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Universitat de Barcelona, Barcelona, Spain; 3Universitat de Barcelona Institute of
Complex Systems (UBICS), Universitat de Barcelona, Barcelona, Spain

Abstract The successful assembly of a closed protein shell (or capsid) is a key step in the

replication of viruses and in the production of artificial viral cages for bio/nanotechnological

applications. During self-assembly, the favorable binding energy competes with the energetic cost

of the growing edge and the elastic stresses generated due to the curvature of the capsid. As a

result, incomplete structures such as open caps, cylindrical or ribbon-shaped shells may emerge,

preventing the successful replication of viruses. Using elasticity theory and coarse-grained

simulations, we analyze the conditions required for these processes to occur and their significance

for empty virus self-assembly. We find that the outcome of the assembly can be recast into a

universal phase diagram showing that viruses with high mechanical resistance cannot be self-

assembled directly as spherical structures. The results of our study justify the need of a maturation

step and suggest promising routes to hinder viral infections by inducing mis-assembly.

Introduction
Viruses are fascinating biological and nanoscale systems (Douglas and Young, 2006; Wen and

Steinmetz, 2016). In the simplest cases, these tiny pathogens are formed by a chain of RNA or DNA

encased in a protein shell, also known as capsid, made from multiple copies of a single protein

(Flint et al., 2004). Despite this apparent simplicity, viruses are able to perform many complex func-

tions which are essential in their replication cycle. One of the most amazing one is their ability to

self-assemble with an unparalleled efficiency and precision.

In vivo, the capsid of most viruses assembles from its basic building blocks, which could be indi-

vidual capsid proteins, dimers, trimers or capsomers (i.e. clusters of five or six proteins, which consti-

tute the structural and morphological units of the shell). The resulting structure has a precise

architecture, which in most cases is spherical with icosahedral symmetry (Roos et al., 2010). Several

viruses assemble their capsid before packaging the genetic material. In addition, the proteins of

many viruses have the ability to self-assemble in vitro, even in the absence of genetic material, form-

ing empty capsids.

The mechanisms of viral assembly have been the subject of recent and interesting investigations

(Hagan and Chandler, 2006; Elrad and Hagan, 2008; Nguyen et al., 2009; Johnston et al., 2010;

Perlmutter and Hagan, 2015; Hagan and Zandi, 2016). The assembly of a curved empty shell with

a well-defined geometry and precise arrangement of the building blocks is a non-trivial process that

resembles 2D crystallization on a curved space (Meng et al., 2014; Gómez et al., 2015). It also

shares similarities with the formation of other related structures such as colloidosomes (Meng et al.,

2014; Dinsmore et al., 2002; Manoharan et al., 2003), carboxysomes (Perlmutter et al., 2016;

Garcia-Alles et al., 2017) or clathrin-coated pits (Mashl and Bruinsma, 1998; Kohyama et al.,

2003; Giani et al., 2016). Capsid formation occurs via a nucleation process driven by the favorable

binding energy between capsid proteins (Zandi et al., 2006). At the right assembly conditions,
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thermal fluctuations induce the formation of small partial shells that tend to redissolve unless they

reach a minimum critical size. Beyond this size, the shell grows by the progressive binding of subu-

nits. As growth continues, the energy penalty of the naturally curved structure, due to the inescap-

able presence of the rim and the accumulation of elastic energy, can be larger than the favorable

binding energy. This generates a natural self-limiting mechanism for the formation of partial shells of

a finite size that do not grow until closing (Grason, 2016). In fact, there are in vitro experimental evi-

dences of apparently stable partial capsids (Law-Hine et al., 2016), that seems to contradict the

instability of intermediates that follows from Classical Nucleation Theory (CNT) (Zandi et al., 2006).

Recently, there has been a lot of interest in geometric frustration and crystal growth on spherical

templates (Zandi et al., 2004; Luque et al., 2012; Meng et al., 2014; Gómez et al., 2015; Gra-

son, 2016; Azadi and Grason, 2016; Paquay et al., 2017; Li et al., 2018; Panahandeh et al.,

2018). Most previous works have focused either on templated growth on the surface of a sphere

(Zandi et al., 2004; Luque et al., 2012; Meng et al., 2014; Gómez et al., 2015; Grason, 2016;

Li et al., 2018; Panahandeh et al., 2018) or on analyzing the optimal shape of the resulting shell

from pure elastic considerations (Paquay et al., 2017; Lidmar et al., 2003; Schneider and Gomp-

per, 2007; Morozov and Bruinsma, 2010; Castelnovo, 2017), ignoring the importance of the deli-

cate interplay of other ingredients such as the line tension, the chemical potential or the preferred

curvature on their global stability and their process of formation.

Here, we analyze the conditions and mechanisms leading to mis-assembly of empty viral capsids

by elastic frustration, taking into account all these ingredients. We find that the outcome of the

assembly depends on three scaled parameters that can be properly tuned to trigger the formation

of non-spherical and open shells. Theoretical predictions obtained with the use of Classical Nucle-

ation Theory including elastic contributions are confirmed qualitatively using Brownian Dynamics sim-

ulations of a simple coarse-grained model. The results of this work help to better understand viral

assembly and might have important implications in: envisaging novel routes to stop viral infections

by interfering with their proper assembly; determining the optimal conditions for the assembly of

protein cages with the desired geometry and properties for nanotechnological applications

(Douglas and Young, 2006); and justifying the potential presence of seemingly stable intermediates

that have been observed in recent experiments (Law-Hine et al., 2016).

Results

Self-assembly of a curved elastic shell
The continuous description of the assembly of empty spherical viral capsids is based on Classical

Nucleation Theory (CNT) (Zandi et al., 2006). In its standard version, the free energy of formation of

a partial shell of area S is seen as the competition of an energy gain driving the assembly, and a rim

energy penalty, due to the missing contacts at the edge of the shell. Due to the curvature of the

shell and the existence of a preferred angle of interaction between capsid proteins there is another

ingredient that has to be considered in the energetics of capsid formation: the elastic energy.

Accordingly, the free energy of formation of a partial capsid of area S can be modeled as

DG¼�S
D�

a1
þLlðSÞþGe: (1)

The first term represents the gain in free energy associated with the chemical potential difference

D� between subunits in solution and in the capsid, being a1 the area per subunit. (With this defini-

tion, a positive D� is required to promote assembly). The second term is the total line energy of the

rim, given by the product of the line tension L times its length lðSÞ. Finally, the third term

Ge ¼GsþGb is the elastic energy associated with the in-plane stress, Gs, and the bending, Gb, ener-

gies introduced by the curvature of the shell. Both elastic terms will be modeled using continuum

elasticity theory. For the bending energy we will use the generalization of Helfrich’s model for sys-

tems with non-zero spontaneous curvature introduced recently by Castelnovo (2017) (see the

Appendix). For the in-plane elastic energy, we will use results from continuum elasticity theory for

small deformations of thin plates, building up on recent work on the formation and growth of crystal

domains of different shapes on curved surfaces (Lidmar et al., 2003; Meng et al., 2014; Seung and

Nelson, 1988; Morozov and Bruinsma, 2010; Grason, 2016; Paquay et al., 2017; Köhler et al.,
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2016; Schneider and Gompper, 2007; Majidi and Fearing, 2008; Castelnovo, 2017). Both stretch-

ing and bending terms depend on the particular structure of the growing shell. Four different cases

will be analyzed: hexagonally-ordered spherical cap without defects; spherical cap with one or many

defects; ribbon and cylinder (see Figure 1). The reason to consider these particular structures is that

they represent the most advantageous shapes to release the unfavorable elastic energy. In addition,

cylindrical shells also appear frequently as outcome of in vitro assembly experiments. However, it is

important to stress that the considered structures do not form a complete set of deformations.

The relative importance of stretching versus bending contributions is controlled by a single

dimensionless parameter: the Föppl-von Kárman number (FvK) defined here as g � YR2

0
=k, where Y

is the two-dimensional Young’s modulus, R0 is the spontaneous radius of curvature and k is the

bending modulus. Most previous studies have focused on the elastic energy and growth of crystals

on top of a spherical template of fixed radius R. This case resembles the bending-dominated regime

discussed below.

Bending-dominated regime
In the limit g ¼ YR2

0
=k � 1, the bending energy dominates over the stretching energy and thus, all

structures will adopt their spontaneous curvature, R ¼ R0. The situation will be similar to the growth

of a crystal on a template of fixed curvature. In the bending-dominated regime, the free energy of

formation of all these structures, when properly scaled by the characteristic elastic energy 4pR2

0
Y ,

only depends on two parameters: the scaled chemical potential D~� � D�=ðYa1Þ and the scaled line

tension l � L=ðR0YÞ. Thus, it is possible to compare them and determine the most stable structure

for a given set of conditions. The comparison is performed for different shapes having the same area

S , that is having the same number of subunits.

The scaled free energy of formation of a hexagonally-ordered spherical cap of radius R0 without

defects made of a circular patch of radius �0 (see Figure 1a) is

Dgcap ¼�D~�

4
x2 þl

2
xþ 1

1536
x6 (2)

where x� �0=R0 is the scaled patch size, and the third term is the in-plane elastic energy of a circular

domain on a curved spherical surface (Schneider and Gompper, 2007; Meng et al., 2014;

Morozov and Bruinsma, 2010). (Equation 2 is an approximation strictly valid for small circular

patches with an aperture angle ��p, since it is assumed that the perimeter of the shell is approxi-

mately the same as that of a circular disk, and a flat metric has been used to compute the in-plane

elastic energy. However, we have found that a more accurate evaluation of the second and third

terms in this equation [Li et al., 2018] does not alter significantly the main results.)

The stretching energy stored in the spherical shell grows fast with the area of the patch, and can

be partially released by two different mechanisms: by the introduction of pentagonal defects (see

Figure 1b), or by growing anisotropically forming curved ribbon-like crystalline domains (see

Figure 1c).

The free energy of formation for a spherical cap with one defect is (Morozov and Bruinsma,

2010; Castelnovo, 2017)

Dgd1 ¼ Dgcapþ
x2

1152
1� 3

2
x2

� �

; (3)

where the last term is the stretching energy due to a pentagonal disclination at the center of the

cap. (The energy of an incomplete cap with one defect placed at an arbitrary location is calculated

in Li et al., 2018. It is found that the Gaussian curvature attracts the disclination to the center of the

cap while the defect self-energy pushes it towards the boundary. The net result is that the minimum

energy corresponds to the defect located off the center of the cap. However, we have numerically

verified that this approximation introduces only a very small error in our calculations for the scaled

energy. This means that not noticeable effect is observed when the exact expression with the off-

center defect is considered.) Such mechanism is energetically favorable only if the second term of

Equation 3 is negative, that is, if x�
ffiffiffiffiffiffiffiffi

2=3
p

.
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For larger shells, the elastic strain is further released by the introduction of additional disclina-

tions. The free energy of formation of a spherical shell with n 5-fold disclinations is (Grason, 2012;

Grason, 2016; Castelnovo, 2017)

Dgdn ¼ Dgcapþ gs1 þ gs2 (4)

where gs1 is the self-energy of the isolated disclinations, and gs2 is their pairwise interaction, whose

specific expressions are provided in the Appendix. When more than one defect appears, the mini-

mum of the free energy typically occurs for a closed shell.

An alternative mechanism to alleviate stretching is the anisotropic growth of the originally spheri-

cal cap to adopt the shape of a defect-free rectangular curved stripe or ribbon. The free energy of

formation of a ribbon of scaled length l � L=R0, width w � W=R0, and area s ¼ lw ¼ px2 growing on

the surface of a sphere of radius R0 is (Schneider and Gompper, 2007; Majidi and Fearing, 2008)

Figure 1. Sketch of the different structures considered in this study. (a) A hexagonally-ordered spherical cap of

radius R and geodesic radius �0 without defects; (b) a spherical cap with a single disclination at the center (as

shown) or multiple disclinations; (c) a rectangular ribbon with length L and width W , that it is called belt when the

length becomes L ¼ 2pR; and (d) a cylindrical patch with size L, that eventually becomes a cylinder of radius R. In

the bending-dominated regime, R ¼ R0.
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Dgrib ¼�D~�

4
x2 þl

2

x2

w
þ l

2p
wþ 9

20480
x2w4: (5)

Unlike the spherical cap, as the area of the patch increases, the ribbon grows longitudinally with-

out limitation at a nearly fixed optimal width up to the point where l¼ 2p, where it forms a closed

belt with energy

Dgbelt ¼�D~�

4
x2 þlþ 9

327680
x10: (6)

The ribbon-like structure with the lowest energy is always a closed belt rather than the open rib-

bon, so we will focus our comparison with this structure.

Finally, an alternative to the curved belt could be a cylinder with one principal radius of curvature

infinitely large and the other R0 (see Figure 1d). The cylinder has the advantage of not having any

in-plane stretching cost, but it has a bending energy penalty that prevents its formation in the bend-

ing-dominated limit (see the Appendix).

Figure 2 shows a comparison of the energy landscape for the different structures for fixed values

of D~� and l. The competition between the bulk energy gain, the line tension penalty and the stretch-

ing and bending costs will give rise, at the proper conditions, to a barrier that has to be overcome

for triggering the formation of these structures. The height of this nucleation barrier and its location,

corresponding to the critical cluster size, are mostly controlled by the bulk and line energy contribu-

tions, since the critical size typically occurs at small values of x. In terms of shell nucleation, the bar-

rier for the formation of a spherical cap is always the smallest, since the line energy of a circular

edge is always smaller than for a rectangular stripe of the same area. Accordingly, the initial embryo

of all these structures will be a small spherical cap (Paquay et al., 2017). Neglecting the elastic

terms, the critical size for the formation of a spherical shell will be x� » l=D~�, corresponding to a bar-

rier height for nucleation of Dg�cap »l
2=ð4D~�Þ. But rather than on the critical cluster for shell formation,

we will be mostly interested in what is the most stable final structure for a given set of conditions.

Since the free energies of formation only depend on l and D~� we can draw a universal phase dia-

gram describing what is the structure (i.e. cap with or without defects, ribbon, or belt) with the low-

est free energy in its stable size in terms of these two parameters. The term universal is intended to

mean that the phase diagram is independent of the details of the capsomer-capsomer interactions

such as range, preferred angle between capsomeres, bending rigidity, etc, as we corroborate with a

coarse-grained simulation in the next section. Figure 3a shows the phase diagram in the bending-

dominated limit, corresponding to g ¼ 0. As can be seen, belts are the most stable structure at low

line tension l and chemical potential differences D~�. Closed shells with disclinations are the pre-

ferred structure for large values of D~� or l. The frontier between the belt zone and the cap with dis-

clinations is approximately independent of l and located at D~� ’ 0:0020. Additionally, a small

triangular region where the most stable structure is a frustrated cap with only one disclination is also

apparent. As shown in the Appendix, a stable defectless cap only appears as metastable structure,

since it has always a larger energy than a belt, and it is thus non competitive as stable structure,

even though it may have lower energies as intermediate in the assembly process.

General case of arbitrary FvK number
Most small viral shells form without any underlying spherical template fixing their curvature. There-

fore, it is very interesting to analyze shell formation at arbitrary FvK number, beyond the bending-

dominated limit, and without the aid of an auxiliar template. In this general case, we have to con-

sider the bending energy and the fact that the radius of the structures, R, may deviate from the

spontaneous one, R0, since it would be now dictated by the competition between stretching, bend-

ing, and rim energies. Using the expressions for the bending energy of a sphere and a cylinder of

radius R (see the Appendix), the free energy of formation of all structures analyzed in the previous

section can be derived. Explicitly, the free energy of formation of a defectless spherical cap of radius

R becomes
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DgcapðgÞ ¼�D~�

4
x2þl

2
xþ 1

1536

x6

r4
þ 1

4g
x2

1

r
� 1

� �2

; (7)

where r� R=R0, and the optimal radius of the shell is given by

r2 r� 1ð Þ� g

192
x4 ¼ 0: (8)

Deviations from the spontaneous radius (i.e r¼ 1) are only expected for large domain sizes or

large FvK numbers.

As the domain size increases, it becomes more favorable to release the elastic stress by the intro-

duction of one or many 5-fold disclinations. The free energy of formation of a spherical shell with

one central defect is

Dgd1ðgÞ ¼ DgcapðgÞþ
x2

1152
1� 3

2

x2

r2

� �

; (9)

which becomes favorable over the defectless case when x=r�
ffiffiffiffiffiffiffiffi

2=3
p

. The formation energy of a

spherical shell with n-defects is

DgdnðgÞ ¼ DgcapðgÞþ gs1ðrÞþ gs2 (10)

where the specific expressions for gs1ðrÞ and gs2 are written in the Appendix. Finally, the free ener-

gies of a closed belt and a cylinder (which are the ribbon-like and cylindrical-patch-like structures

with the lowest energy) are

Figure 2. Comparison of free energy landscapes for different structures. Free energy of formation Dg versus the

radius of the patch x in the bending-dominated regime for a defectless spherical shell (blue line), a spherical shell

with defects (green), and a ribbon/belt (orange) for l ¼ 0:0001 and D~� ¼ 0:001. The optimal structure is the one

with the minimum energy, which is the belt in this case. The dashed line represents the unfrustrated decrease of

energy expected by the classical nucleation picture for the defectless spherical cap in the absence of elastic

stresses. The inset zooms the nucleation barrier located at small patch sizes.
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DgbeltðgÞ ¼�D~�

4
x2 þlrþ 9

327680

x10

r8
þ 1

4g
x2

1

r
� 1

� �2

; (11)

and

Figure 3. Assembly phase diagrams. Phase diagrams of the most stable structures in terms of the scaled chemical potential D~� and the scaled line

tension l for different values of the FvK number: a) g ¼ 0, corresponding to the bending-dominated regime, (b) g ¼ 80, (c) g ¼ 200, and d) g ¼ 250.

Three possible equilibrium regions are present: belts (i.e. closed ribbons, in orange), frustrated capsids with one defect (red), closed shells with defects

(green), and cylinders (purple). Additionally, a region corresponding to a metastable spherical cap without defects (blue) is shown only in (a). In the

white region, the equilibrium state corresponds to disaggregated individual capsomers.
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DgcylðgÞ ¼�D~�

4
x2 þlrþ 1

8g
x2 1þ 1

r
� 1

� �2
 !

; (12)

respectively.

Remarkably, the free energy of formation of all these structures only depends on three scaled

parameters: the chemical potential D~�, the line tension l, and the FvK number g. Thus, it is possible

to compare them and draw a universal phase diagram for the most stable structure in terms of these

three parameters, to contrast with the scenario for the bending-dominated limit. Figure 3 shows

phase diagrams for different values of the FvK number, showing the structure with the lowest free

energy as a function of the normalized line tension l and chemical potential D~�. For small values of

FvK, that is g <~ 100, the phase diagram is essentially the same as in the bending-dominated case. As

the FvK number increases, the region where belts are formed occupy a larger domain, while the

region with closed caps with disclinations reduces its size. However, the most relevant change is the

appearance of a zone at D~�>1=ð2gÞ, where the cylinder is the optimal structure. This region progres-

sively invades the other structures as the FvK number is increased. Roughly for g ’ 250 only cylinders

and belts are expected to be stable structures. This is a very important result since it shows that

spherical capsids cannot be self-assembled directly as stable structures at large FvK numbers.

The reason why cylinders dominate at large FvK numbers, corresponding to the regime where

stretching dominates over bending, is because they have the advantage of not having any stretching

energy cost (i.e. a flat sheet of hexamers can be bent into a cylinder without any stretching). A cylin-

drical structure having a radius equal to the spontaneous radius R0, that is r ¼ 1, will minimize the

bending penalty and will have a free energy of formation, according to Equation 12, that decreases

unboundedly with size when D~�>1=ð2gÞ. In other words, once the formation of a cylinder becomes

more favorable than free capsomers, it will continue growing without limit decreasing indefinitely its

free energy of formation without paying any stretching cost, thus overcoming the energetic gain of

any finite sized structure. This will be the case when D~�>1=ð2gÞ. The larger the g (FvK), the smaller

the D~� required for this to occur and therefore, regions where finite sized structures where preferred

start to be devoured by the region where cylinders dominate (purple regions in Figure 3). Making

use of the definition of the scaled variables, the condition for the appearance of the cylindrical phase

can be recast as D� � a1k=ð2R2

0
Þ. In other words, cylinders appear more easily (smaller D� required)

for larger values of R0, in agreement with previous results by Castelnovo (2017) predicting that cyl-

inders should dominate for small spontaneous curvatures (large R0).

Simulation
A minimal coarse-grained model has been recently proposed to analyze the assembly of empty viral

shells (Aznar and Reguera, 2016; Aznar et al., 2018) and other protein cages (Garcia-Alles et al.,

2017). The model can successfully reproduce the assembly of the lowest spherical shell structures

using capsomers, that is, pentamers and hexamers, as basic assembly units. Capsomers are coarse-

grained at low resolution as effective spheres and their interaction is modelled using three contribu-

tions capturing the essential ingredients (see Materials and methods): a Mie-like potential describing

the attraction driving the assembly and the excluded volume interaction between a pair of capsom-

ers; an angular term accounting for the preferred orientation of the interaction between proteins;

and a torsion term, included to distinguish the inner and outer surfaces of the capsomers, and to

favor the formation of closed shells. The model has been implemented in a Brownian Dynamics simu-

lation as described in Materials and methods.

One of the advantages of this simple model is that the parameters of the interaction can be

related to the elastic constants (Aznar and Reguera, 2016) (see Materials and methods). In terms of

these, the three relevant parameters controlling the assembly become g � YR2

0

k
¼ 4nma2

9 cos2 n
,

l � L
YR0

¼ 2 cos n
nm

, and D~� � D�
a1Y

¼ 2
ffiffi

3
p

pnm

D�
�0
¼ 2

ffiffi

3
p

pnm

kBT ln c1=c
�

�0
:

Thus, by changing the parameters of the model (mainly the exponents n and m controlling the

range of the interaction, the preferred angle of interaction between capsomers n, the local bending

rigitidy a, and the concentration c1 which controls the effective chemical potential D�) we can

explore the universality and the different scenarios of assembly discussed in the previous section.
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Figure 4 shows the results of simulations using different sets of parameters represented in scaled

units and contrasted with the theoretical phase diagram for g ¼ 80. For l ¼ 0:00084, that is a rela-

tively large line tension, at low concentration of capsomers, the seed dissolves and no nucleation or

growth occurs. As the capsomer concentration is progressively increased, a metastable defectless

shell and a closed spherical shell with typically 12 defects form, as expected by the theory. At very

high concentrations, nucleation occurs simultaneously at many sites, and the final outcome of the

Figure 4. Comparison of simulation results with the theoretical phase diagram. (a) Phase diagram of the most stable structure in terms of the scaled

chemical potential D~� and the scaled line tension l for g ¼ 80. Snapshots of the final outcome of the simulation for different initial capsomer

concentrations for: b) l ¼ 0:00037, obtained with n ¼ 1:45 and a m ¼ 36, n ¼ 18 potential. By increasing the concentration of capsomers one goes from

a dissassembled state to the formation of a ribbon to a spherical shell with defects. (The ribbon and spherical shell are not closed in the snapshots due

to the limited number of capsomers and finite simulation time). (c) l ¼ 0:000525, obtained with n ¼ 1:38 and a m ¼ 36, n ¼ 18 potential. As

concentration increases, one goes from a shell with one defect to a complete shell with many defects. By increasing the FvK number to g ¼ 1280 (by

setting a ¼ 0:4), the simulations clearly forms cylindrical tubes. (d) l ¼ 0:00084, obtained with n ¼ 1:45 and a m ¼ 24, n ¼ 12 potential. In this case, the

sequence is: disagreggated, metastable defectless shell, and closed spherical shell with many defects (a partial shell is shown). The simulation results

agree qualitatively with the predictions from the theoretical phase diagram.
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simulation are many fragments of spherical capsids that cannot grow any further due to the deple-

tion of free capsomers in solution. That would correspond to kinetic trapping, which is an interesting

alternative mechanism to prevent the correct capsid assembly, that will be analyzed in a future work.

For l ¼ 0:000585, as the concentration is increased we obtained the expected sequence of: seed dis-

olution; formation of a stable cap with a single 5-fold defect in a very narrow range of concentra-

tions; and the formation of closed caps with many defects. Finally for l ¼ 0:000372, that is a relatively

small line tension, as the capsomer concentration is increased we go from no assembly, to the for-

mation of ribbon-like stripes, to the growth of spherical shells with many defects. As naively

expected, as l increases, higher scaled chemical potentials are needed to nucleate the structures.

Finally, by increasing the parameter a, the bending rigidity is reduced and assembly at higher FvK

can be analyzed. The results of the simulations show that as the FvK number is increased, the forma-

tion of spherical shells is overriden by the formation of cylindrical bodies, as shown in Figure 4c, that

also competes with other elongated structures such as spherocylinders or even conical shapes (see

Appendix 1—figure 3). Remarkably, simulations that have been performed for widely different val-

ues of the interaction parameters, when properly scaled, all fall into the predicted picture. Therefore,

the simulation results nicely confirm almost quantitatively the universality of the fate of the assembly

and the potential scenarios discussed in the theory. A precise quantitative comparison between the

theory and the simulations has not been performed, since they are done at slightly different condi-

tions. While theory assumes a reservoir of capsomers, the simulations are done at fixed total number

of subunits. This implies that, as the assembly proceeds, the concentration of the remaining free par-

ticles, and consequently the chemical potential, decreases. For this reason, we have not intended to

reproduce with precision the borders of the phase diagram using the simulations. The fact that the

chemical potential is not strictly constant in the simulations due to the depletion of free subunits

may cause quantitative discrepancies when comparing with theory, but does not alter the relative

stability of the different shapes analyzed.

Discussion
We have provided a comprehensive analysis of non-templated assembly of curved elastic shells, tak-

ing into account all relevant ingredients (i.e. chemical potential, line tension, spontaneous curvature,

and elastic contributions) and the potential formation of non-spherical shapes. The importance of

accounting for all these ingredients becomes evident, for instance, in the study of the stability of the

defectless spherical cap, which turns out to be always metastable, its global stability hindered by the

introduction of defects (at high line tensions) or the formation of ribbons (at low line tensions). Our

analysis also shows that the outcome of the assembly not only depends on elastic considerations,

but also on the assembly conditions, represented here by the scaled chemical potential. Hence,

either belts or closed spherical shells or cylinders may be obtained as the most stable structure for

fixed interaction parameters, depending on the concentration of assembly units. When assembly

takes place at conditions near the vicinity of a phase boundary, a mixture of the two phases, or a

structure resulting from their combination (e.g. a spherocylinder) may form. This may justify the

observation of coexisting tubes and spherical capsids in the in vitro assembly of viruses such as SV40

(Kanesashi et al., 2003).

Although, for the sake of simplicity, our theoretical analysis has been performed using the contin-

uous and small curvature approximations, we have verified that releasing these approximations does

not alter significantly the results. The exact expression of the perimeter of the growing edge

(Zandi et al., 2006; Gómez et al., 2015) influences the height and location of the nucleation barrier,

but has a minor impact on the properties of the final stable structure. The accurate evaluation of the

in-plane elastic cost of defects taking into account their spatial distribution (Li et al., 2018), modifies

the energies of the growing shell, but does not modify significantly the stability of the final structure.

Simulations of a coarse-grained model made using widely different values for the parameters and

interaction range confirm that the outcome of the assembly only depends on three scaled parame-

ters: the scaled chemical potential D~�, line tension l, and FvK number g. Thus, the assembly phase

diagram is universal, and different protein shells, interaction potentials and coarse-grained models

can be recast into a unifying picture of assembly, that could guide the efficient production of artifi-

cial viral cages. For instance, our analysis indicates that relatively long-range interactions are desir-

able to increase the line tension, decrease the FvK number and facilitate the assembly of closed
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spherical shells. In fact, spherical shells with icosahedral symmetry and triangulation number T > 7

could be successfully assembled in simulations without any template or scaffolding protein, provided

that the line tension and FvK number are adequate. Alternatively, chemical or physical modifications

that increase the FvK number or reduce the line tension or the effective concentration may become

a potential therapeutic target to prevent viral replication by inducing the formation of open, and

presumably non-infective, cylindrical or belt-like structures. Experimentally, the chemical potential

can be tuned by the total protein concentration or by the addition of crowding agents. The line ten-

sion (which depends on the strength of the binding interaction), could be modified by the tempera-

ture, the pH and the salt concentration. The bending rigidity and spontaneous radius of curvature

are also presumably controlled by pH and the presence, concentration and nature of ions or auxiliary

proteins in solution. Further experimental and theoretical investigations are required to make a pre-

cise quantitative connection between the physical parameters controlling the assembly and

experiments.

Triggering the formation of closed spherical shells with an incorrect radius, triangulation number

(Caspar and Klug, 1962), or arrangement of proteins could also be an alternative to interfere with

the assembly of the right viral capsid. But in our study, we have focused on mechanisms interferring

with the closing of the shell by elastic frustration, rather than classifying the specific radius and trian-

gulation number of the resulting spherical structure. In addition, we do not consider the situation in

which the capsomers interact with cargo. Such interactions are crucial for viruses that co-assemble

with their genetic material or a cargo, but this is beyond the scope of the present study.

A very important conclusion of our analysis is that spherical capsids cannot be self-assembled

directly as stable structures at large FvK numbers. This may explain why some viruses that require

high mechanical resistance, for instance many dsDNA bacteriophages such as lambda, HK97 and

P22, first assemble a relatively soft spherical procapsid before suffering a maturation transition

(Roos et al., 2012; Johnson, 2010) that flattens out their faces, which is a clear signature of a high

FvK number (Lidmar et al., 2003). The results of our work indicate that a one-step assembly of a

spherical shell with the high elastic resistance and Fvk number of the final structure is not viable.

Table 1 compares the estimated elastic properties of different empty capsids of real viruses. The

table clearly shows that viruses like CCMV or SV40 that assemble easily in vitro as spherical shells,

have estimated values of the scaled line tension and FvK in the region where these structures are

expected to be stable outcomes of the assembly. Contrarily, the high FvK number of the mature

bacteriophage lambda will prevent its direct assembly. However, its procapsid, which is the first

structure that is assembled, has a larger scaled line tension and smaller FvK that would facilitate a

successful assembly. (The FvK number of lambda procapsid listed in Table 1 is probably overesti-

mated, given its noticeable spherical shell. In addition, we have found in our simulations that even

though the theoretical threshold for the disappearance of spherical shells as stable structures is

around g ¼ 250, in practice larger FvK numbers are typically required to obtain cylindrical structures

since the nucleation barrier for their formation is larger than for the metastable spherical shell).

Table 1. Estimates of the main geometric and elastic properties of different non-enveloped empty viral capsids.

The Young’s modulus E has been evaluated from AFM nanoindentation experiments (Mateu, 2012; Michel et al., 2006;

Ivanovska et al., 2007; Sae-Ueng et al., 2014) and, for SV40, from the experimental spring constant (van Rosmalen et al., 2018)

using the standard thin shell formula k ¼ 2:25Eh2=R (Ivanovska et al., 2004). The 2D Young’s Modulus was calculated as Y ¼ Eh; the

effective diameter of the capsomers as (Santolaria, 2011) s ¼ R=
ffiffiffiffiffiffiffi

5
ffiffi

3
p

p

q

T þ 1
ffiffi

3
p cot p

5

� �

� 1

� �

, where T is the triangulation number; the

line tension as (Luque et al., 2012) l ¼ 2�0
ffiffi

3
p

s
considering a typical binding energy �0 » 10kBT ; and the FvK number as

g ¼ 12ð1� n2pÞðR=hÞ
2, with np ¼ 0:3 (Buenemann and Lenz, 2008).

Virus T-number Diameter (nm) Thickness h (nm) E (Gpa) Y (N/m) s (nm) Scaled line tension l Föppl-von Karman g

CCMV 3 28 3.8 0.14 0.53 5.9 0.00107 148

l Procapsid 7 50 4.0 0.16 0.64 6.8 0.000436 427

l Capsid 7 63 1.8 1.0 1.8 8.6 0.0000976 3344

SV40 7 45 6.0 0.033 0.2 6.1 0.00174 152
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In summary, we have seen that the fate of the assembly is controlled by a universal phase diagram

in terms of three scaled parameters: line tension, chemical potential and FvK number. The phase dia-

grams shed light on the physics controlling the assembly of curved shells, and could guide assembly

experiments to achieve either an efficient assembly of artificial viral shells of desired geometry and

mechanical properties or, alternatively, to envisage the conditions needed to impede viral infections

by arresting viral assembly or inducing missasembly into a non-infective structure.

Materials and methods

Coarse-grained model and simulation details
The simulation model, introduced in Aznar and Reguera (2016); Aznar et al. (2018), is coarse-

grained at the level of capsomers which are represented as effective spheres of two different diame-

ters: sh and sp, reflecting the fact that hexamers and pentamers are made of a different number of

proteins (six and five, respectively). The interaction between capsomers, V ¼ VLJ � Va � Vtor, is mod-

eled using three contributions: a Mie-like, an angular, and a torsion potential. The Mie-like potential

VLJðrijÞ ¼ �ij
n

m� n

sij

r

� �m

�m

n

sij

r

� �nh i

; (13)

describes the binding and the excluded volume interaction between a pair of capsomers in terms of

their relative distance, rij is the equilibrium distance corresponding to the minimum of the potential,

r is the distance between capsomers centers, �ij is the binding energy between capsomers, and m

and n represent the power of the repulsive and attractive interaction terms, respectively, which set

the range of the interaction potential. The angular contribution is given by

Vaðrij;Wi;WjÞ ¼ exp �ð�ij� nÞ2
2a2

 !

exp �ð�ji� nÞ2
2a2

 !

; (14)

where �ij is the angle between the vector Wi, describing the spatial orientation of the capsomer, and

the unit vector rij. The parameter n is the preferred angle of interaction between proteins of differ-

ent capsomers, and the parameter a controls the local bending stiffness, that is, the energy cost

required to bend two capsomers out of their preferred angle of interaction. The torsion term is given

by

VtorðWi;WjÞ ¼ exp �kt
ð1� cos�Þ

2

� �

; (15)

where kt is the torsion constant and � is the angle between the planes defined by the unit vector rij
and both orientation vectors.

The elastic properties of a shell can be related to the main parameters of the interaction. In par-

ticular the Young’s modulus is approximately given by Y ¼ 2nm
ffiffi

3
p �0

s2 ; the bending rigidity is k ¼ 3
ffiffi

3
p

8

�0
a2 ;

and the preferred radius of curvature is R0 ¼ � s
2 cos n

: The line tension of a partially formed cap can

be approximated by Luque et al. (2012) l ¼ 2�0
ffiffi

3
p

s
; and the chemical potential difference that controls

the assembly is given by D� ¼ kBT ln c1=c
�ð Þ; where c1 is the concentration of free capsomers and c� is

the critical concentration (Zandi et al., 2006).

The model has been implemented in a Brownian Dynamics simulation code using a simple sto-

chastic Euler’s integration algorithm, as described in Aznar et al. (2018). Simulations were made

with only one type of capsomers. We worked using reduced units in terms of the diameter of the

basic building blocks s, their diffusion coefficient D, and the binding energy �0. In these reduced

units, the parameters used in the simulation are: torsion constant kt ¼ 1:5, reduced temperature

T ¼ 0:1, corresponding to a binding energy between capsomers of 10 kBT , representing the typical

order of magnitude of the strength of interactions between viral capsid proteins.

Since, in all cases, the critical nucleus is a partial spherical cap, all simulations were started using a

small spherical cap of 19 units with the spontaneous curvature as initial seed. The remaining capsom-

ers up to a total of N ¼ 200� 400 were initially placed randomly inside a cubic box with periodic

boundary conditions. The simulations run for a total of 2 � 109 steps and the final structures were
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analyzed. To verify the universality of the phase diagram, we performed an extensive set of simula-

tions with different interaction parameters. More specifically, the interaction range was varied from

m ¼ 12; n ¼ 6 to m ¼ 48; n ¼ 24; the spontaneous angle in the range 1:24<n<1:45; the bending stiff-

ness in the range 0:05<a<0:4; and the concentration of capsomers was varied from � ¼ 0:005 to

� ¼ 0:05.
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Appendix 1

Elastic Model of Shell Assembly
The elastic energy in the formation of a curved shell has two contributions: the bending

energy, Gb, associated with deviations from the spontaneous curvature, and the in-plane

elastic energy, Gs. The bending energy is described using the expression (Castelnovo, 2017):

Gb ¼ k

2

Z

H� 2

R0

� �2

�2K� 2

R0

1

R0

�H

� �

" #

dS (A1)

where, H is twice the mean curvature of the shell, R0 is the spontaneous radius of curvature,

K is the Gaussian curvature and k is the bending modulus.

The expression for the in-plane elastic energy of the different analyzed structures is based

on previous results from continuum elasticity theory for the deformation of thin plates

(Seung and Nelson, 1988; Lidmar et al., 2003; Majidi and Fearing, 2008; Morozov and

Bruinsma, 2010; Meng et al., 2014; Grason, 2016; Paquay et al., 2017; Castelnovo, 2017;

Schneider and Gompper, 2007). The structures analized are: a hexagonally-ordered spherical

caps without defects; a spherical cap with one central defect; a spherical cap with n defects; a

ribbon; a belt; a cylindrical patch; and a cylinder. The Föppl-von Kárman number (FvK),

defined in this work as g � YR2

0
=k, dictates the relative importance of bending and stretching

contributions.

Bending-dominated regime
For g � 1, the bending term dominates and forces all structures to adopt the spontaneous

curvature R = R0. We will derive the free energy of formation of the different structures in the

small curvature approximation, and compare their relative stability under assembly conditions.

The comparison is performed for different shapes having the same area S, that is having the

same number of subunits.

The in-plane elastic energy of a circular domain of geodesic radius r0 on a curved spherical

surface of radius R is given by Schneider and Gompper (2007); Morozov and Bruinsma,

2010; Meng et al. (2014)

DGcap
s ¼ pY

384

�6
0

R4
: (A2)

Accordingly, its free energy of formation becomes

DGcap ¼ �p�2
0

a1
D�þ 2p�0lþ

pY

384

�6
0

R4
; (A3)

or in scaled units

Dgcap ¼�D~�

4
x2 þl

2
xþ 1

1536
x6; (A4)

where Dgcap � DGcap

4pR2

0
Y
is the free energy of formation divided by the characteristic elastic

energy 4pR2

0
Y; x � �0=R0 is the scaled patch radius, l�L=ðR0YÞ is the scaled line tension, and

D~�� D�=ðYa1Þ is the scaled chemical potential. The bulk energy grows as x2, the rim energy

as x, and the elastic stress as x6. The competition between these three contributions

determines the shape of the DgcapðxÞ curve (see Appendix 1—figure 1). For D~� small, the

positive second and third terms of Equation A4 dominate, thus, grows monotonically as

shown in Appendix 1—figure 1. However, as D~� increases, there is a particular value
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D~�ms ¼ 5

8
l4=5; (A5)

obtained by setting
dDgcap
dx

¼ 0 and
d2Dgcap
dx2

¼ 0, at which an inflection point located at

xms ¼ 2l1=5 (A6)

appears. For D~�>D~�ms, the free energy landscape has a maximum, signaling the nucleation

barrier, but also a local minimum, xmin, corresponding to a locally-stable spherical cap. Thus,

unlike in the standard case where beyond the critical size the free energy goes steadily down

and the shell can grow until closing, the high elastic cost associated with the curvature of the

shell will prevent its further growth and force it to reach an equilibrium size (Grason, 2016).

The condition D~� � D~�ms marks the onset of a metastable region where the value of free

energy DgcapðxminÞ of the locally-stable shell is larger than its value for the dissembled state

at x = 0. A fully stable partial shell is obtained if DgcapðxminÞ � 0 at the minimum. The onset of

the stable region can be obtained from the conditions Dgcap ¼ 0 and dDgcap=dx¼ 0, which

allows to find the critical value

D~�s
cap ¼

5

4

l4

6

� �1=5

; (A7)

beyond which DgcapðxminÞ � 0. The corresponding value of x is

xs ¼ 2ð6lÞ1=5; (A8)

and represents the minimum size of a partial spherical shell without defects to be stable. The

size of stable partial shells grows as D~� increases. For large patches or when g� 1, the rim

energy can be neglected and the location of the stable cap size is described approximately

by xeq » ð128D~�Þ1=4.

Appendix 1—figure 1. Free energy of formation Dgcap of a spherical cap without defects,

Equation A4, versus the radius of the patch x for l ¼ 0:0001 and different values of the scaled

chemical potential D~�, illustrating the situations in which no assembly is possible (short dashed

line, D~� ¼ 0:0002), a geometrically frustrated metastastable cap (dashed line, D~� ¼ 0:0005) or

stable (solid line, D~� ¼ 0:001) finite shell.
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When the area of the spherical crystalline patch gets large, it becomes favorable to

introduce defects to release the elastic stress. The in-plane elastic energy of a spherical cap

with one 5-fold disclination is (Morozov and Bruinsma, 2010; Grason, 2016)

DGs
d1
¼pY�2

0

288
1� 3

2

�2
0

R2

0

� �

: (A9)

Thus, the free energy of formation, in scaled units, for a spherical cap with one defect at

the center becomes

Dgd1 ¼ Dgcap þ
x2

1152
1� 3

2
x2

� �

: (A10)

Such mechanism is energetically favorable only if the second term of Equation A10 is

negative, that is, if x�
ffiffiffiffiffiffiffiffi

2=3
p

. The fact that for x�
ffiffiffiffiffiffiffiffi

2=3
p

a shell with a defect becomes

energetically favorable imposes an important restriction on the values that the scaled chemical

potential and line tension may have in order to allow the existence of a stable defectless

spherical cap. Imposing xs �
ffiffiffiffiffiffiffiffi

2=3
p

one gets the requirements l� 6
7=2 and D~�� 5=864.

Using the conditions Dgd1 ¼ 0 and dDgd1=dx ¼ 0, we can find the onset of stability for a

circular cap with one central disclination, described by

D~�s
d1
¼ 2l

x1
þ 4� 6x2

1
þ 3x4

1

1152
; (A11)

with

x1 ¼
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 768l
p

2

� �1=2

: (A12)

For larger shells, the elastic strain is further released by the introduction of additional

disclinations. The resulting free energy of formation of a spherical shell with n 5-fold

disclinations in scaled units is (Grason, 2012; Grason, 2016; Castelnovo, 2017)

Dgdn ¼ Dgcap þ gs1 þ gs2 (A13)

where

gs1 ¼
x2

1152
1� 3

2
x2

� �

X

n

a¼1

1� x2a
x2

� �2

; (A14)

is the self-energy of the isolated disclinations, and

gs2 ¼
x2

1152

X

b 6¼a

Vint xa;xb
� �

; (A15)

is the pairwise interaction of disclinations, with

Vint xa;xb
� �

¼ 1� x2a
x2

� �

1�
x2b

x2

 !

þ xa� xb

�

�

�

�

2

x2
ln

xa� xb

�

�

�

�

2

x2 � x2a
� �

x2 � x2b

� �

=x2 þ xa� xb

�

�

�

�

2

2

4

3

5

8

<

:

9

=

;

; (A16)

being xa � �a=�0, �a the geodesical position of the disclinations and xa� xb

�

�

�

� is the

(normalized) geodesic distance between disclination a and b.

When more than one defect appear, the minimum of the free energy typically occurs for a

closed shell, corresponding in the small curvature approximation to x ’ 2 in which case, the

stability region appears for D~� larger than

D~�s
dn
’ lþ 0:00146: (A17)

and the cap consists of a fully closed shell with defects.
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The free energy of formation of a ribbon of length L and width W, growing on the surface

of a sphere of radius R0 is (Schneider and Gompper, 2007; Majidi and Fearing, 2008)

DGrib ¼�LW

a1
D�þ 2LðLþWÞþ 9Y

5120

W5L

R4

0

: (A18)

The energetic advantage of this configuration over the spherical cap is that, for a fixed

width W, the in-plane elastic energy only grows linearly with length. In order to compare the

energy of ribbons made with similar number of units as the spherical cap, we consider that

both structures have the same area. That is, S¼p�2
0
¼ LW. Thus, this energy can be rewritten

in dimensionless terms as

Dgrib ¼�D~�

4
x2 þl

2

x2

w
þ l

2p
wþ 9

20480
x2w4 (A19)

where w�W=R0. The optimal width of the ribbon is obtained by minimization that is, from

qDgrib=qw¼ 0, yielding

�l
x2

w2
þ l

p
þ 9

2560
x2w3 ¼ 0: (A20)

As the area of the patch increases, the ribbon grows longitudinally at a nearly fixed optimal

width up to the point where l¼ 2p, where it forms a closed belt with energy

Dgbelt ¼�D~�

4
x2 þlþ 9

327680
x10: (A21)

The elastic energy of the belt grows very steeply with the patch size, since after closing the

ribbon, it can only grow by increasing its width at a large stretching cost. It can be shown that

the equilibrium ribbon-like structure with the lowest energy is always a closed belt rather than

the open ribbon. So the competing structures are the spherical cap with or without defects

and the belt. The minimum in the free energy, corresponding to a stable belt, is located at

xsbelt ¼ 2
64D~�

9

� �1=8

; (A22)

and the stability region for the belt occurs when D~� is larger than

D~�s
belt ¼

5

8

ffiffiffi

3

2

r

l

 !4=5

: (A23)

Since D~�s
belt<D~�

s
cap, that leads to the important result that closed belts become stable

before defectless spherical caps. Therefore, defectless spherical caps can only be at most

metastable structures.

Finally, an alternative to the curved ribbon is a cylindrical stripe of scaled width w and

length l having one of his principal radius of curvature zero and a scaled energy

Dgstripe ¼�D~�

4
x2þl

2

x2

w
þ l

2p
wþ 1

8g
x2 (A24)

As in the case of the ribbon and the belt, the cylindrical patch eventually closes when l¼
2pr into a cylinder whose energy of formation is

Dgcyl ¼
1

4
x2 �D~�þ 1

2g

� �

þl: (A25)

The cylinder has the advantage of not having any in-plane stretching cost, but it has a

bending energy penalty described by the second term inside the parentesis. An energetically

favorable cylinder requires D~�>1=ð2gÞ for its formation, meaning that cylindrical shells cannot

be formed in the bending-dominated limit, corresponding to g! 0.
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General case of arbitrary FvK
The description of the free energy of formation of shells at arbitrary FvK numbers involves the

consideration of the bending energy and of the radius of the structures as an additional free

parameter that may now deviate from the spontatneous radius R0. Particularizing

Equation A1, the bending energy of a sphere of radius R in scaled units is

Dgsphb ¼ 1

4g
x2

1

r
� 1

� �2

; (A26)

while for a cylinder of radius R reads

Dgcylb ¼ 1

8g
x2 1þ 1

r
� 1

� �2
 !

(A27)

where r� R=R0 and the Föppl-von Kárman number (FvK), quantifying the ratio of stretching

and bending energies, is still defined as g� YR2

0
=k.

Using these expressions we can generalize the free energy of formation of all structures

analyzed in the previous section. Explicitly, in reduced units, the free energy of formation of a

defectless spherical cap of radius r becomes

DgcapðgÞ ¼�D~�

4
x2 þl

2
xþ 1

1536

x6

r4
þ 1

4g
x2

1

r
� 1

� �2

: (A28)

In the general case, the optimal radius of the shell is obtained from the condition

qDgcap=qr¼ 0, yielding

r2 r� 1ð Þ� g

192
x4 ¼ 0: (A29)

This equation shows that deviations from the preferred radius (i.e r¼ 1) are only expected

for large domain sizes or large FvK numbers. The corresponding solution with positive second

derivative can be obtained analytically, although its expression is a bit cumbersome. For small

shells or FvK numbers, it can be well approximated by its two leading terms, yielding

r’ 1þ g

192
x4: (A30)

In the limit of large shells or Fvk numbers, the radius goes as

r’ 1

3
þ 1

4

g

3
x4

� �1=3
: (A31)
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Appendix 1—figure 2. Scaled optimal radius r of a spherical cap without defects as a function

of the patch size x for a FvK number g¼ 80. The solid line is the exact solution, Equation A29,

the short dashed line is the approximation for large shells or FvK, Equation A31, and the

dashed line is the approximation for small shells or FvK, Equation A30.

In Appendix 1—figure 2, the curve r vs x is sketched as obtained from the complete

solution of Equation A29 (solid line). As can be seen, small caps adopt a curvature close to

the one of the bending dominated case, r ’ 1. Larger caps tend to flatten out. The dashed

line shows the small shell approximation, Equation A30, while the short dashed line shows the

assymptotic approximation given by Equation A31.

As the domain size increases, it becomes more favorable to release the elastic stress by the

introduction of one or many 5-fold disclinations. The free enery of formation of a spherical

shell with one central defect is

Dgd1ðgÞ ¼ DgcapðgÞþ
x2

1152
1� 3

2

x2

r2

� �

: (A32)

which becomes favorable over the defectless case when x=r�
ffiffiffiffiffiffiffiffi

2=3
p

. The formation energy of

a spherical shell with n-defects is

DgdnðgÞ ¼ DgcapðgÞþ gs1ðrÞþ gs2 (A33)

where

gs1ðrÞ ¼
x2

1152
1� 3

2

x2

r2

� �

X

n

a¼1

1� x2a
x2

� �2

; (A34)

and gs2 is given by Equation A15. The free energy of a ribbon of scaled width w and length l

in the general case becomes

DgribðgÞ ¼�D~�

4
x2 þl

2

x2

w
þ l

2p
wþ 9

20480
x2

w

r

� �4

þ 1

4g
x2

1

r
� 1

� �2

: (A35)

The optimal width and radius of curvature of the ribbon, w and r, are obtained by

minimization that is, from qDgrib=qw¼ 0 and qDgrib=qr¼ 0, yielding
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�l
x2

w2
þ l

p
þ 9

2560
x2
w3

r4
¼ 0 (A36)

and

�9gw4

2560
� r2ð1� rÞ ¼ 0: (A37)

Finally, the free energies of a belt and a cylinder are

DgbeltðgÞ ¼�D~�

4
x2 þlrþ 9

327680

x10

r8
þ 1

4g
x2

1

r
� 1

� �2

(A38)

and

DgcylðgÞ ¼�D~�

4
x2 þlrþ 1

8g
x2 1þ 1

r
� 1

� �2
 !

; (A39)

respectively.

Appendix 1—figure 3. Other structures obtained in the simulations. (a) Bullet-shaped shell and

(b) conical shell obtained in two different repetitions for g ¼ 224, l ¼ 0:00069, with m ¼ 36,

n ¼ 18, n ¼ 1:345, a ¼ 0:4 and � ¼ 0:02; (c) T = 13 icosahedral shell obtained for g ¼ 100,

l ¼ 0:0005246, with m ¼ 36, n ¼ 18, n ¼ 1:40, a ¼ 0:1 and � ¼ 0:02; (d) coexistence between a

cylinder and a partial spherocylindrical shell obtained for g ¼ 900, l ¼ 0:0005246, with m ¼ 36,

n ¼ 18, n ¼ 1:40, a ¼ 0:3 and � ¼ 0:02; (e) branched ribbon-like structure (Köhler et al., 2016)

obtained at low values of the scaled line tension for g ¼ 71, l ¼ 0:00031, with m ¼ 36, n ¼ 18,

n ¼ 1:47, a ¼ 0:1 and � ¼ 0:0125.
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