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Convergent eusocial evolution is based on a shared
reproductive groundplan plus lineage-specific
plastic genes

Michael R. Warner!, Lijun Qiu?, Michael J. Holmes?3, Alexander S. Mikheyev® 24 & Timothy A. Linksvayer®

Eusociality has convergently evolved multiple times, but the genomic basis of caste-based
division of labor and degree to which independent origins of eusociality have utilized common
genes remain largely unknown. Here we characterize caste-specific transcriptomic profiles
across development and adult body segments from pharaoh ants (Monomorium pharaonis)
and honey bees (Apis mellifera), representing two independent origins of eusociality. We
identify a substantial shared core of genes upregulated in the abdomens of queen ants and
honey bees that also tends to be upregulated in mated female flies, suggesting that these
genes are part of a conserved insect reproductive groundplan. Outside of this shared
groundplan, few genes are differentially expressed in common. Instead, the majority of the
thousands of caste-associated genes are plastically expressed, rapidly evolving, and relatively
evolutionarily young. These results emphasize that the recruitment of both highly conserved
and lineage-specific genes underlie the convergent evolution of novel traits such as
eusociality.
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ARTICLE

he degree to which convergent phenotypic evolution

involves the same sets of genes or pathways is a major

unanswered question!. Comparative genomic studies
indicate that parallel adaptive changes in the protein-coding
sequences of the same genes are frequently associated with the
evolution of convergent phenotypes in closely related populations
and species?3. Decades of research in evolutionary developmental
biology also emphasize that changes in the expression of a rela-
tively small toolkit of deeply conserved genes are often associated
with convergently evolved phenotypes in distantly related spe-
cies*. Alternatively, convergent phenotypic evolution between
lineages could involve distinct subsets of genes in each lineage,
including taxonomically restricted genes, genes which have no
detectable orthology outside of a given lineage®. Taxonomically
restricted genes have been shown to be important for lineage-
specific evolutionary novelties®, but their relative contribution to
the evolution of convergent phenotypes is unknown.

The evolution of eusociality in several insect lineages (e.g.,
ants, honey bees, vespid wasps, and termites) provides a
striking example of convergent phenotypic innovation’. Euso-
cial insect societies are founded upon a novel caste polyphen-
ism, in which reproductive queen and non-reproductive worker
female castes develop from the same genome, depending mainly
on socially regulated nutritional inputs®°. Within the worker
caste, further specialization often occurs as individuals age and
progress through a series of tasks, including nursing and
foraging’.

Polyphenic traits are often thought to evolve from pre-existing
developmental plasticity!?. Leading hypotheses for the evolution
of caste-based division of labor in social insects also stress the use
and modification of highly conserved developmental and phy-
siological mechanisms!!1-1>. For example, the reproductive and
non-reproductive phases of ancestral solitary insects are thought
to have been decoupled to produce reproductive and non-
reproductive castes! 116, and worker division of labor is similarly
thought to be derived from the decoupling of the ancestral
reproductive cycle!31617. Along the same lines, it has been sug-
gested that the convergent evolution of novel social behavior
involves changes to the regulation of a core toolkit of genes
underlying highly conserved physiological processes, such as
metabolism!4 15,

Studies focused on candidate genes underlying the genetic basis
of caste-based division of labor within individual eusocial species
have often found support for the importance of highly conserved
genes and pathways associated with reproduction and metabo-
lism. For example, worker division of labor in honey bees is
regulated by interactions between juvenile hormone, vitellogenin,
and insulin/TOR signaling pathways!®17:18, Similar pathways
also play key roles in regulating division of labor between queen
and worker castes in both ants and honey bees, though the
mechanistic details vary!9-22, While comparative genomic and
transcriptomic studies have often similarly emphasized common
general functions, such as metabolism, such studies have thus far
only identified very small sets of specific genes associated with the
convergent evolution of caste, worker behavior, or eusociality in
independent lineages!>23-27, Alternatively, many transcriptomic
studies have argued for the importance of taxonomically
restricted genes for the evolution of caste-based division of
labor28-34, Tt is unclear if the lack of common specific genes is due
to biological differences between the species or methodological
details, because studies in each species were not designed, con-
ducted, or analyzed in parallel.

Previous work has mainly focused on identifying whether there
is significant overlap of genes or gene pathways associated with
caste-based  division of labor between independent
lineages?>26:27, but there has been little effort to quantify the

relative importance of shared versus unshared genes to the con-
vergent evolution of caste-based division of labor. Most of these
studies have either focused on the brain or whole-body
samples!>22:2426,33,35-37 " although expression bias between
queens and workers has been shown to be dependent upon
developmental stage and tissue type3*38-40. Finally, the tran-
scriptomic signatures of reproductive physiology are strongest in
the abdomen>441, the location of reproductive organs, but no past
study has explicitly compared caste bias in abdominal tissues in
species from lineages representing independent origins of
eusociality.

Here, we present a comprehensive developmental tran-
scriptomic data set investigating gene expression associated with
reproductive caste and age-based worker division of labor in the
pharaoh ant (Monomorium pharaonis) and the honey bee (Apis
mellifera). We focus on these two study species because they
represent two independent origins of eusociality in the ant and
corbiculate bee lineages*? as well as two independent elaborations
of eusociality, each characterized by strong queen-worker
dimorphism and age-based worker division of labor3343. We
perform all sampling, sequencing, and analysis for the two species
in parallel to maximize compatibility between the data sets. We
leverage this extensive data set to quantify in an unbiased manner
the relative contribution of differential expression of shared ver-
sus distinct genes at each life stage and tissue to the convergent
evolution of caste-based division of labor. We identify a large
group of genes which are associated with queen abdomens in
both eusocial species and tend to be female biased in Drosophila
melanogaster. Outside of this shared core, few genes are differ-
entially expressed in both species in the same tissue or develop-
mental stage, and genes with high degrees of caste-biased
expression tend to be weakly constrained in terms of expression
profile and sequence evolution.

Results

Study design. We constructed two large, parallel transcriptomic
data sets in honey bees and pharaoh ants spanning caste devel-
opment as well as adult tissues separated by reproductive caste
(queens versus workers), behavior (nurse workers versus forager
workers), and sex (queens and workers versus males). In total, we
constructed 177 mRNA-sequencing libraries across 28 distinct
sample types for each species (Supplementary Table 1).

Differential expression between queens and workers. To iden-
tify genes associated with caste development and adult caste
dimorphism, we performed differential expression analysis
between queens and workers at each developmental stage and
adult tissue, separately for each species. The number of differen-
tially expressed genes (DEGs) between queens and workers
increased throughout development, peaking in the adult abdomen
(Fig. 1a). In all tissues and stages, the majority of caste-associated
DEGs in one species were either not differentially expressed or did
not have an ortholog in the other species (Fig. 1a; Supplementary
Fig. 1a; Supplementary Table 2). The magnitude of gene-wise caste
bias (as measured by log, fold change between queen and worker
samples) was weakly positively correlated between ant and honey
bee orthologs in all three adult tissues, with the strongest corre-
lation in the abdomen, but uncorrelated or negatively correlated in
all larval and pupal stages (Supplementary Fig. 2; Pearson corre-
lation; rpeaq = 0.089; rihorax = 0.161; I'ipdomen = 0.275; N = 7460 1:1
orthologs; P < 0.001 in all cases). The top enriched Gene Ontology
(GO) terms for caste-associated DEGs in each species were
dominated by metabolism, signaling, and developmental processes
(Supplementary Tables 3, 4).
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Fig. 1 Patterns of caste-biased expression in pharaoh ants and honey bees. The number of differentially expressed genes (FDR < 0.1) between (a) queens
and workers and (b) nurses and foragers at each developmental stage or tissue in ants (left) and honey bees (right). “Head", “thorax”, and “abdomen” refer
to body segments of adults, while “pupa” and “larva” refer to whole bodies. “No ortholog” refers to genes for which no 1:1 ortholog exists (either due to
apparent duplication or complete lack or orthology), “not shared caste/task bias” refers to genes for which 1:1 orthologs can be identified but are only
differentially expressed in one species, and “shared caste/task” bias refers to genes for which 1:1 orthologs are differentially expressed in both species.
Insets show the proportion of each category of gene out of all differentially expressed genes at that stage or tissue. ¢ Proportion of abdominal DEGs by
estimated evolutionary age (shading). “Shared queen/worker” indicates genes upregulated in queen or workers of both species. *: the category “larva”
represents differential expression across larvae of all stages for which caste can be identified (second to fifth larval stage). Source data are provided as a
Source Data file. Photos were taken by Luigi Pontieri (pharaoh ants) and Alex Wild (honey bees)

Differential expression between nurses and foragers. Both
honey bees*3 and pharaoh ants?? exhibit age-based worker divi-
sion of labor, in which younger individuals tend to specialize on
nursing and other within-nest activities and older individuals
specialize on foraging. To identify genes associated with age-based
worker division of labor, we performed differential expression
analysis between nurses and foragers in each adult tissue,

separately for each species. In general, there were very few beha-
vioral DEGs shared between the two species (Fig. 1b; Supple-
mentary Fig. 1b; Supplementary Table 5). Gene-wise log, fold
change between nurses and foragers was significantly but weakly
correlated across ant and honey bee orthologs (Supplementary
Fig. 3; Pearson correlation; rye,q = 0.070, Pheag < 0.001; Iiporax =
0.031, Pihorax = 0.008; Tabdomen = 0.051, Papdomen < 0.001; N = 7460
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1:1 orthologs). The top enriched GO terms for behavioral DEGs in
each species were dominated by metabolism and developmental
processes (Supplementary Tables 6, 7).

Shared abdominal caste bias in ancient genes. For the most
part, our results indicate distinct genes are associated with caste
and worker division of labor in honey bees and ants. However,
approximately one-third of the abdominal caste-associated
DEGs were common to both species (Fig. la; 1545 shared
DEGs, comprising 35% [1545/4395] of ant DEGs, and 29%
[1545/5352] of honey bee DEGs). Most shared abdominal dif-
ferential expression was the result of shared queen bias: 56%
(858/1545 genes) of shared abdominal caste-associated DEGs
were upregulated in queen abdomens in both species, compared
with 22% (338/1545) that were worker-upregulated in both
species and 23% (349/1545) that reversed direction (i.e., were
queen biased in one species and worker biased in the other).
Shared abdominal caste-associated DEGs were more likely to be
identified as evolutionarily ancient in comparison with non-
biased genes (Fig. 1c; Supplementary Fig. 1c; Fisher Test; F =
3.41, P<0.001). Furthermore, abdominal DEGs with shared
queen bias were more likely to be identified as ancient than
DEGs with shared worker bias (Fig. 1c; Fisher Test; F=2.51,
P <0.001). In general, the evolutionary age of genes was asso-
ciated with expression bias between castes, though the direction
of the effect was not consistent across all tissues and stages
(Supplementary Fig. 4).

We next tried to put the seemingly large proportion of shared
abdominal caste-associated DEGs (35% for ants and 29% for
honey bees) into context. We compared the proportion of genes
that were differentially expressed across embryonic and larval
development in both species, given that the molecular mechan-
isms of development are thought to be highly conserved*4. We
identified 6089 and 6225 developmental DEGs in ants and honey
bees, respectively, including 2544 shared DEGs, representing 42%
(2544/6089) and 41% (2544/6255) of the total developmental
DEGs in each species (Supplementary Fig. 5).

To identify which of the thousands of abdominal DEGs found
in each species are particularly important for queen abdominal
expression (and presumably function), we performed gene co-
expression analysis, separately for each species. We focused on
modules specifically associated with queens because the majority
of shared DEGs were queen upregulated. We identified a module
of genes, specifically associated with queen abdominal expression
in each species (N = 1006 genes in the module for ants, N =1174
genes for honey bees). We identified hub genes in each module
(N'=92 genes in ants, N =94 genes in honey bees), genes which
are centrally connected in networks and strongly associated with
queen abdominal expression*>. Many annotated hub genes are
inferred to have functions associated with reproduction and
maternal effects (Supplementary Tables 8, 9), including genes
with known roles in caste determination, such as vitellogenin (Vg
receptor was identified in each species)?? and vasa®®, while others
are important maternal proteins, such as Smaug?’ and ovo*s.
Furthermore, genes for which Drosophila melanogaster orthologs
are known to function in oogenesis (based on FlyBase Gene
Ontology*’) were more highly connected within the queen
abdominal modules than genes not associated with oogenesis
(Supplementary Fig. 6) for honey bees (Wilcoxon test; N = 649; P
<0.001), though not for ants (N =542; P=0.114). Finally, we
identified 181 genes which were present in the queen abdominal
module of both species. These genes tended to be queen biased
(78.5% [142/181] upregulated in queens of both species) and were
more centrally located within modules than genes found in only
one species-specific module (Fig. 2¢, d).

Caste bias is in part derived from ancestral sex bias. Given that
our co-expression analysis indicated that many important queen-
upregulated genes are associated with oogenesis and overall
female reproduction, we reasoned that caste-biased expression
would be linked to sex-biased expression (i.e., expression differ-
ences between reproductive females and males). Indeed, there was
a positive correlation between gene-wise log, fold change between
queen and worker abdomens and gene-wise log, fold change
between queen and male abdomens in both honey bees and
pharaoh ants (Fig. 3 a, b). In addition, sex bias itself was corre-
lated between species (Fig. 3c). The correlation of caste bias and
sex bias was not restricted to the abdomen, as there were similar
highly significant effects when comparing transcriptomic profiles
in the head and thoracic tissues, albeit with weaker effect sizes
(Supplementary Fig. 7).

Given the association between shared caste bias and sex bias
within pharaoh ants and honey bees, we hypothesized that these
shared caste-biased genes were derived from conserved pathways
that also underlie sexual dimorphism for reproductive physiology
in distant relatives. To test this hypothesis, we estimated sex-
biased expression of orthologs in the fruit fly D. melanogaster
using available data from male and mated female whole bodies*4.
Shared queen-biased abdominal DEGs tended to be upregulated
in females in D. melanogaster (Fig. 3d; one-sided binomial test
for likelihood of shared queen-biased DEGs having log, fold
change > 0; P <0.001; N = 566 shared queen DEGs), while shared
worker-biased abdominal DEGs tended to be upregulated in
males (binomial test; P<0.001; N =160 shared worker DEGs),
indicative of shared queen (social insects) and female (fly)
downregulation. Though we detected few shared caste-associated
DEGs in the head and thorax (N =38 and N = 64, respectively),
these DEGs showed the same pattern, where orthologs of queen-
biased DEGs were significantly more female biased in D.
melanogaster than orthologs of worker-biased DEGs (Supple-
mentary Fig. 8).

Expression plasticity is correlated between species. While we
have emphasized the conservation of abdominal differential
expression between queens and workers in pharaoh ants and
honey bees, differential expression based on either reproductive
caste or worker division of labor was largely not shared between
species (Fig. 1). Furthermore, genes were often differentially
expressed across many stages and tissues, sometimes in opposite
directions (Supplementary Fig. 9; e.g., upregulated in queen
heads, but downregulated in queen abdomens). To quantify the
degree to which genes exhibited biased expression according to
reproductive caste across all developmental stages and tissues, we
calculated gene-wise overall caste bias in each species, where we
defined overall caste bias as the Euclidean distance of log, fold
change across all queen/worker comparisons®’. Similarly, we
defined overall behavior bias as the Euclidean distance of log, fold
change across all nurse/forager comparisons, separately for each
species.

Across 1:1 orthologs, overall caste bias measured in ants was
correlated to overall caste bias measured in honey bees
(Supplementary Fig. 10a; Spearman correlation; rho =0.454,
P<0.001), and overall behavior bias was similarly correlated
between species (Supplementary Fig. 10b; Spearman correlation;
rho = 0.221, P < 0.001). Within species, overall caste and behavior
bias were also correlated to each other (Supplementary Fig. 11;
Spearman correlation; ants: rho =0.549, P <0.001; honey bees:
rho=0.642, P<0.001). This indicates that plasticity in gene
expression is correlated across contexts (caste versus behavior)
and species. GO terms associated with high overall caste bias were
largely linked to metabolism, while those associated with high
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bees (Spearman correlation; rho = 0.617, P < 0.001). Genes upregulated in queens are in red, while genes upregulated in workers are in blue. Connectivity
is proportional to the most highly connected gene in the module. Connectivity within the queen abdominal module is higher for genes found in the module
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median values, outer edges of boxplot represent upper and lower quartiles, and whiskers represent a deviation of 1.5*(interquartile range) from the upper
and lower gquartiles. Source data are provided as a Source Data file. ***P < 0.001 (Wilcoxon test). Photos were taken by Luigi Pontieri (pharaoh ant) and

Alex Wild (honey bee)

overall behavior bias were largely linked to developmental
processes (Supplementary Table 10).

Characteristics of genes associated with caste and behavior. We
compared overall caste bias and overall behavior bias to gene age,
evolutionary rate, network connectivity, and tissue specificity to
understand the general features of genes commonly associated
with caste (queen versus worker) or behavior (nursing versus
foraging). Genes with younger estimated evolutionary ages ten-
ded to exhibit higher overall caste bias (Fig. 4a, b) and behavior
bias (Supplementary Fig. 12a, b) compared in particular to
ancient genes (gamma GLM; ant caste bias: 2 = 900.19, honey
bee caste bias: x2 = 1412.80, ant behavior bias: x> = 316.36, honey
bee behavior bias: 2 = 877.43; P < 0.001 for all cases; N = 10520
in ant, N= 10011 in honey bees). Genes that were loosely con-
nected (representing peripheral network elements) in co-
expression networks constructed across all samples tended to
exhibit more caste and behavior bias in comparison with highly
connected genes (Fig. 4¢, d; Supplementary Fig. 12¢, d). Similarly,
genes with high tissue specificity across 12 honey bee tissues
tended to exhibit higher values of caste and behavior bias in
honey bees compared with more pleiotropic, ubiquitously
expressed genes (Supplementary Fig. 13), where tissue specificity
was calculated using available data32. Finally, genes that were

rapidly evolving (as estimated by dN/dS) tended to exhibit higher
levels of caste and behavior bias (Fig. 4e, f; Supplementary
Fig. 12e, f). Importantly, while expression is correlated to overall
caste and behavior bias, these results remain highly significant
when expression level is controlled for in partial correlation
analyses (Supplementary Table 11).

Discussion

Caste-based division of labor within social insect colonies is
hypothesized to be derived from conserved pathways regulating
reproduction! b1316:17 In this study, we identified a large set
(~1500) of genes with shared caste-biased abdominal expression
in pharaoh ants and honey bees (Fig. 1a), including many anno-
tated genes with known roles in reproduction, such as the vitel-
logenin receptor?) and ovo®8. Our results are consistent with the
notion that caste-biased genes are derived from ancient plastically
expressed genes underlying female reproduction, as genes upre-
gulated in queen abdomens of both ants and honey bees tended to
also be female biased in the distant insect relative Drosophila
melanogaster (Fig. 3d). Previous studies had failed to find large
sets of genes repeatedly used for eusocial evolution?3-27, but no
previous comparative study investigated caste-biased expression in
the abdomen.
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The large overlap for abdominal caste-associated genes is
notable because honey bees and ants last shared a common
ancestor ~160 million years ago®’, and this overlap is nearly as
much as we see for genes that were differentially expressed across
developmental stages (Supplementary Fig. 5). Shared develop-
mental molecular mechanisms are presumably simply due to

Fig. 3 Caste bias is linked to sex bias. Abdominal caste bias (queen vs.
worker log, fold change) is correlated to abdominal sex bias (queen vs male
log, fold change) in @) M. pharaonis (Spearman correlation; rho = 0.715, P<
0.001) and b) A. mellifera (Spearman correlation; rho = 0.774, P <0.001)
and abdominal sex bias is correlated between the two species (Spearman
correlation; rho = 0.280, P< 0.001) (c). Red indicates shared queen-biased
abdominal DEGs, while blue indicates shared worker-biased abdominal
DEGs. Gray indicates genes that did not exhibit shared expression patterns
or were not differentially expressed. Lines in a-c indicate the trendline of a
linear model. d Shared queen-biased abdominal DEGs tend to be female
biased in D. melanogaster, while shared worker-biased abdominal DEGs tend
to be male biased in D. melanogaster (likely reflecting downregulation in
females). Middle line represents median values, outer edges of boxplot
represent upper and lower quartiles, and whiskers represent a deviation of
1.5*(interquartile range) from the upper and lower quartiles. Source data
are provided as a Source Data file

shared ancestry and the deep conservation of developmental
mechanisms#4°1. The similar level of overlap for caste-associated
genes points to the large-scale recruitment of pre-existing
developmental and physiological machinery during the inde-
pendent evolution of caste-based division of labor in ant and
honey bee lineages. In addition, the association between sex bias
in D. melanogaster and shared caste bias in social insects extended
to the head and thorax (Supplementary Fig. 8), and caste- and sex
bias were correlated within species (Supplementary Fig. 7). This
indicates that although the strongest signature of overlap in caste-
biased expression occurred in the abdomen, the association of
caste- and sex bias is not simply driven by the presence of ovaries
but rather due to shared female reproductive physiology that is
largely conserved across insects.

While reproductive caste in complex eusocial societies such as
ants and honey bees is typically fixed in adulthood, the tasks
performed by workers (specifically, nursing versus foraging)
change over the course of the worker’s adult lifetime!®33. This
plastic behavioral change is known to be accompanied by a wide
range of physiological changes and is regulated at least in part by
conserved physiological pathways, for example, those involving
insulin signaling, juvenile hormone, and vitellogenin!821. How-
ever, we identified few genes that were commonly differentially
expressed between nurses and foragers in honey bees and phar-
aoh ants (Fig. 1b), and the proportion of shared genes was much
lower in comparison with genes underlying abdominal differ-
ences between queens and workers. This could reflect a combi-
nation of different roles of nurses and foragers between lineages’
as well as differences in the precise molecular relationships
between these conserved pathways2%-°2:53, Nonetheless, we did
identify a number of enriched Gene Ontology categories asso-
ciated with development and metabolism in each species (Sup-
plementary Tables 6, 7), which is consistent with the notion that
the transition from nurse to forager is essentially a developmental
process, and that common molecular pathways may provide the
raw genetic material for social evolution!426:27,

Conserved factors or pathways clearly play important roles in
aspects of caste development and function as well as the transi-
tion from nursing to foraging, but our results and other studies
indicate that the majority of the full transcriptomic architecture
associated with caste and age polyethism is not shared between
species26-29-33.3637  This lineage-specific architecture comprises
large groups of both orthologous genes with different expression
patterns and taxonomically restricted genes (Fig. 1a, b). In con-
trast to the low amount of context-specific overlap in differential
expression, the overall degree of caste-associated plastic expres-
sion across stages and tissues (overall caste bias) was correlated
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estimated evolutionary ages (a, b) and tend to be loosely connected (¢, d; Spearman correlation; ant: rho = —0.159, P < 0.001; honey bee: rho = —0.090,
P <0.001) and rapidly evolving (e, f; Spearman correlation; ant: rho = 0.157, P < 0.001; honey bee: rho = 0.240, P < 0.001). Overall caste bias combines
queen/worker log, fold-change values across all development stages and adult body segments. Connectivity is calculated using all samples and genes and
scaled proportionally to the highest value. In a and b, middle line represents median values, outer edges of boxplot represent upper and lower quartiles, and
whiskers represent a deviation of 1.5*(interquartile range) from the upper and lower quartiles. Source data are provided as a Source Data file. Photos were

taken by Luigi Pontieri (pharaoh ant) and Alex Wild (honey bee)

between species (Supplementary Fig. 10a, b), and expression
plasticity between queens and workers was correlated to expres-
sion plasticity between nurses and foragers (Supplementary
Fig. 11). Genes with high levels of caste or behavior bias tended to
exhibit a suite of network and evolutionary features including
being loosely connected in regulatory networks, evolutionarily
young, and rapidly evolving (Fig. 4; Supplementary Fig. 12), as
well as displaying tissue-specific expression profiles (Supple-
mentary Fig. 10) in comparison with more ubiquitously
expressed genes.

These network and evolutionary characteristics have com-
monly been implicated for genes underlying eusocial
evolution3%>4-30, particularly in association with the worker
caste28-33, While factors such as evolutionary age and rate to
some degree cannot be reliably disentangled”, these character-
istics together reflect relaxed selection on genes’ coding sequences
and expression profile. This may indicate that caste bias evolves
from pre-existing expression plasticity>*. This could occur when
genes that were previously tightly regulated in another context
acquire biased expression~8, which is possibly reflected in our
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results by the association between tissue specificity and caste/
behavior bias in honey bees (Supplementary Fig. 10). Alter-
natively, caste-biased expression could evolve neutrally, in which
genes with loosely regulated expression patterns acquire caste-
biased expression randomly, through neutral or slightly deleter-
ious substitutions in regulatory sequences®®>°. Our results are
consistent with both mechanisms for the evolution of caste bias: a
large part of abdominal caste bias seems to evolve through the
novel regulation of genes with sex-specific expression plasticity,
while the bulk of the genes underlying caste-based division of
labor exhibit characteristics generally reflective of genes which are
weakly constrained.

Our study shows that the recruitment of a large core of con-
served reproductive-associated genes, which can be described as a
reproductive groundplan, is fundamental to the convergent evo-
lution of caste-based division of labor in ants and honey bees.
However, our study also reveals that the bulk of the full genetic
architecture underlying the expression of social insect caste-based
division of labor varies between lineages. This is reflected by the
general biology of social insects, in that independently evolved
societies share reproductive division of labor, the main defining
feature of eusociality, but also display a wide diversity of lineage-
specific adaptations’. Future studies including more species will
be necessary to determine the generality of the patterns (e.g., the
precise numbers of shared and lineage-specific genes) we found.
It is likely that a relatively small number of core conserved genes
exist as upstream hubs in regulatory networks, and layered
downstream of this core is a myriad of taxonomically restricted
genes as well as conserved genes with lineage-specific expression
patterns®32:33.60 This is consistent with models for the evolution
of hierarchical developmental gene-regulatory networks, whereby
a relatively small number of highly conserved genes act upstream
to initiate gene cascades (e.g., to set up body patterning), while
batteries of downstream genes are evolutionarily labile and largely
responsible for lineage-specific features®!. Recent studies have
made progress elucidating the function of several core genes and
pathways for caste!®21,22:62 Large-scale transcriptomic studies
such as ours serve a complimentary, indispensable role of iden-
tifying the full suite of genes underlying caste-based division of
labor in multiple independent lineages.

Methods

Study design. We collected parallel time series RNA-seq data of caste development
in the pharaoh ant Monomorium pharaonis and the honey bee Apis mellifera,
including seven developmental stages (egg, five larval stages, one pupal stage) plus
each of three adult body segments (head, thorax, abdomen) in both species
(Supplementary Table 1). We separated adults into the three main body segments
(head, mesosoma, and metosoma) upon sample collection and sequenced pools of
each body segment separately. For convenience, we refer to these segments as head,
thorax, and abdominal tissues throughout. We sequenced whole embryos and
whole bodies of larvae and pupae. We collected three biological replicates of each
specific sample type. Each biological replicate contained a pool of individuals (N =
10 for ants, N =5 for honey bees) from the same colony, such that each biological
replicate corresponds to a colony. The only exception to this was mature honey bee
queens, which were sampled from separate unrelated colonies. In collecting these
samples, we complied with all relevant ethical regulations for animal testing and
research.

Ant collection. To collect samples of M. pharaonis across development, we created
27 replicate colonies of ~400 workers and ~400 total larvae from a large mixed
genetic source. We removed queens from each colony, which stimulates the pro-
duction of new queens and males from existing eggs and L1 larvae in M.
pharaonis®3%, We pre-assigned each colony to one of nine sample types, ordered
by developmental timing (egg, L1-L5 larvae, pupae, virgin queens/males, nurses/
foragers). We allowed the 27 colonies to grow for 4 weeks, and collected samples
progressively when the youngest individuals left in the colonies represented the
assigned developmental stage (note that M. pharaonis workers, lacking ovaries®,
do not begin to lay eggs, so the brood progressively ages as no replacement eggs
are laid).

We identified larval stage and caste as previously described, by hair and
morphology®. To synchronize pupal developmental collection, we exclusively

sampled pupae whose eyes had darkened. We sampled males as soon as they had
eclosed as adults from the pupal stage. While M. pharaonis does exhibit age
polyethism with respect to nursing and foraging®’, the precise dynamics with
regard to age are not well studied in comparison with honey bees. Therefore, we
distinguished between nurses and foragers based on behavioral observation.
Specifically, we observed nurses feeding larvae and we observed foragers collecting
food. We sampled egg-laying mature queens (3-4 months old) from the group of
queens we initially removed to stimulate reproduction to ensure that queens and
workers came from the same genetic background.

Honey bee collection. To collect samples of A. mellifera across development, we
established experimental colonies, in which queens were allowed to lay directly
onto empty comb for 24 h to ensure control of larval age and that larvae of a given
replicate were from the same queen. We collected eggs after this period directly
from the comb. After 3 days, we grafted a subset of hatched larvae into artificial
queen cells in queenless portions of the hive. Starting at that day, we sampled the
five stages of larvae (L1-L5) on each consecutive day. We sampled pupae once their
eyes had darkened to synchronize developmental timing. We sampled males by
placing hair-roller cages on top of cells during pupation and waiting for individuals
to emerge from pupation. We sampled egg-laying mature queens from separate,
unrelated colonies and pooled them into replicate samples. We paint-marked
worker individuals upon emergence from the pupal stage and sampled nurses that
were less than 7 days old and foragers that were greater than 21 days old.

RNA extraction, sequencing, aligning to genomes. We isolated RNA using
Trizol reagents. We performed cDNA synthesis and library preparation using a
previously described protocol®®, with the only alteration being that the input RNA
was 50 ng and the cycle number of cDNA amplification was increased to 16. To
compare sample quality across the experiment and test our ability to detect lowly
expressed genes, we added ERCC92 (Thermo Fisher Scientific Inc.) spike-in mixes
to the total RNA prior to amplification. We pooled libraries with an equal amount
of cDNA and sequenced single-end for 50 cycles in Illumina Hiseq 2500. We
aligned reads to reference genomes using Bowtie26%. All reads were aligned to
NCBI gene models (A. mellifera genome version 4.5, M. pharaonis genome version
2.0, and D. melanogaster assembly release “6 plus ISO”). We estimated read count
and transcripts per million (TPM) using RSEM7C.

Differential expression analysis. To identify caste-associated differentially
expressed genes (DEGs), we performed differential expression analysis between
queens and workers at each developmental stage and tissue, separately for each
species. We removed lowly expressed genes that did not meet one of two criteria:
(1) counts per million (CPM) greater than one in at least half the samples, or (2)
CPM > 1 in all samples of a given tissue/stage/caste combination (to ensure tissue-
specific genes were retained). We removed 2350 lowly expressed genes in ants,
leaving 10,804 genes for further analysis, and we removed 2036 genes in bees,
leaving 11,775 genes for further analysis. We constructed GLM-like models,
including replicate and caste, and identified genes associated with caste at each
stage or tissue using EdgeR”!. Similarly, to identify behavioral DEGs, we performed
differential expression analyses between nurses and foragers for each tissue. To
identify developmental DEGs in each species, we constructed models with all larval
and egg samples and identified genes differentially expressed between any devel-
opmental stage, controlling for overall caste differences. To estimate gene-wise sex
bias of D. melanogaster orthologs, we downloaded available whole-body RNA-seq
data®4, consisting of one 5-day-old and one 30-day-old fly of each sex, and per-
formed differential expression analysis as above.

Identification of orthologs. To identify orthologs between A. mellifera and M.
pharaonis, we started with a curated orthology map of aculeata species from
OrthoDB972. We downloaded amino acid sequences for each species from
RefSeq’3. We associated transcripts with OrthoDB9 protein names using BLASTp
(E-value 10~19) and identified the aculeata ortholog group matched by each gene
based on the identified BLASTp hits. In this way, we identified 1:1, one-to-many,
and many-to-many orthologous groups between A. mellifera and M. pharaonis. For
direct comparison of the species, we restricted our analysis to 1:1 orthologs (i.e.,
genes for which only one gene from each species matches the given OrthoDB9
ortholog group). We identified three-way 1:1:1 orthologs between A. mellifera, M.
pharaonis, and Drosophila melanogaster using a similar procedure based on
endopterygota orthology groups from OrthoDB9.

Gene co-expression analysis. In contrast to many network methods which assess
gene-gene relationships across all samples, biclustering seeks to identify a group of
genes which are coexpressed (i.e., exhibit concerted expression changes) across a
subset of sample types’4. Given that our data contained a large number of sample
types, we reasoned that we could employ biclustering to identify groups of genes
particularly associated with a given sample type. While our level of biological
replication (N = 3 for each tissue/caste/stage combination) is low, including all
samples in our biclustering analysis allows high resolution of gene-gene co-
expression relationships, and biclustering allows for specificity of gene-sample
relationships. We performed plaid clustering, one of the top performing
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biclustering algorithms in a recent survey’®, using the R package biclust’®. Plaid
clustering models expression level for each gene as a function of bicluster weights,
where only biclusters containing the gene contribute to predicted expression
level””. The algorithm iteratively constructs layers containing samples and genes
and retains layers that improve the model fit, where layers represent biclusters.

Plaid clustering is non-deterministic, and individual biclusters are not found in
every iteration of clustering. To define a reasonable ensemble of biclusters, we
performed clustering 1000 times separately for each species, using inverse
hyperbolic sine transformed TPM (transcripts per million)”8. While a large number
of interesting bicluster definitions are possible, we decided to identify biclusters
that consistently contained all queen-abdomen samples to focus our investigation
on the tissue that exhibited the strongest signature of caste bias. Specifically, we
extracted biclusters containing all three mature queen-abdomen samples and no
more than three other samples total. Honey bee queen-abdomen samples clustered
with egg samples, while pharaoh ant queen samples did not cluster with egg
samples. It is possible that this difference is a result of a difference of age of the eggs
at time of collection: honey bee eggs were 24 h old and likely still contained
maternal RNA, while pharaoh ant eggs were 7 days old.

Because the same genes were not always present in such a bicluster, we
tabulated the number of queen-abdomen biclusters each gene was found in and
retained genes present in a higher proportion of biclusters than a given cutoff,
determined by inspection of frequency distributions of bicluster presence. In
pharaoh ants, we found a large set of genes present in greater than 90% of queen-
abdomen biclusters, and we retained these genes for further analysis (N = 1006
genes; Supplementary Fig. 14a, i.e., the same set of genes was repeatedly found). In
contrast, honey bee queen-abdomen biclusters tended to contain one of two groups
of genes, as the frequency of presence in the bicluster peaks at 60 and 30%
(Supplementary Fig. 14b). Out of 1174 genes present in greater than 60% of the
identified biclusters, 877 were differentially expressed and upregulated in queen
abdomens relative to worker abdomens (also note that this set of genes exhibited
much higher expression in eggs than the latter set). In contrast, out of 1057 genes
present in 25-35% of biclusters, 611 out of were differentially expressed and
upregulated in worker abdomens, compared with 47 upregulated in queen
abdomens. Therefore, it is clear that the more common bicluster represents genes
associated with queen abdomens, so we retained this set of genes for further
analysis (N = 1174 genes).

We proceeded with our analysis using these identified sets of genes, which we
term modules associated with queen abdominal expression. We calculated
connectivity in the module (i.e., intramodule connectivity) as the sum of pairwise
Pearson correlations, where correlation values are raised to the sixth power, the
standard value for unsigned weighted gene co-expression networks’® (note that we
calculated total connectivity, used in Fig. 4, across the entire network using all
samples and all genes). A major goal of gene co-expression analysis is the
identification of hub genes, genes central to networks that are strongly associated to
relevant traits#°. To this end, we conservatively identified hub genes associated with
queen abdominal expression as genes with intramodule connectivity in at least the
90th percentile and abdominal log, fold-change values greater than two
(representing a fourfold increase in expression in queen relative to worker
abdomens).

Phylostratigraphy. We estimated the evolutionary age of each gene using phy-
lostratigraphy. Phylostratigraphy groups genes into hierarchical age categories
based on identifiable orthology (using BLASTp)8%:81. For example, genes found in
ants and honey bees but not in non-aculeate hymenopterans would be labeled
“aculeata” genes, while genes shared between vertebrates and insects would be
labeled “bilateria”. For our purposes, we decided to focus on the difference between
“ancient” genes, which we defined as displaying orthology with non-insect animals,
and a number of hierarchical younger categories: insect, hymenopteran, aculeate,
ant, bee, and novel (where “ant” refers to genes found in M. pharaonis and other
ants but not in any other species, “bee” refers to genes found in A. mellifera and
other bees but not in other species, and “novel” refers to a gene found only in A.
mellifera or M. pharaonis).

A key component of phylostratigraphy is the creation of a BLAST database in
which to identify orthologs®081. Because we largely planned to focus on younger
age categories, we constructed a protein database containing all annotated
hymenopteran genomes (48 total). We added to this group ten non-hymenopteran
insect genomes and ten non-arthropod genomes (see Supplementary Table 12 for a
full list of included genomes). Therefore, a gene labeled as “ancient” displayed a
significant BLASTp hit to one of the ten non-arthropod genomes. While
phylostratigraphy typically employs an extremely large database containing all
available representative taxa, we reasoned that for our study resolution between
categories, such as bilateria and eukaryota was unnecessary. Furthermore, adding
extraneous genomes effectively dilutes the database, such that more similarity is
needed to pass an E-value threshold. Because we included only a sample of non-
hymenopteran genomes, we were therefore able to stringently identify orthologs
(E-value 10719 in comparison with a typical value of 107°)8! and accurately place
them along the hymenopteran phylogeny.

Estimation of tissue specificity. We downloaded available RNA-sequencing data
on 12 tissues in A. mellifera worker nurses and foragers>2. To classify genes by their

tissue specificity, we calculated T, a commonly used metric of expression specifi-
city82. T ranges from 0 to 1, where 0 indicates that genes are ubiquitously expressed
and 1 indicates that genes are exclusively expressed in one tissue.

Estimation of evolutionary rate. We estimated evolutionary rate using dN/dS, the
ratio of non-synonymous to synonymous nucleotide changes. We estimated

pairwise dN/dS between each focal species and a second closely related species with
an available genome (A. mellifera:A. cerana; M. pharaonis:S. invicta). For each 1:1
ortholog pair, we selected the longest transcript associated with the gene for each
pair of species. We aligned orthologous protein sequences using Clustal W83,

derived nucleotide alignments from protein alignments using pal2nal®, and esti-
mated pairwise dN/dS of nucleotide alignments using PAML, package codeml$®.

Partial correlation analysis. We performed partial Spearman correlations
between overall bias and evolutionary/network characteristics, controlling for the
effect of expression.

Gene ontology analysis. We performed Gene Set Enrichment Analysis (GSEA)
using the R package topGO®¢. We utilized the well-curated D. melanogaster gene
ontology database, downloaded from FlyBase*®. We performed GSEA analysis on
genes with 1:1:1 orthologs, associating the D. melanogaster Gene Ontology (GO)
terms to A. mellifera and M. pharaonis orthologs. We identified GO terms asso-
ciated with caste- or behavior biased differentially expressed genes using the P-
value of differential expression between queens and workers or nurses and foragers.
We identified GO terms associated with overall caste or behavior bias using the
Euclidean distance of log, fold change between queens and workers or nurses and
foragers at each stage. We identified enriched terms with P-value < 0.05.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

All data and scripts required to generate figures, tables, and perform statistical analyses
are available on Github: https://github.com/warnerm/devnetwork. Raw reads are
deposited at NCBI SRA, Bioproject PRINA533756. The source data underlying all figures
are provided as a Source Data file.

Code availability
All scripts required to perform all analyses and generate figures and tables are available
on Github: https://github.com/warnerm/devnetwork.
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