessing stage, the t-f EEG signal set is fed into
a feature extraction algorithm to improve the efficiency of
triggering activity representation. Then, we employ a statistical
thresholding algorithm to extract a multi-subject model that
provides a set of confident estimates contributing the most
to discriminating between MI tasks. We compare three
feature extraction methods for making group inferences from
subject-level dynamic information of neural activity. The
obtained validation results indicate that the estimated collective
dynamics reflect the flow of sensorimotor cortex activation
differently. Therefore, the commonmodel addresses inter-subject
and inter-trial variability sources individually, depending on the
engaged extraction method.

The developed group dynamic model can be considered a
valid and promising approach to infer the main properties of
multi-subject datasets; however, the following remarks should be
highlighted:

– Feature extraction of neural dynamics. To build up the
subject-level feature sets, a common representational space,
θ(f , τ |λ), is proposed that encodes the electrode (spatial)
contribution, evolving through time and frequency domains.
To address sources of inter-subject and inter-trial variability of
individuals, a t-f feature set is extracted, for which the domain
parameters (time window length and filter bandwidth setup)
are selected to be the more relevant in discriminating between
MI tasks, yielding a distinct dimensionality of each extracted
characteristic set. Because of the difference in the captured
dynamics, each engaged extraction method differently reflects
the flow of sensorimotor cortex activation during the analyzed
representative MI intervals.

Three feature extraction methods were compared,
providing insight into the possible limitations. Namely,
the CSP algorithm that encodes the joint influence of both
labels reflects the neural activation over the areas related to
MI tasks. However, it demands a very wide time window,
decreasing the accuracy of the performed t-f feature dynamics
so that the variability of inter-subject dynamics increases
notably for higher bandwidths. The Functional connectivity
method allows differentiating between both spatial patterns
of MI activity, though the background neural activity notably
changes the inter-subject dynamics. Lastly, the ERD/S
patterns enable representing more accurately the evolution
of MI paradigms, including the subject dominance of the
contralateral electrodes for each task.

A significant concern is the reproducibility of FC together
with the derived graph measures, which tend to worsen as the
scalp montage size increases. In particular, there is a negative
correlation between the inter-electrode distance and inter-
electrode wPLI, making this estimator ineffective to detecting
zero-lag phase differences, as discussed by Hardmeier et al.
(2014).

– Group analysis. The multi-subject model enables inferring
collective task-related dynamics from extracted subject-level
feature sets. For better interpret the results, we evaluate the
effectiveness of gathering data from collective sources by
introducing two assumptions: (i) a non-linear assessment of
the similarity between multi-subject data originating subject-
level dynamics, instead of the widely used correlation index,
as in Velásquez-Martínez et al. (2019). (ii) an assessment of
brain network development though the ranking of subject
accuracy in performing the MI task classification. As a result,
the performed dynamic common model proves the ability
to preserve the spatial distribution of brain neural activity
throughout time and spectral domains, obtained from each
one of the single-subject models. The attained multi-subject
model allows spatial patterns that accommodate essential
individual differences in sources.

However, some issues affect the ability to collect latent
structures from sources. The employed collective framework
extracts the latent components consistently expressed in the
population, implying that they perform under the same
conditions. In practice, this premise seems to be far from being
right. Thus, several subjects systematically complete the MI
tasks in the wrong way, misleading the group analysis. Hence,
due to differences in individual MI literacy, the intra-subject
heterogeneity tends to considerably reduce the estimated
multi-subject models. To illustrate, the presence of ERD/S
mechanisms activated at the ipsilateral electrode in several
subjects results in incorrect estimated values of hemisphere
contribution. Thus, the subject triad performing the worst
(probably, with modest motor imagery abilities) should be
segregated in a different group.

Besides, the employed latent component decomposition is
unsupervised, and one might be interested in extracting the
most discriminating dynamics to avoid the influence of some
background neural activity. One more concern is the raised
computational burden related to the t-f dynamic modeling,
reducing to a small number of analyzed subjects.

As future work, the authors plan to involve more effective
stochastic approaches for representing domain-evolving
dynamics, including feature extraction methods based on
Gaussian processes or Markov models. Also, the use of
supervised analysis will enhance the interpretation of assessed
multi-subject models. We also intend to carry out the validation
of databases with a higher population.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. These
data can be found here: http://www.bbci.de/competition/iv/ and
http://gigadb.org/dataset/100295.

AUTHOR CONTRIBUTIONS

GC-D and LV-M conceived and designed the idea of the present
work. LV-M and FZ-C organized and pre-processed the EEG
data involved in all computational procedures. GC-D and LV-
M verified the analytical methods, supervised the findings of

Frontiers in Neuroscience | www.frontiersin.org 14 November 2020 | Volume 14 | Article 714

http://www.bbci.de/competition/iv/
http://gigadb.org/dataset/100295
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Velasquez-Martinez et al. Multi-Subject Dynamics in MI

this work, and contributed to their interpretation. All authors
discussed the results and contributed to the final manuscript.

FUNDING

This research manuscript is developed within “Programa
de Investigación Reconstrucción del Tejido Social en Zonas

de Posconflicto en Colombia” COD-SIGP 57579 under
project “Fortalecimiento docente desde la alfabetización
mediática Informacional y la CTel, como estrategia didáctico-
pedagógica y soporte para la recuperación de la confianza
del tejido social afectado por el conflicto” COD-SIGP 58950,
funded by Convocatoria Colombia Científica, Contrato
No. FP44842-213-2018 and Convocatoria Doctorados
Nacionales COLCIENCIAS 727.

REFERENCES

Aghaei, A. S., Mahanta, M. S., and Plataniotis, K. N. (2016). Separable common

spatio-spectral patterns for motor imagery BCI systems. IEEE Trans. Biomed.

Eng. 63, 15–29. doi: 10.1109/TBME.2015.2487738

Ahn, M., and Jun, S. C. (2015). Performance variation in motor imagery

brain-computer interface: a brief review. J. Neurosci. Methods 243, 103–110.

doi: 10.1016/j.jneumeth.2015.01.033

Allen, E. A., Damaraju, E., Eichele, T., Wu, L., and Calhoun, V. D. (2018). EEG

signatures of dynamic functional network connectivity states. Brain Topogr. 31,

101–116. doi: 10.1007/s10548-017-0546-2

Allison, B. Z., and Neuper, C. (2010). “Could anyone use a BCI?” in Brain-

Computer Interfaces, eds D. S. Tan and A. Nijholt (London: Springer), 35–54.

doi: 10.1007/978-1-84996-272-8_3

Aymeric, G., and Ursula, D. (2019). Benefits of motor imagery for human space

flight: a brief review of current knowledge and future applications. Front.

Physiol. 10:396. doi: 10.3389/fphys.2019.00396

Baig, M. Z., Aslam, N., and Shum, H. P. H. (2019). Filtering techniques for channel

selection in motor imagery EEG applications: a survey. Artif. Intell. Rev. 53,

1207–1232. doi: 10.1007/s10462-019-09694-8

Bastos, A. M., and Schoffelen, J.-M. (2016). A tutorial review of functional

connectivity analysis methods and their interpretational pitfalls. Front. Syst.

Neurosci. 9:175. doi: 10.3389/fnsys.2015.00175

Bhinge, S., Mowakeaa, R., Calhoun, V. D., and Adalı, T. (2019). Extraction

of time-varying spatiotemporal networks using parameter-tuned constrained

IVA. IEEE Trans. Med. Imaging 38, 1715–1725. doi: 10.1109/TMI.2019.28

93651

Bigdely-Shamlo, N., Ibagon, G., Kothe, C., and Mullen, T. (2018). “Finding the

optimal cross-subject EEG data alignment method for analysis and BCI,” in

2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC)

(Miyazaki), 1110–1115. doi: 10.1109/SMC.2018.00196

Blankertz, B., Sannelli, C., Halder, S., Hammer, E. M., Kübler, A., Müller,

K.-R., et al. (2010). Neurophysiological predictor of SMR-based BCI

performance. Neuroimage 51, 1303–1309. doi: 10.1016/j.neuroimage.2010.

03.022

Boe, S. G., and Kraeutner, S. N. (2018). Assessing motor imagery ability

through imagery-based learning: an overview and introduction to miscreen,

a mobile app for imagery assessment. Imag. Cogn. Pers. 37, 430–447.

doi: 10.1177/0276236617735044

Brandl, S., Muller, K., and Samek, W. (2016). “Alternative CSP approaches for

multimodal distributed BCI data,” in 2016 IEEE International Conference

on Systems, Man, and Cybernetics (SMC) (Budapest), 003742–003747.

doi: 10.1109/SMC.2016.7844816

Bridwell, D. A., Cavanagh, J. F., Collins, A. G. E., Nunez, M. D., Srinivasan, R.,

Stober, S., et al. (2018). Moving beyond ERP components: a selective review

of approaches to integrate EEG and behavior. Front. Hum. Neurosci. 12:106.

doi: 10.3389/fnhum.2018.00106

Brockmeier, A. J. (2014). Learning and exploiting recurrent patterns in neural data

(Ph.D. thesis), Citeseer.

Carmen, V., H, S. T., and Alois, S. (2011). BioSig: the free and open source software

library for biomedical signal processing. Comput. Intell. Neurosci. 2011:935364.

doi: 10.1155/2011/935364

Catharina, Z., Stefan, D., Cornelia, K., Martin, B., Ingmar, G., and Maarten,

D. V. (2015). Real-time EEG feedback during simultaneous EEG-fMRI

identifies the cortical signature of motor imagery. Neuroimage 114, 438–447.

doi: 10.1016/j.neuroimage.2015.04.020

Cho, H., Ahn, M., Ahn, S., Kwon, M., and Jun, S. C. (2017). EEG

datasets for motor imagery brain computer interface. Gigascience 6, 1–8.

doi: 10.1093/gigascience/gix034

Dai, S., and Wei, Q. (2017). Electrode channel selection based on backtracking

search optimization in motor imagery brain-computer interfaces. J. Integr.

Neurosci. 16, 241–254. doi: 10.3233/JIN-170017

Daly, I., Nasuto, S. J., and Warwick, K. (2012). Brain computer interface

control via functional connectivity dynamics. Pattern Recogn. 45, 2123–2136.

doi: 10.1016/j.patcog.2011.04.034

de Cheveigné, A., Liberto, G. M. D., Arzounian, D., Wong, D. D., Hjortkjær, J.,

Fuglsang, S., et al. (2019). Multiway canonical correlation analysis of brain data.

Neuroimage 186, 728–740. doi: 10.1016/j.neuroimage.2018.11.026

Emge, D. K., Vialatte, F.-B., Dreyfus, G., and Adalı, T. (2018). Independent vector

analysis for SSVEP signal enhancement, detection, and topographical mapping.

Brain Topogr. 31, 117–124. doi: 10.1007/s10548-016-0478-2

Fazli, S., Dähne, S., Samek, W., Bießmann, F., and Müller, K. (2015).

Learning from more than one data source: data fusion techniques for

sensorimotor rhythm-based brain-computer interfaces. Proc. IEEE 103,

891–906. doi: 10.1109/JPROC.2015.2413993

Feng, J., Jin, J., Daly, I., Zhou, J., Niu, Y., Wang, X., et al. (2019). An

optimized channel selection method based on multifrequency CSP-rank for

motor imagery-based BCI system. Comput. Intell. Neurosci. 2019:8068357.

doi: 10.1155/2019/8068357

Frau-Meigs, D. (2007).Media Education. A Kit for Teachers, Students, Parents and

Professionals. Paris: UNESCO.

Friedrich, E., Scherer, R., and Neuper, C. (2013). Stability of event-related (de-)

synchronization during brain-computer interface-relevant mental tasks. Clin.

Neurophysiol. 124, 61–69. doi: 10.1016/j.clinph.2012.05.020

Gong, X., Mao, L., Liu, Y., and Lin, Q. (2018). A jacobi generalized orthogonal

joint diagonalization algorithm for joint blind source separation. IEEE Access 6,

38464–38474. doi: 10.1109/ACCESS.2018.2850784

Graimann, B., Huggins, J. E., Levine, S. P., and Pfurtscheller, G. (2002).

Visualization of significant ERD/ERS patterns in multichannel EEG and ECoG

data. Clin. Neurophysiol. 113, 43–47. doi: 10.1016/S1388-2457(01)00697-6

Haaland, K. Y., Elsinger, C. L., Mayer, A. R., Durgerian, S., and Rao, S. M.

(2004). Motor sequence complexity and performing hand produce differential

patterns of hemispheric lateralization. J. Cogn. Neurosci. 16, 621–636.

doi: 10.1162/089892904323057344

Hamedi, M., Salleh, S.-H., and Noor, A. M. (2016). Electroencephalographic motor

imagery brain connectivity analysis for BCI: a review. Neural Comput. 28,

999–1041. doi: 10.1162/NECO_a_00838

Hanakawa, T., Dimyan, M. A., and Hallett, M. (2008). Motor planning, imagery,

and execution in the distributed motor network: a time-course study with

functional MRI. Cereb. Cortex 18, 2775–2788. doi: 10.1093/cercor/bhn036

Hardmeier, M., Hatz, F., Bousleiman, H., Schindler, C., Stam, C. J., and

Fuhr, P. (2014). Reproducibility of functional connectivity and graph

measures based on the phase lag index (PLI) and weighted phase lag

index (WPLI) derived from high resolution EEG. PLoS ONE 9:e0108648.

doi: 10.1371/journal.pone.0108648

Huster, R. J., and Raud, L. (2018). A tutorial review on multi-

subject decomposition of EEG. Brain Topogr. 31, 3–16.

doi: 10.1007/s10548-017-0603-x

Imperatori, L. S., Betta, M., Cecchetti, L., Canales-Johnson, A., Ricciardi, E.,

Siclari, F., et al. (2019). Eeg functional connectivity metrics WPLI and WSMI

account for distinct types of brain functional interactions. Sci. Rep. 9, 1–15.

doi: 10.1038/s41598-019-45289-7

Frontiers in Neuroscience | www.frontiersin.org 15 November 2020 | Volume 14 | Article 714

https://doi.org/10.1109/TBME.2015.2487738
https://doi.org/10.1016/j.jneumeth.2015.01.033
https://doi.org/10.1007/s10548-017-0546-2
https://doi.org/10.1007/978-1-84996-272-8_3
https://doi.org/10.3389/fphys.2019.00396
https://doi.org/10.1007/s10462-019-09694-8
https://doi.org/10.3389/fnsys.2015.00175
https://doi.org/10.1109/TMI.2019.2893651
https://doi.org/10.1109/SMC.2018.00196
https://doi.org/10.1016/j.neuroimage.2010.03.022
https://doi.org/10.1177/0276236617735044
https://doi.org/10.1109/SMC.2016.7844816
https://doi.org/10.3389/fnhum.2018.00106
https://doi.org/10.1155/2011/935364
https://doi.org/10.1016/j.neuroimage.2015.04.020
https://doi.org/10.1093/gigascience/gix034
https://doi.org/10.3233/JIN-170017
https://doi.org/10.1016/j.patcog.2011.04.034
https://doi.org/10.1016/j.neuroimage.2018.11.026
https://doi.org/10.1007/s10548-016-0478-2
https://doi.org/10.1109/JPROC.2015.2413993
https://doi.org/10.1155/2019/8068357
https://doi.org/10.1016/j.clinph.2012.05.020
https://doi.org/10.1109/ACCESS.2018.2850784
https://doi.org/10.1016/S1388-2457(01)00697-6
https://doi.org/10.1162/089892904323057344
https://doi.org/10.1162/NECO_a_00838
https://doi.org/10.1093/cercor/bhn036
https://doi.org/10.1371/journal.pone.0108648
https://doi.org/10.1007/s10548-017-0603-x
https://doi.org/10.1038/s41598-019-45289-7
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Velasquez-Martinez et al. Multi-Subject Dynamics in MI

Juan, B., Santiago, E., Arturo, B.-M., Marius, N., Javier, B., Eduardo, F., et al.

(2019). Synchronization of slow cortical rhythms during motor imagery-

based brain-machine interface control. Int. J. Neural Syst. 29:1850045.

doi: 10.1142/S0129065718500454

Kasahara, K., DaSalla, C. S., Honda, M., and Hanakawa, T. (2015).

Neuroanatomical correlates of brain-computer interface performance.

Neuroimage 110, 95–100. doi: 10.1016/j.neuroimage.2015.01.055

Kriegeskorte, N., Mur, M., and Bandettini, P. (2008). Representational similarity

analysis–connecting the branches of systems neuroscience. Front. Syst.

Neurosci. 2:4. doi: 10.3389/neuro.06.004.2008

Lang, E. W., Tomé, A. M., Keck, I. R., Górriz-Sáez, J., and Puntonet, C. G. (2012).

Brain connectivity analysis: a short survey. Comput. Intell. Neurosci. 2012:8.

doi: 10.1155/2012/412512

Lio, G., and Boulinguez, P. (2016). How does sensor-space group blind source

separation face inter-individual neuroanatomical variability? Insights from

a simulation study based on the PALS-B12 atlas. Brain Topogr. 31, 62–75.

doi: 10.1007/s10548-016-0497-z

Machado, T. C., Carregosa, A. A., Santos, M. S., da Silva Ribeiro, N. M.,

and Melo, A. (2019). Efficacy of motor imagery additional to motor-based

therapy in the recovery of motor function of the upper limb in post-

stroke individuals: a systematic review. Top. Stroke Rehabil. 26, 548–553.

doi: 10.1080/10749357.2019.1627716

MacIntyre, T., Madan, C. M. A., Collet, C., and Guillot, A. (2018). Motor

imagery, performance and motor rehabilitation. Prog. Brain Res. 240, 141–159.

doi: 10.1016/bs.pbr.2018.09.010

Mikalsen, K., Ø., Bianchi, F. M., Soguero-Ruiz, C., and Jenssen, R.

(2018). Time series cluster kernel for learning similarities between

multivariate time series with missing data. Pattern Recogn. 76, 569–581.

doi: 10.1016/j.patcog.2017.11.030

Neuper, C., and Pfurtscheller, G. (2001). Event-related dynamics of cortical

rhythms: frequency-specific features and functional correlates. Int. J.

Psychophysiol. 43, 41–58. doi: 10.1016/S0167-8760(01)00178-7

Oostenveld, R., Fries, P., Maris, E., and Schoffelen, J.-M. (2011). Fieldtrip:

open source software for advanced analysis of MEG, EEG, and invasive

electrophysiological data. Computat. Intell. Neurosci. 2011:156869.

doi: 10.1155/2011/156869

Padilla-Buritica, J., Hurtado, J., and Castellanos-Dominguez, G. (2019).

Supervised piecewise network connectivity analysis for enhanced confidence

of auditory oddball tasks. Biomed. Signal Process. Control 52, 341–346.

doi: 10.1016/j.bspc.2019.04.020

Padilla-Buritica, J. I., Ferrandez-Vicente, J. M., Castaño, G. A., and Acosta-

Medina, C. D. (2020). Non-stationary group-level connectivity analysis

for enhanced interpretability of oddball tasks. Front. Neurosci. 14:446.

doi: 10.3389/fnins.2020.00446

Park, Y., and Chung, W. (2019). Frequency-optimized local region common

spatial pattern approach for motor imagery classification. IEEE Trans.

Neural Syst. Rehabil. Eng. 27, 1378–1388. doi: 10.1109/TNSRE.2019.29

22713

Pattnaik, P. K., and Sarraf, J. (2018). Brain computer interface issues on

hand movement. Comput. Inform. Sci. 30, 18–24. doi: 10.1016/j.jksuci.2016.

09.006

Pfurtscheller, G., Neuper, C., Pichler-Zalaudek, K., Edlinger, G., and da Silva,

F. H. L. (2000). Do brain oscillations of different frequencies indicate

interaction between cortical areas in humans? Neurosci. Lett. 286, 66–68.

doi: 10.1016/S0304-3940(00)01055-7

Saha, S., Ahmed, K. I. U., Mostafa, R., Hadjileontiadis, L., and Khandoker, A.

(2018). Evidence of variabilities in EEG dynamics during motor imagery-based

multiclass brain-computer interface. IEEE Trans. Neural Syst. Rehabil. Eng. 26,

371–382. doi: 10.1109/TNSRE.2017.2778178

Samek, W., Vidaurre, C., Müller, K.-R., and Kawanabe, M. (2012). Stationary

common spatial patterns for brain-computer interfacing. J. Neural Eng.

9:026013. doi: 10.1088/1741-2560/9/2/026013

Scherer, R., and Vidaurre, C. (2018). “Motor imagery based brain-computer

interfaces,” in Smart Wheelchairs and Brain-Computer Interfaces, ed P. Diez

(London: Elsevier), 171–195. doi: 10.1016/B978-0-12-812892-3.00008-X

Stavrinou, M. L., Moraru, L., Cimponeriu, L., Della Penna, S., and Bezerianos, A.

(2007). Evaluation of cortical connectivity during real and imagined rhythmic

finger tapping. Brain Topogr. 19, 137–145. doi: 10.1007/s10548-007-0020-7

Stolbkov, Y. K., Moshonkina, T. R., Orlov, I. V., Tomilovskaya, E. S.,

Kozlovskaya, I. B., and Gerasimenko, Y. P. (2019). The neurophysiological

correlates of real and imaginary locomotion. Hum. Physiol. 45, 104–114.

doi: 10.1134/S0362119719010146

Suica, Z., Platteau-Waldmeier, P., Koppel, S., Schmidt-Trucksaess, A., Ettlin,

T., and Schuster-Amft, C. (2018). Motor imagery ability assessments in

four disciplines: protocol for a systematic review. BMJ Open 8:e023439.

doi: 10.1136/bmjopen-2018-023439

Tiwari, N., Edla, D. R., Dodia, S., and Bablani, A. (2018). Brain computer

interface: a comprehensive survey. Biol. Inspir. Cogn. Archit. 26, 118–129.

doi: 10.1016/j.bica.2018.10.005

Van Den Heuvel, M. P., and Pol, H. E. H. (2010). Exploring the brain

network: a review on resting-state fMRI functional connectivity. Eur.

Neuropsychopharmacol. 20, 519–534. doi: 10.1016/j.euroneuro.2010.03.008

Velásquez-Martínez, L. F., Zapata-Castaño, F., Padilla-Buritica, J. I.,

Vicente, J. M. F., and Castellanos-Dominguez, G. (2019). “Group

differences in time-frequency relevant patterns for user-independent

BCI applications,” in International Work-Conference on the Interplay

Between Natural and Artificial Computation (Almeria: Springer), 138–145.

doi: 10.1007/978-3-030-19591-5_15

Wang, H. and Zheng, W. (2008). Local temporal common spatial patterns for

robust single-trial EEG classification. IEEE Trans. Neural Syst. Rehabil. Eng. 16,

131–139. doi: 10.1109/TNSRE.2007.914468

Wierzgała, P., Zapala, D.,Wojcik, G.M., andMasiak, J. (2018). Most popular signal

processing methods in motor-imagery BCI: a review and meta-analysis. Front.

Neuroinform. 12:78. doi: 10.3389/fninf.2018.00078

Zhang, Y., Nam, C. S., Zhou, G., Jin, J., Wang, X., and Cichocki, A.

(2019). Temporally constrained sparse group spatial patterns for motor

imagery BCI. IEEE Trans. Cybern. 49, 3322–3332. doi: 10.1109/TCYB.2018.28

41847

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Velasquez-Martinez, Zapata-Castano and Castellanos-

Dominguez. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction

in other forums is permitted, provided the original author(s) and the copyright

owner(s) are credited and that the original publication in this journal is cited, in

accordance with accepted academic practice. No use, distribution or reproduction is

permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 16 November 2020 | Volume 14 | Article 714

https://doi.org/10.1142/S0129065718500454
https://doi.org/10.1016/j.neuroimage.2015.01.055
https://doi.org/10.3389/neuro.06.004.2008
https://doi.org/10.1155/2012/412512
https://doi.org/10.1007/s10548-016-0497-z
https://doi.org/10.1080/10749357.2019.1627716
https://doi.org/10.1016/bs.pbr.2018.09.010
https://doi.org/10.1016/j.patcog.2017.11.030
https://doi.org/10.1016/S0167-8760(01)00178-7
https://doi.org/10.1155/2011/156869
https://doi.org/10.1016/j.bspc.2019.04.020
https://doi.org/10.3389/fnins.2020.00446
https://doi.org/10.1109/TNSRE.2019.2922713
https://doi.org/10.1016/j.jksuci.2016.09.006
https://doi.org/10.1016/S0304-3940(00)01055-7
https://doi.org/10.1109/TNSRE.2017.2778178
https://doi.org/10.1088/1741-2560/9/2/026013
https://doi.org/10.1016/B978-0-12-812892-3.00008-X
https://doi.org/10.1007/s10548-007-0020-7
https://doi.org/10.1134/S0362119719010146
https://doi.org/10.1136/bmjopen-2018-023439
https://doi.org/10.1016/j.bica.2018.10.005
https://doi.org/10.1016/j.euroneuro.2010.03.008
https://doi.org/10.1007/978-3-030-19591-5_15
https://doi.org/10.1109/TNSRE.2007.914468
https://doi.org/10.3389/fninf.2018.00078
https://doi.org/10.1109/TCYB.2018.2841847
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	Dynamic Modeling of Common Brain Neural Activity in Motor Imagery Tasks
	1. Introduction
	2. Materials and Methods
	2.1. Description Tested of Bi-task MI Databases
	2.1.1. Dataset D-I
	2.1.2. Dataset D-II

	2.2. Subject-Level Extraction of t-f Feature Dynamics
	2.2.1. Estimation of Common Spatial Patterns
	2.2.2. Computation of Functional Connectivity of Brain Networks
	2.2.3. Assessment of Event-Related (De-)Synchronization

	2.3. Group-Level Extraction of Multi-Subject t-f Dynamics

	3. Experimental Set-Up
	3.1. Pre-processing of EEG Signals
	3.2. Single-Subject Dynamics Performed by Common Spatial Patterns
	3.3. Single-Subject Dynamics Extracted by Functional Connectivity
	3.4. Single-Subject Dynamics Extracted by Event-Related De/Synchronization
	3.5. Results of Multi-Subject Dynamic Models

	4. Discussion and Concluding Remarks
	Data Availability Statement
	Author Contributions
	Funding
	References


