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Abstract
The application of heterogeneous catalysis and green solvents to the set up of widely employed reactions is a challenge in contem-

porary organic chemistry. We applied such an approach to the synthesis and further conversion of tetrahydropyranyl ethers, an im-

portant class of compounds widely employed in multistep syntheses. Several alcohols and phenols were almost quantitatively con-

verted into the corresponding tetrahydropyranyl ethers in cyclopentyl methyl ether or 2-methyltetrahydrofuran employing

NH4HSO4 supported on SiO2 as a recyclable acidic catalyst. Easy work up of the reaction mixtures and the versatility of the sol-

vents allowed further conversion of the reaction products under one-pot reaction conditions.
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Introduction
Due to their general stability to a wide range of reagents and

ease of removal, tetrahydropyranyl (THP) ethers are widely em-

ployed in multistep organic synthesis for the protection of

hydroxy derivatives [1,2]. In addition, they can be converted

into a wealth of useful functional groups [2,3], and found

employment as fragrances or pro-fragrances in everyday life

[4-7]. Although a lot of work has been devoted to the search of

low impact, heterogeneous and recyclable catalysts to promote

THP ethers synthesis [2,8-14], to the best of our knowledge no

attention was dedicated to their employment in low impact sol-

vents.

From this point of view, it is worth noting that although ethers

are the solvents of choice for reactions involving highly polar

nucleophilic reagents such as organolithium and organomagne-

sium compounds or aluminium hydrides, tetrahydropyranyla-

tion reactions are usually run in hydrocarbons, chloroalkanes or

dipolar aprotic solvents [1,2,8-15], thus affording a paradig-
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Table 1: Synthesis of 2-(2-phenylethoxy)tetrahydro-2H-pyran (3a).

entry solvent catalyst (%) 3a/1a (%)b

1 CPME or 2-MeTHF none <5:>95
2 CPME or 2-MeTHF NH4Cl <5:>95
3 CPME or 2-MeTHF NH4Br <5:>95
4 CPME or 2-MeTHF NH4H2PO4 <5:>95
5 CPME or 2-MeTHF NH4HSO4 94:6
6 CPME NaHSO4 93:7
7 CPME KHSO4 93:7
8 2-MeTHF Amberlyst 15 >95:<5
9 CPME or 2-MeTHF Montmorillonite K10c >95:<5
10 CPME NH4HSO4@SiO2

d,e >95:<5
11 2-MeTHF NH4HSO4@SiO2 >95:<5
12 CPME NH4HSO4@SiO2

f 93:7
aAll reactions were run at rt during 4 h in the presence of the catalyst (3 mol % of 1a, unless otherwise indicated). bAs determined by 1H NMR
analyses of crude reaction mixtures; no other product was detected besides 1a. c1a/catalyst = 3 wt %. dComparable results were obtained after
4 times recycling of the catalyst. eNo reaction was observed in the presence of a comparable amount of carefully dried SiO2. f3 mol ‰ of 1a.

matic example of the ironic Murphy’s Law of Solvents, recently

stated by Jessop et al. [16]: “The best solvent for any process

step is bad for the next step”.

Starting from these premises and following our interest in the

development of reaction procedures in low impact solvents

[17,18], we report here on the tetrahydropyranylation of alco-

hols and phenols in cyclopentyl methyl ether (CPME) and

2-methyltetrahydrofuran (2-MeTHF) in the presence of hetero-

geneous acidic catalysts. Indeed, both CPME [19-22] and

2-MeTHF [21-25] are characterized by relatively high boiling

points, a narrow explosion range, hydrophobicity, easy drying

and recovery possibilities. Additionally, CPME is produced via

a 100% atom economical reaction [19,20], whilst 2-MeTHF is

accessible from renewable resources [21,23]. Finally, it is worth

noting that besides being moderately irritant, both solvents are

characterized by low toxicities and are considered negative for

genotoxicity and mutagenicity [26-28]. Due to these environ-

mentally friendly characteristics, CPME and 2-MeTHF appear

as versatile green alternatives to ethereal solvents such as tetra-

hydrofuran, dioxane, diethyl ether or methyl tert-butyl ether.

Aiming to the development of a particularly practical and envi-

ronmentally friendly procedure to the generation of THP ethers,

we devoted our efforts to the employment of heterogeneous

acidic catalysts [29,30] in order to set up conditions allowing

easy processing of the reaction mixtures and, possibly, the

recovery and recycling of the catalyst.

Results and Discussion
Taking 2-phenylethanol (1a) as a model compound, we investi-

gated its conversion into the corresponding THP ether 3a by

reacting 4 M solutions of this alcohol with a slight excess

(1.1 equiv) of 3,4-dihydro-2H-pyran (2, DHP) in the presence

of several acidic heterogeneous catalysts (Scheme 1 and

Table 1). The recovered reaction mixtures were very simply

elaborated by filtering the catalyst followed by evaporation of

the solvent in vacuo.

Scheme 1: Synthesis of THP ether 3a.

No reaction occurred in both solvents in the absence of an

acidic catalyst as well as in the presence of several ammonium

salts, i.e., NH4Cl, NH4Br and NH4H2PO4 (Table 1, entries

1–4). On the other hand, inorganic salts with a relatively higher

acidity, i.e., NH4HSO4, NaHSO4 and KHSO4 [31], as well as

Amberlyst 15 and Montmorillonite K10, efficiently promoted

practically quantitative conversion of the starting material into

the corresponding tetrahydropyranyl ether 3a within a few

hours in both solvents (Table 1, entries 5–9).

Good results were also obtained with a 25 wt % dispersion of

NH4HSO4 over SiO2 (NH4HSO4@SiO2, Table 1, entries 10

and 11). Additionally, the supported catalyst, which can be

stored in a desiccator for several months with no detrimental

effects, is particularly easy to recover and was recycled up to

4 times with no evident loss of activity (Table 1, entry 10). Its

robustness was further assessed by the good qualitative

matching between the IR spectra of the fresh and recycled cata-
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Scheme 2: Synthesis of THP ethers 3b–l in the presence of NH4HSO4@SiO2. All reactions were run at rt, in the presence of 1.1 equiv of 2 and
3 mol ‰ of catalyst during 4 h, unless otherwise indicated; percentages represent conversion of the starting materials as determined by 1H NMR;
isolated yields are reported in brackets; no other product, besides starting materials, was detected. aNo reaction in the presence of comparable
amounts of NH4Br or SiO2. b1e is almost insoluble in CPME. c1:1 mixture of diastereoisomers.

lysts (see Supporting Information File 1, Figure S1). Addition-

ally, it is worth noting that a comparable result was obtained by

reducing the amount of catalyst to one tenth (3 mol ‰ of 1a,

Table 1, entry 12).

Finally, both CPME and 2-MeTHF proved stable towards such

an acidic supported catalyst, as established by the absence of

any decomposition product within the reaction mixtures, as de-

termined by 1H, 13C NMR and gas-liquid chromatography

analyses [32].

Due to the ease of the preparation from particularly cheap

starting materials, the ease of handling and its high activity, we

further investigated the ability of NH4HSO4@SiO2 to catalyze

the synthesis of different THP ethers in low impact ethereal sol-

vents. Accordingly, the reactions were performed in the pres-

ence of 3 mol ‰ of the catalyst and were successfully applied

to the synthesis of a series of THP ethers of functionalized and

non-functionalized alcohols and phenols, including some

known fragrances (3g–j and 3l) [4-7], as illustrated in

Scheme 2.

Conversions exceeding 95% were achieved under the mild

conditions illustrated in Scheme 2 with primary aliphatic and

benzylic alcohols 1b–h. A notable exception is the low conver-

sion of 4-bromobenzyl alcohol 1e in CMPE, most probably due

to the low solubility of the starting material in this solvent. This

disadvantage was easily overcome by performing the reaction in

2-MeTHF.

More demanding conditions (2.0 equiv of 2) were required to

obtain good conversions of a secondary alcohol, i.e, (1R,2S,5R)-

2-isopropyl-5-methylcyclohexanol ((−)-menthol, 1i). The reac-

tion afforded an almost 1:1 mixture of only two diastereoiso-
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Scheme 4: One-pot synthesis of 3-[4-(tetrahydro-2H-pyran-2-yl)oxymethylphenyl]-3-pentanol (4fa).

Scheme 5: One-pot synthesis of 4-(tetrahydro-2H-pyran-2-yloxymethyl)benzyl alcohol (4fb).

mers as determined by 1H and 13C NMR analysis of the crude

reaction mixture, thus suggesting that it occurs with no epimeri-

zation at C1.

This result was confirmed by submitting compound 3i to acid-

catalyzed deprotection with H2SO4@SiO2 (25 wt % [33] as

depicted in Scheme 3). Alcohol 1i, was recovered as a single

stereoisomer, identical to the commercially available starting

material, as determined by 1H and 13C NMR analysis of the

crude reaction mixture (see Supporting Information File 1).

Scheme 3: Deprotection of THP ether 3i.

Finally, the tetrahydropyranylation of a tertiary alcohol 1j as

well as of phenols 1k and 1l required, besides the employment

of 2.0 equiv of DHP, relatively longer reaction times and higher

temperatures. It is worth noting that under our mild reaction

conditions we did not observe any isomerisation of the acid-

sensitive allylic alcohol 1j [34].

To stress the usefulness of a tetrahydropyranylation reaction

performed in a green ethereal solvent and in the presence of a

heterogeneous acidic catalyst, we realized two one-pot proce-

dures employing either 2-MeTHF or CPME as a solvent.

Accordingly, the mixture obtained by reacting 1f with 1.1 equiv

of 2 and 3 mol ‰ of NH4HSO4@SiO2 in 2-MeTHF under dry

Ar was filtered and dropwise added to a vigorously stirred

freshly prepared solution of EtMgBr in the same solvent at rt.

Aqueous work-up and flash chromatography afforded the

desired tertiary alcohol 4fa in 78% yield (Scheme 4).

Under similar conditions, protection of 1f in CPME, followed

by filtration and dropwise addition of the resulting solution to a

suspension of LiAlH4 in the same solvent, afforded the mono-

protected diol 4fb in almost quantitative yield (Scheme 5).

Conclusion
The above reported results show that several heterogeneous

acidic catalysts efficiently promote the tetrahydropyranylation

of an alcoholic model compound in low impact ethereal sol-

vents under mild conditions. Further investigations show that

NH4HSO4@SiO2, easily prepared from inexpensive starting

materials, successfully catalyzes the protection of a variety of

functionalized and non-functionalized alcohols and phenols, in-

cluding an optically pure alcohol with no detrimental effects on

its stereochemistry. Due to a particularly simple work-up proce-

dure, NH4HSO4@SiO2 can be easily recovered and recycled

several times. The easy removal of the acidic catalyst from the

reaction mixtures and the versatility of the employed solvents

allowed the successful further conversion of the reaction prod-

ucts with strong nucleophiles under one-pot conditions.

Supporting Information
Supporting Information File 1
Full experimental details, copies of IR spectra of fresh and

recycled NH4HSO4@SiO2 and copies of 1H and 13C NMR

spectra.

[https://www.beilstein-journals.org/bjoc/content/

supplementary/1860-5397-14-141-S1.pdf]
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