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Abstract.  In mammals, the corpus luteum (CL) is a transient organ that secretes progesterone (P4). In the absence 
of pregnancy, the CL undergoes regression (luteolysis), which is a crucial preparation step for the next estrous cycle. 
Luteolysis, initiated by uterine prostaglandin F2α (PGF) in cattle, is usually divided into two phases, namely functional 
luteolysis characterized by a decline in P4 concentration and structural luteolysis characterized by the elimination 
of luteal tissues from the ovary. Programmed cell death (PCD) of luteal cells, including luteal steroidogenic cells 
(LSCs) and luteal endothelial cells (LECs), plays a crucial role in structural luteolysis. The main types of PCD are 
caspase-dependent apoptosis (type 1), autophagic cell death (ACD) via the autophagy-related gene (ATG) family 
(type 2), and receptor-interacting protein kinase (RIPK)-dependent programmed necrosis (necroptosis, type 3). 
However, these PCD signaling pathways are not completely independent and interact with each other. Over the 
past several decades, most studies on luteolysis have focused on apoptosis as the principal mode of bovine luteal 
cell death. Recently, ATG family members were reported to be expressed in bovine CL, and their levels increased 
during luteolysis. Furthermore, the expression of RIPKs, which are crucial mediators of necroptosis, is reported to 
increase in bovine CL during luteolysis and is upregulated by pro-inflammatory cytokines in bovine LSCs and LECs. 
Therefore, apoptosis, ACD, and necroptosis may contribute to bovine CL regression. In this article, we present the 
recent findings regarding the mechanisms of the three main types of PCD and the contribution of these mechanisms 
to luteolysis.
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Introduction

The corpus luteum (CL) is a transient organ that secretes proges-
terone (P4), which contributes to the establishment and maintenance 
of pregnancy [1]. In the absence of embryos, the CL undergoes 
regression, and this is essential for normal cyclicity and allows the 
development and ovulation of new follicles. Luteolysis in ruminants 
is stimulated by prostaglandin F2α (PGF), which is mainly secreted by 
the uterine endometrium [2]. Moreover, several cytokines, including 
tumor necrosis factor-α (TNF) and interferon-γ (IFNG), as well as 
nitric oxide (NO), act as mediators or activators of the luteolytic 
cascade in cattle [3–5].

Luteolysis involves a decline in the secretory function of the 
CL, a reduction in P4 production (functional luteolysis), and tissue 
degradation and elimination by cell death (structural luteolysis) [6, 
7]. Caspase-dependent apoptosis in cells that form the CL, such as 
luteal steroidogenic cells (LSC) and luteal endothelial cells (LEC), 
is hypothesized to be the predominant pathway for cell death during 
luteolysis in several species, including cattle [6, 7]. A large number 

of factors, such as pro-inflammatory cytokines, TNF, IFNG and FAS 
ligand (FASL), and NO [8–13], have been implicated in structural 
and functional luteolysis in cattle. Thus, many studies have reported 
the relationship between apoptosis and luteolysis in cells in the CL. 
In addition to apoptosis, the regulatory mechanisms and the roles of 
the other types of programmed cell death (PCD) in the mammalian 
body have been revealed in recent years. Although in cattle, these 
PCD types may be involved in structural luteolysis, the details of 
the relationship between these PCD types and luteal regression are 
not well understood.

Programmed cell death was first mentioned by Lockshin and 
Williams [14], followed by its classification into three main types: 
type 1, caspase-dependent apoptosis; type 2, autophagic cell death 
(ACD); and type 3, programmed necrosis and necroptosis [15, 
16]. Recently, several new types of PCD such as pyroptosis and 
ferroptosis have been termed; however, no evidence has been found 
regarding their involvement in structural luteolysis in ruminants and 
other animal species.

Type 1 PCD plays a substantial role in mammalian luteolysis. 
In addition, ACD contributes to luteolysis in humans [17, 18], rats 
[19, 20], goats [21], pigs [22], and cattle [23, 24]. Necroptosis also 
induces luteolysis in humans [25, 26], pigs [27], and cattle [28]. In 
this article, we reviewed recent findings regarding the mechanisms 
of these three types of PCD and their contributions to luteolysis in 
mammals, including cattle.
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Apoptosis

Apoptotic pathways
Programmed cell death, characterized by DNA fragmentation 

and cell shrinkage, was first defined as apoptosis by Kerr et al. [29]. 
Apoptosis is triggered by two main signaling pathways, namely 
the death receptor and mitochondrial pathways [30, 31]. A series 
of cysteine proteases, caspases (CASPs), are the most common 
activators of PCD and are induced by the binding of death ligands to 
death receptors [32, 33]. The death receptor pathway, also known as 
the extrinsic apoptotic pathway, is initiated by extracellular ligands, 
including FASL and TNF, that interact with cell surface receptors such 
as FAS and TNF receptors (TNFRs), to initiate cell death signaling 
through CASP8 and CASP3, resulting in DNA fragmentation and 
cell degeneration [30, 33]. These typical forms of apoptosis were first 
characterized in bovine CL tissues at the luteal regression stage [6, 34]. 
Notably, during the last few decades, type 1 PCD was considered the 
principal cause of structural luteolysis. Apoptosis in cultured bovine 
LSCs and LECs is induced by inflammatory cytokines, TNF and 
IFNG, and a typical death ligand, FASL, secreted by immune cells, 
such as T lymphocytes or macrophages, that infiltrate the bovine 
CL during spontaneous luteolysis [8, 10, 13, 35]. Furthermore, the 
levels of these immune cells increased in the bovine CL 6 h after PGF 
injection on day 10 of the estrous cycle [35], suggesting that these 
cytokines may increase during both spontaneous and PGF-induced 
luteolysis and stimulate structural luteolysis by inducing apoptosis. 
In contrast, cellular FLICE-like inhibitory protein (cFLIP), known 
as an intracellular apoptosis inhibitor, inhibits the apoptotic pathway 
by blocking the formation of the death-inducing signaling complex 
(DISC), which is essential for activating the death receptor pathway 
[36]. Cellular FLIP is expressed in bovine CL tissues throughout the 
estrous cycle, and its expression decreases during luteal regression 
[37], suggesting that cFLIP maintains luteal function by inhibiting 
apoptosis in the bovine CL until luteolysis initiation.

The mitochondrial pathway, also known as the intrinsic apoptotic 
cascade, is another form of the apoptotic pathway. This pathway is 
regulated by members of the BCL2-protein family. The ratio of BCL2, 
which protects against cell death, to BAX, a pro-apoptotic protein, 
determines cell fate [31]. The death receptor and mitochondrial 
pathways of apoptosis are not completely different from each other; 
they share some aspects of signaling. Both are characterized by CASP 
activations [32]. In bovine CL tissues, compared with anti-apoptotic 
protein BCL2 expression, pro-apoptotic protein BAX expression 
increases during both spontaneous and PGF-induced luteolysis [7, 
38]. These findings suggest that death receptor and mitochondrial 
pathways work together to induce rapid apoptosis in bovine LSCs 
and LECs during luteolysis.

Extracellular regulators of apoptosis
In bovine LSCs and LECs, TNF, IFNG, and FASL are well-known 

inducers of apoptosis. In contrast to these death ligands, several 
steroids and prostaglandins are known to inhibit TNF+IFNG-induced 
apoptosis in cultured LSCs and LECs [8, 11, 39, 40]. Thus, pro-
apoptotic factors, such as TNF, IFNG, and FASL, and anti-apoptotic 
factors, such as P4, cortisol, and prostaglandins, are expressed in 
bovine CL and possibly regulate luteal functions, including the 
regulation of apoptosis in LSCs and LECs, depending on the estrous 
cycle phase.

Inhibitors of NO synthesis can suppress PGF-induced luteolysis 
in vivo [4], suggesting that NO secreted by neutrophils and LECs 
mediates the luteolytic action of PGF [4, 41, 42]. NO induces apoptosis 

in cultured bovine LSCs [12]. Moreover, reactive oxygen species 
(ROS) induce apoptosis by stimulating p53 and BAX mRNA expres-
sion in bovine LSCs [43]. Furthermore, hypoxia, which may occur 
in bovine CL during luteolysis by the disappearance of capillaries 
[44], is reported to inhibit P4 synthesis [45] and induce apoptosis 
in bovine LSCs [46]. Apoptosis in LSC and LEC is regulated by 
a balance between intracellular and extracellular apoptosis-related 
factors. In addition, P4 secretion decreases before apoptosis under 
hypoxic conditions in bovine LSCs [46], suggesting that functional 
luteolysis is followed by rapid apoptosis of LSCs and structural 
luteolysis in cattle.

Autophagic Cell Death

Contribution of ACD in luteolysis
Autophagy, first described by Lockshin and Zakeri, was originally 

believed to be a mechanism that promotes survival during malnutri-
tion; however, ACD is now believed to be involved in PCD [47]. 
Furthermore, ACD is involved in inducing cell death and excreting 
damaged intracellular proteins [48, 49]. Generally, autophagy, 
including ACD, is characterized by an intracellular dual membrane 
called the autophagosome [50, 51], and is regulated by autophagy-
related genes (ATG) and their associated proteins in mammals [52]. 
Furthermore, microtubule-associated protein light chain 3 (LC3), a 
critical marker for ACD, is present in autophagosomes [53], and the 
primary components of autophagosomes are lysosome-associated 
membrane protein-1 (LAMP1) and -2 (LAMP2) [54]. Moreover, 
Beclin-1 (BECN1) can induce ACD, and this ACD-inducing activity 
of BECN1 is suppressed by the anti-apoptotic protein BCL2 [55], 
suggesting possible interaction between the apoptotic and ACD 
pathways. Mammalian targeting of rapamycin (mTOR) inhibits 
the initiation of autophagy and formation of autophagosome [56]. 
Furthermore, cFLIP, which is an intracellular apoptosis inhibitor, also 
suppresses ACD by preventing ATG3 from binding and processing 
LC3 [57]. Although the possibility that ACD participates in luteal 
regression in guinea pigs was mentioned in a morphological study 
in 1978 [58], reports on the role of ACD in luteolysis are limited. 
However, recent studies suggest that ACD contributes to luteolysis 
in mammals.

Regulatory mechanisms of ACD in the mammalian corpus 
luteum

Recently, a study reported that autophagy-related factors, such as 
ATG3, ATG7, and LC3, were more highly expressed at the late luteal 
stage than at the mid-luteal stage in bovine CL [23], indicating that 
ACD could be involved in structural luteolysis in cattle. Furthermore, 
this study indicated that P4 secretion was significantly lower at the 
late luteal stage than at the mid-luteal stage, suggesting that ACD is 
involved in both functional and structural luteolysis [23].

However, the detailed regulatory mechanisms of ACD in bovine 
CL remain unclear. Nevertheless, TNF induces autophagy in Ewing 
sarcoma cells [59], and hypoxia triggers ACD [60]. Thus, both 
TNF and hypoxia can trigger structural luteolysis and cell death 
mechanisms in bovine CL. Therefore, these factors may contribute 
to acute structural luteolysis in cattle by inducing apoptosis and 
ACD. Furthermore, ACD and apoptosis occur in goat CL tissues 
at the regressing luteal stage [61], and ACD-like PCD occurs in 
the human CL [17]. Moreover, the expression levels of BECN1, 
LC3-II, and LAMP1 increase during luteolysis in pigs [22], and 
LC3-II expression increases with the progression of luteolysis in 
rats [19]. These findings strongly suggest that ACD participates in 
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luteolysis and apoptosis in various mammals, including cattle. In 
contrast, in mouse and human LSCs, BECN1 is necessary for steroid 
synthesis [62, 63], suggesting that autophagy plays a critical role in 
maintaining luteal function. Thus, autophagy probably contributes not 
only to luteolysis but also maintains luteal function, such as steroid 
synthesis. Further studies are necessary to clarify the mechanism by 
which autophagy balances the life cycle and death of luteal cells.

Necroptosis

Necroptosis in ovarian cells
Necrosis is another cell death mechanism that is independent 

of caspases. Generally, necrosis is considered an accidental and 
undesirable cell death. Furthermore, it occurs in an unregulated 
manner and is triggered by extreme conditions. However, necrosis 
can be regulated by intracellular mechanisms, leading to programmed 
necrosis and necroptosis [64, 65]. The necroptotic pathway is activated 
when apoptosis is blocked by CASP inhibitors such as zVAD-FMK 
[64, 66, 67]. Receptor-interacting protein kinase (RIPK) 1 and RIPK3 
function as sensors of cellular stress [68], and they are essential 
kinases that mediate necroptosis in experiments with the RIPK1 
activity inhibitor necrostatin-1 [67, 69, 70]. Although necrosis plays 
the most predominant role in the death of granulosa cells in the 
atretic follicle of ewes [71, 72], no information was available on 
whether ovarian cells exhibited programmed necrosis or necroptosis 
until Blohberger et al. reported necroptosis and its role in the human 
ovary [25]. They demonstrated that necroptosis occurs in human 
granulosa and luteal cells and contributes to follicular atresia and 
luteolysis [25]. Necroptosis probably plays a substantial role in 
the regulation of primate folliculogenesis [73] and luteolysis [26]. 
Furthermore, necroptosis is an alternative mechanism responsible 
for the death of bovine granulosa and theca cells [74]. These findings 
suggest that necroptosis is a critical factor in the regulation of ovarian 
function. Recently, we demonstrated that both RIPK1 and RIPK3 
are expressed in bovine CL throughout the estrous cycle and their 
expression levels increase during luteolysis [28], suggesting that 
RIPK-dependent necroptosis participates in structural luteolysis in 
cattle. This study was the first to reveal the role of necroptosis in 
luteolysis in domestic animals. Notably, this study indicated that 
necroptosis-inducing treatment did not affect P4 secretion in bovine 
LSCs [28], suggesting that necroptosis is not involved in functional 
luteolysis in cattle. These findings indicate that the relationship 
between PCD, including necroptosis, and functional luteolysis is 
not well understood, and further studies are needed.

Regulatory mechanisms of necroptosis
Death ligands, such as TNF and FASL, induce apoptosis as well as 

necroptosis in a number of tissues [75–77]. In death ligand-induced 
necroptosis, RIPKs are deubiquitinated by intracellular factors such 
as cylindromatosis (CYLD). Moreover, RIPKs and a pseudokinase, 
mixed lineage kinase-domain protein (MLKL), form a death-inducing 
signaling complex termed the necrosome [78]. Phosphorylated MLKL 
probably executes necroptosis [79–82]. Many intracellular proteins, 
including RIPKs, CYLD, and MLKL, induce necroptosis. Following 
this general mechanism of necroptosis regulation, we investigated 
the regulatory mechanisms of RIPKs expressed in bovine LSCs and 
LECs in vitro [28, 83] and during PGF-induced luteolysis in vivo [84, 
85]. First, we demonstrated that TNF in combination with IFNG, 
but not PGF or NO, stimulates RIPK expression [28]. By contrast, 
PGF, NO, TNF, and IFNG induce RIPK expression in bovine LECs 
[83]. These findings suggest that necroptosis can occur in both 

bovine LSCs and LECs; however, different necroptotic pathways 
and signaling orders exist within each cell.

Cellular FLIP could be a candidate intracellular inhibitor of death 
ligand-receptor system-induced RIPK activation and necroptosis. The 
CASP8-cFLIP complex inhibits apoptosis as well as RIPK-dependent 
necroptosis [86, 87]. As previously mentioned, cFLIP also inhibits 
apoptosis and ACD [36, 57], indicating that cFLIP inhibits all three 
types of PCD. Thus, cFLIP plays a substantial role in determining the 
fate of CL cells. Furthermore, one of our previous studies indicated 
that cFLIP was expressed throughout the estrous cycle in bovine CL 
tissues and decreased during the regressing luteal stage [37]. Thus, 
RIPK expression and the occurrence of necroptosis are probably 
inhibited by cFLIP in bovine CL from the early to late luteal stages.

Although the typical luteolytic factor, PGF, did not affect RIPK 
expression and necroptosis in cultured bovine LSCs [28], in vivo 
studies indicated that PGF treatment induced the expression of 
RIPKs, CYLD, and MLKL in bovine CL [84, 85]. The effects of 
PGF on luteal function are very complex, and the luteolytic effect 
of PGF does not induce apoptosis directly in LSCs and LECs but 
depends on the cell composition, contact, and number of intraluteal 
mediators [88].

Conclusion

In this article, we reviewed the mechanisms of the three PCD 
types and their contributions to ovarian function, mainly luteolysis, 
in mammals, including cattle. The PCD pathways interact with each 
other and share some aspects of signaling [89]. Figure 1 depicts 
the schema of PCD signals in bovine LECs and LSCs with active 
and regressing CL. Further studies will contribute to an in-depth 
understanding of the regulatory mechanisms of ovarian function 
in mammals.
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