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Abstract: We established the vibration governing equation for a magnetoelastic (ME) biosensor
with target loading in liquid. Based on the equation, a numerical simulation approach was used
to determine the effect of the target loading position and viscous damping coefficient on the node
(“blind points”) and mass sensitivity (Sm) of an ME biosensor under different order resonances.
The results indicate that viscous damping force causes the specific nodes shift but does not affect the
overall variation trend of Sm as the change of target loading position and the effect on Sm gradually
reduces when the target approaches to the node. In addition, Sm decreases with the increase of viscous
damping coefficient but the tendency becomes weak at high-order resonance. Moreover, the effect
of target loading position on Sm decreases with the increase of viscous damping coefficient. Finally,
the results provide certain guidance on improving the mass sensitivity of an ME biosensor in liquid
by controlling the target loading position.
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1. Introduction

In recent years, there has been increasing interest in magnetoelastic (ME) biosensors due to
the advantages of low cost, easy operation, wireless, and real-time detection [1]. An ME biosensor
is comprised of a free-standing strip-shaped sensor platform made of ferromagnetic materials
(Metglas 2826MB alloy) with a layer of bio-probes (antibody, phages) immobilized on its surface.
The working principle is based on the change in resonant frequency of an ME biosensor in response
to the specific binding between the target and the bio-probes (mass load of the target) under
an alternative magnetic field [2]. To date, ME biosensors have been successfully developed for the
detection of food-borne pathogens, virus, chemicals and heavy metal ions such as Escherichia coli [3],
Listeria monocytogens [3], Salmonella Typhimurium [3,4], Bacillus anthracis spores [4,5], Staphylococcus aureus [3,6],
Staphylococcus epidermidis [7], swine fever virus [8], uranyl [9], Pb2+, Cd2+, Cu2+ and Hg2+ [10,11] in
water. Particularly, the development of portable resonant signal interrogation devices [12–15] and
direct detection of pathogens on the surface of spinach leaves [16], tomatoes [17] and eggshells [18]
makes in-situ detection of ME sensors to be possible.

For an ME biosensor, a key parameter to characterize its performance is mass sensitivity (Sm)
which is defined as the change of resonant frequency caused by per unit load mass (the target mass) [19].
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In other words, high Sm means large shift of resonant frequency for the same target loading. However,
the Sm for an ME biosensor still needs to be improved to meet the future requirement for the detection
of a small number of targets or even single target. Although the Sm of an ME biosensor can be
improved by reducing its size [1], the signal intensity decreases along with the sensor size. Another
way to improve the Sm is to choose the sensor platform materials with high Young’s modulus and
low density [1] but other properties such as magneto-mechanical coupling coefficient and magnetic
permeability also need to be considered. It has been experimentally found that target distribution on
an ME biosensor plays a decisive role on the Sm. Especially, the Sm is zero when the target is loaded at
the node (also called “blind point”) of an ME biosensor [20]. In addition, it has been found that the
“blind point” issue can be overcome by using multiple mode resonant frequencies [20]. In our previous
studies, we established the vibration governing equation for an ME biosensor loaded with a target in
different positions and revealed the variation of Sm as the function of target position or distribution by
mathematical simulation [21–24]. The results suggest that the Sm is linearly proportional to the square
of point displacement where the target is loaded. Unfortunately, all the aforementioned studies are
suitable only for the detection in air, whereas much detection in reality has to be carried out in liquid.
In this case, extra viscous damping force is introduced to an ME biosensor that may affect its overall
resonant behavior as well as the mass sensitivity. Chen et al. [25] studied the resonance behavior of
a rod-like cantilever vibrating in a viscous liquid and determined a closed-form solution for the added
mass and damping coefficient. In the work, they treated the viscous damping force as virtual mass.
However, the variation of mass sensitivity as the mass loading position is not given.

The aim of this work was to address the above issue by establishing the vibration governing
equation of a free-standing ME biosensor with target loading in liquid and find the variation rule of
mass sensitivity as the change of target loading position and viscous damping force under different
resonance modes.

2. Determination of Materials, Liquid and Loading Conditions

Assume the target is loaded on an ME biosensor that is vibrating in a liquid, as shown in Figure 1.
Here, we chose the commercial available ferromagnetic alloy Metglas 2826MB (Fe40Ni38Mo4B18) as the
sensor platform materials, which has been widely used in ME biosensors. The detailed information of
the sensor, liquid and the target loading conditions for this study is listed in Table 1.
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Table 1. Information for the sensor, liquid, and loading conditions in this study.

Symbol Unit Value

Young’s modulus E GPa 105 [26]
Density ρ kg/m3 7.9 × 103 [26]

Poisson’s ratio ν 0.33 [26]
Length l mm 1
Width w mm 0.2

Thickness t µm 15

Loading position

Viscous damping coefficient

xc/l

c

−

N/(m/s)

0, 0.05, 0.1, . . . , 1.0
0 (air)

80 (Liquid #1)
160 (Liquid #2)
240 (Liquid #3)
320 (Liquid #4)

3. Establishment of Vibration Governing Equation

Based on the above assumption, the kinetic energy (T), potential energy (V) of the sensor and the
dissipative function (D) can be expressed as:

T =
1
2

∫ l

0
ρA
(

∂u(x, t)
∂t

)2
dx +

1
2

m
(

∂u(x, t)
∂t

)2

x=xc

(1)

V =
1
2

∫ l

0

E
1− ν

A
(

∂u(x, t)
∂x

)2
dx (2)

D =
1
2

∫ l

0
cl

(
∂u(x, t)

∂t

)2
dx (3)

where ρ, E, ν, and A are density, Young’s modulus, Poisson’s ratio and cross-sectional area (w × t) of
the sensor, respectively; m represents mass of the target; cl represents the viscous damping coefficient
per unit length; and u is the point displacement at x, which is expressed as:

u(x, t) = φ(x)γ(t) (4)

with ϕ(x) being the mode shape function, which is assumed as ϕ(x) = cos nπx
L (n = 1,2,3), where n is the

mode number and γ is the generalized coordinate. For the nth-order mode in Equation (4), the point
displacement function is u(x, t) = un(x, t) = ϕn(x)γn(t).

By substituting Equation (4) into Equations (1)–(3), we can obtain that:

T =
1
2

.
γ

T
(Ms + Mc)

.
γ =

1
2

.
γ

T M
.
γ (5)

V =
1
2

γTKγ (6)

D =
1
2

.
γ

Tc
.
γ (7)

where Ms =
∫ l

0 ρAφTφdx, Mc = mφTφ, M = Ms + Mc, K =
∫ l

0
E

1−ν Aφ′Tφ′dx, C =
∫ l

0 clφ
Tφdx.

It is known that Lagrange’s equation for a system with dissipative force can be expressed as:

d
dt

(
∂L
∂

.
γ

)
−
(

∂L
∂γ

)
+

∂D
∂

.
γ

= F (8)

where L = T − V and F is a generalized force that is in the form of F =
∫ l

0 ϕT f dx.



Sensors 2019, 19, 67 4 of 9

After inputting Equations (5)–(7) into Equation (8), we can get the vibration governing equation as:

M
..
γ + c

.
γ + Kγ = F (9)

Unfortunately, Equation (9) is undecoupled and thus it is difficult to obtain the particular solution

γ. To decouple Equation (9), we normalize ϕn to ψn =

(
φn√

φT
n Mφ1

)
and let γ = ψq. Then, Equation (9)

can be converted as:
Mψ

..
q + Cψ

.
q + Kψq = F (10)

By multiplying ψT on the both sides of Equation (10), we can obtain a decoupled vibration
governing equation as expressed as:

..
qn + Cn

.
qn + Knqn = Qn (11)

where In = ψT
n Mψn

..
q, Cn = ψT

n Cψn, Kn = ψT
n Kψn, Qn = ψT

n F.
Here, In, Cn, Kn, and Qn are all diagonal matrices.
According to the fundamentals of mechanical vibrations, the particular solution qn of Equation (11)

is known as:
qn =

Qn

ω2
n

√
(1− λ2

dn)
2
+ (2ξnλ2

dn)
2

sin(ωt− φn) (12)

where ωn =
√

Kn
Mn

, ξn = Cn
2ωn

, λdn =
√

1− 2ξ2
n.

After substituting Equation (12) into Equation (11), we can determine the ωdn for a given condition,
and the mass sensitivity can be obtained by

Sm =
∆ fdn

m
=

fdnm − fdn
m

=
ωdnm −ωdn

2πm
(13)

where f dn and f dnm represent the displacement resonance frequency of the sensor without and with
target loading; and ωdn = ωn

√
1− ξ2

n, which represents the displacement resonant angular frequency.

4. Results and Discussion

4.1. Effect on Vibration Mode Shape and Nodes

From Equation (11), we can see that the extra damping force in liquid affects the vibration
governing equation and thus causes the change of vibration mode shape as well as the mass
sensitivity Sm. Figure 2 shows the vibration mode shapes of the sensor in different liquid with the target
loaded at xc/l = 0.1. In Figure 2a, we can see that the curves almost overlap suggesting that the viscous
damping force has little effect on the vibration mode shape for the first-order resonance. However,
the curves in Figure 2b,c exhibit significant difference, indicating the increasing effect at higher-order
resonance. In addition, it was found that there are n nodes for the nth-order resonance and the node(s)
for each mode of resonance shift with the change of viscous damping coefficient except for the one at
the middle of the sensor. In detail, only one node at the middle of the sensor does not shift with the
change of c for the first-order resonance. For the third-order resonance, the three nodes from left to
right shift toward positive, zero, and negative x-axis direction, respectively, with the increase of viscous
damping coefficient, as shown as the inset in Figure 3b. For the fifth-order resonance, the five nodes
shift toward negative, positive, zero, negative, and positive direction, respectively, as shown as the
inset in Figure 3c. Since the neighbor of each node is a mass insensitive region, the shift of a node
means that the insensitive region moves consequently.
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4.2. Effect on Mass Sensitivity

Figure 3 shows the mass sensitivity Sm of the sensor as the function of target loading position
in air and in liquid. Clearly, the extra dissipative force decreases the overall mass sensitivity for
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all resonance modes but this effect becomes weaker with the increase of resonance order. Besides,
all curves exhibit a sine-wave shape and n + 1 local maximal values with n local minimal values are
found in each curve, where n is the corresponding resonance order. Combining with the results in
Figure 2, the local minimal Sm at xc/l = 0.5 for all curves in Figure 3 is zero, which means it is unrelated
to the resonance order and viscous damping coefficient. However, the other local minimal values of Sm

with the corresponding xc/l are different with the change of viscous damping coefficient or resonance
order. Furthermore, it is worth noting that viscous damping coefficient does not affect the variation
trend of Sm with the change of loading position but weakens the effect of loading position on Sm and
the weakening effect increases with the increase of viscous damping coefficient.

Figure 4 shows Rsm as a function of loading position in Liquid #1 where Rsm = (Sm,liquid −
Sm,air)/Sm,air. It was observed that all the curves exhibit a complex “M+W” shape, in which the
singular point at xc/l = 0.5 is due to Sm,air = 0, as aforementioned. In addition, the absolute value of
Rsm for the same loading position decreases with increasing resonance order, which again indicates
the less viscous damping coefficient dependence of mass sensitivity for the sensor at higher order
resonance. The curves for the other liquids show a similar behavior but with a decreasing value of
Rsm as the viscous damping coefficient increases, as shown in Figure 5, where the x-axis and y-axis
represent the viscous damping coefficient ratio (ζ) and Rsm ratio (χ) of Liquids #2, #3, and #4 to Liquid
#1, respectively. We found that the data in the figure for the same order resonance can be well fitted
by the equation and the nearly overlapping curves indicate that the loading position has much less
effect on Rsm compared to viscous damping coefficient. In addition, the significant difference between
the curves for the first-order resonance and higher-order resonance again suggests the weak effect of
viscous damping coefficient on mass sensitivity at high-order resonance.Sensors 2018, 18, x FOR PEER REVIEW  7 of 10 
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5. Conclusions

We studied the resonance behavior and mass sensitivity (Sm) of a magnetoelastic (ME) biosensor
with target loading in liquids with viscous damping coefficient in the range of 80–320 N/(m/s). Several
conclusions were drawn as follows:

1. Viscous damping force causes the vibration mode shapes to change, which results in the nodes
shifting except for the one at the middle of the sensor and the change becomes more obvious at
higher-order resonance.

2. Viscous damping force does not affect the variation trend of Sm as the change of target loading
position but will weaken the effect of loading position on Sm and the weakening effect increases
with the increase of viscous damping coefficient. n + 1 local maximal sensitivity and n local
minimal sensitivity were found with the target moving from one end to the other end of the sensor.

3. For the same target loading position, Sm decreases and tends to approach each other with the
increase of viscous damping coefficient but the tendency becomes weak at high-order resonance.

4. The effect of viscous damping force on the decrease of Sm gradually reduces when the target
approaches the node of the sensor.
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