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Abstract: The stage and duration of hypertension are connected to the occurrence of Hypertensive
Retinopathy (HR) of eye disease. Currently, a few computerized systems have been developed to
recognize HR by using only two stages. It is difficult to define specialized features to recognize five
grades of HR. In addition, deep features have been used in the past, but the classification accuracy is
not up-to-the-mark. In this research, a new hypertensive retinopathy (HYPER-RETINO) framework
is developed to grade the HR based on five grades. The HYPER-RETINO system is implemented
based on pre-trained HR-related lesions. To develop this HYPER-RETINO system, several steps
are implemented such as a preprocessing, the detection of HR-related lesions by semantic and
instance-based segmentation and a DenseNet architecture to classify the stages of HR. Overall, the
HYPER-RETINO system determined the local regions within input retinal fundus images to recognize
five grades of HR. On average, a 10-fold cross-validation test obtained sensitivity (SE) of 90.5%,
specificity (SP) of 91.5%, accuracy (ACC) of 92.6%, precision (PR) of 91.7%, Matthews correlation
coefficient (MCC) of 61%, F1-score of 92% and area-under-the-curve (AUC) of 0.915 on 1400 HR
images. Thus, the applicability of the HYPER-RETINO method to reliably diagnose stages of HR is
verified by experimental findings.

Keywords: retinal fundus images; diabetic retinopathy; hypertensive retinopathy; deep-neural
network; semantic and instance-based segmentation; transfer learning; perceptual-oriented color
space; DenseNet architecture; loss function

1. Introduction

The most common cause of retinal damage is hypertensive retinopathy (HR). By
2025, 1.56 billion people are projected to suffer from hypertension. Besides that, nearly
66% of people who are affected by hypertension reside in developing or impoverished
countries, where the lack of sufficient healthcare services to identify, manage and handle
hypertension exacerbates the issue [1]. Hypertension triggers nosebleeds, vision loss
and headaches. Moreover, long-term hypertension can cause permanent damage to the
lungs, heart, kidneys and eyes. Among all these consequences, hypertensive retinopathy
(HR) is perhaps the most common cause of cardiovascular disease, which results in death.
As a result, it is recognized as a worldwide community health hazard. The risk of HR
can be reduced if hypertension is identified and treated early. It is difficult to diagnose
hypertensive retinopathy in the early stages due to the lack of advanced imaging technology
and proficient ophthalmologists [2].

Hypertensive retinopathy (HR) is a retinal deformity caused by elevated blood pres-
sure in general. The appearance of arteriolar narrowing [3], arteriovenous nicking, retinal

Sensors 2021, 21, 6936. https://doi.org/10.3390/s21206936 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-0361-1363
https://orcid.org/0000-0002-8542-7112
https://orcid.org/0000-0003-0730-6857
https://doi.org/10.3390/s21206936
https://doi.org/10.3390/s21206936
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21206936
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21206936?type=check_update&version=2


Sensors 2021, 21, 6936 2 of 25

hemorrhage (HE), microaneurysms, Cotton wool spots (CWS), papilledema and, in severe
cases, optic disc and macular edema are other significant symptoms of HR-related eye
disease. Mild hypertensive retinopathy symptoms are general, according to reports, and
are seen in approximately 10% of the non-diabetic adult populace [4]. Recently, numerous
studies have documented that the microscopic fundus images taken by an optical camera
can be used to visualize retinal microvascular disorders. Numerous HR patients are safely
inspected with this fundus camera since it is cheap, easy to perform and shows most
clinical lesion structures in its fundus images [5]. Categorizing HR into different grades
is a difficult task for computerized diagnostic systems, and, to the best of our knowledge,
no research has assessed HR stages (Grade 0, Grade 1, Grade 2, Grade 3 and Grade 4)
corresponding to normal (no sign of abnormalities), mild, moderate, severe and malignant.
Figure 1 gives visual examples of the five different stages of HR.

Figure 1. A visual example of different stages of HR, where figure (a) shows the normal (no sign of
abnormality), (b) mild, (c) moderate, (d) severe and (e) malignant hypertensive retinopathy fundus,
including figure (f), which shows the HR-related lesions. The grades of HR with (a) Grade 0: normal
HR, (b) Grade 1: MID-HR with arteriolar narrowing (white arrow), copper wiring (black star) and
AV nicking (black arrow). (c) Grade 2: MOD-HR with features of MID-HR+ cotton wool spots
hemorrhages. (d) Grade 3: SEV-HR with features of MOD-HR and optic disc swelling, and (e) Grade
4: MLG-HR with features SEV-HR+ Papilledema and (f) normal retinograph.

To classify HR, there are two kinds of computerized systems. One category is associ-
ated with methods focused on complex low image processing. The second kind concerns
deep-learning (DL) models, which are used to automatically extract features along with pre-
processing and image processing algorithms. DL-based approaches achieved significantly
higher accuracy as compared to features derived using complex image processing systems.
However, to prevent over-fitting with a small dataset of HR, certain DL networks must
be fine-tuned. Researchers have introduced a few state-of-the-art automated detection
systems for detecting HR-related diseases based on two stages in the literature. These
systems are briefly listed and compared in Section 2. Although few approaches have been
established for classifying retinal fundus images into two-category-based HR and non-HR,
none of them focused on five categories of HR. To define HR characteristics, it is arduous
to specify and recognize relevant HR lesion properties from fundus images. There are
no datasets available, and we need medical specialists (ophthalmologists) to identify the
HR stages directly from retina fundus images and to train the network. Some DL variant
models are designed to automatically learn characteristics, but at each layer, they utilize
the same-weight scheme. For accurate decisions, it is hard for layers to transfer weights to
deeper network levels. There is a need to develop an automated solution for recognizing
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the five stages of HR, and to the best of our knowledge, no study has addressed the five
severity-level of HR.

Research Highlights

Few approaches are established for classifying retinal fundus images into two-category-
based HR and non-HR, none of them focused on five categories of HR. To define HR
characteristics, it is arduous to specify and recognize relevant HR lesion properties from
fundus images. Therefore, in this paper, we have developed an automatic detection and
classification system (HYPER-RETINO) of five stages for hypertensive retinopathy using
semantic and instance segmentation in DenseNet architecture. The main contributions to
this paper are given as follows.

1. A preprocessing step is integrated to build this HYPER-RETINO system to adjust
light illumination and enhance the contrast in a perceptual-oriented color space.

2. A novel semantic and instance-based segmentation mechanism is introduced to
classify and identify the HR-related lesion’s pixels and regions.

3. This deep-learning network has been trained with a wide set of HR fundus images to
improve the HYPER-RETINO system to ensure the better applicability of this model.

2. Literature Review

To identify retinal irregularities, many automated systems have previously been
proposed. In contrast, there are only a few automated systems to detect HR retinopathy
and even fewer systems to classify the HR retinopathy into severity levels. Recently, several
researchers have used a retinal fundus image processing technique to diagnose the HR
disease automatically. The early identification of HR disease by fundus image processing
saves ophthalmologists a lot of work and time [6–9]. State-of-the-art research in this field
is presented in this section. The state-of-the-art papers are divided into three categories:
anatomical structure-based approaches, traditional machine and deep learning methods.

2.1. Anatomical Structures-Based Techniques

To classify hypertensive retinopathy (HR) from microscopic retinography images,
the literature review suggests the usage of segmentation-based methods [6]. In such
techniques, first, various HR-related characteristics are identified and then used as inputs
for a traditional machine learning classifier to identify the HR retinal fundus among images
of the color fundus.

The handcrafted features used in automated systems to identify retinal anomalies
such as HR different grades and the bifurcation of retinal blood vessels in [7–13] are the
arteries and veins diameter ratio (AVR), optic disc (OD) position, mean fractal dimension
(mean-D), papilledema signs and tortuosity index (TI). For segmentation and low-level
operations, the Gabor 2D or cake wavelet and the canny edge detection scheme are used.
To verify the effectiveness of such systems, INSPIR-AVR, arteriolar-to-venular diameter
ratio database (AVRDB), VARPA images for the computation of the arterio/venular ratio
(VICAVR), structured analysis of the retina (STARE), digital retinal images for vessel
extraction (DRIVE), diabetic retinopathy hypertension age-related macular degeneration
and glaucoma images database (DR-HAGIS) and IOSTAR datasets have been used. In many
studies, preliminary segmentation and refining phases are conducted with a supervised
classifier to classify clusters of hemorrhages. A specific method for identifying HR-related
retinal disorder is used in [14]. Cotton wool spots (CWS) are identified and proved to be a
significant clinical symptom for identifying HR-related retinal diseases. To improve the
suspected areas, it uses the Gabor filter bank followed by the thresholding technique to
convert the image into binary. This method achieves a sensitivity of 82.2% and a PPV of
82.38% using local fundus images. Five forms of retina abnormalities, namely, Diabetic
Retinopathy (DR), Hypertensive Retinopathy (HR), Vitreous Hemorrhage (VH), Venous
Branch Occlusion (VBO), Macular Degeneration (MD) and Normal Retina, are recognized
in the complete system [15]. They use a wavelet-based neural network technique with
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initially handled images to detect all of the retina abnormalities. For the performance
assessment of this method, five datasets are utilized achieving minimum and maximum
accuracies of 50% and 95% according to the quality of the fundus images of those datasets.

In [16–19], the arteriolar-to-venular diameter ratio (AVR) technique is implemented
on chosen tiny groups of color fundus images from massive datasets including diabetes
control and complications trial (DCCT) and early treatment diabetic retinopathy study
(ETDRS). The AVR ratio is determined either by the measurement of vessel diameters
by Gabor wavelet, gradients and operation of morphological edge detection or by the
separation of the OD area and the differentiation between arteries and veins. In [20], a
graphical interface for the semi-automated detection and measurement of retinal vessels to
classify HR-related retinal disorders has been created. To aid vascular risk in individuals
with HR, this graphical user interface (GUI) framework can be used to quantify vessel
widths at any region of interest (ROI). Digital retinal images for vessel extraction (DRIVE)
and structured analysis of the retina (STARE) datasets are employed for the performance
evaluation of the system achieving comparable results. A clustering technique along
with AVR is utilized in [21] for vessels segmentation and classification. In [22], gray-level
and moment features are derived to identify pixels contributing to the blood vessel, and
intensity variance and color details are used to distinguish vessels into arteries or veins.
By estimating vessel diameter on 101 images obtained from the VARPA images for the
computation of the arterio/venular ratio (VICAVR) dataset, various stages of HR-related
retinal deficiencies are categorized. From the VICAVR dataset, 76 images are used as HR
candidates, while 25 images are identified as normal candidates. To separate blood vessels
in the retina, the Hough and Radon transformations have been utilized in [23]. Next, the
authors measure the TI and the vessel’s width. With the aid of these measurements, the
AVR is computed and used for identifying HR in microscopic retinography images. The
researchers in [24] employ independent component analysis (ICA) on wavelet sub-bands to
discover the various abnormalities that exist in the fundus of the retina, such as optic discs,
blood vessels, hemorrhage clusters, macula and exudates. Fifty retinal fundus images are
employed for assessing the performance of this approach with a noticeable accuracy. In [25],
the authors calculate the invariant moments along with Gabor wavelets from DRIVE retinal
fundus images. Then, they use them as inputs to the neural network (NN) to categorize
blood vessels into arteries and veins. Their results show superior classification accuracy.
An automated multi-stages method is built-in [26] to locate the OD area, segment vessels,
detect color characteristics, estimate the AVR ratio, distinguish vessels into veins or arteries,
compute the average red intensity and then differentiate the candidate retinal fundus
images into HR or normal. An area under the receiver operating curve (AUC), specificity
(SP), and sensitivity (SE) are used as performance metrics. These metrics are computed
for up to 74 images by showing AUC of 0.84, SE of 90% and SP of 67%. In [27], a software
package called quantitative analysis of retinal vessel topology and size (QUARTZ) has
been developed to segment vessels, measure their thickness and tortuosity index, identify
OD location and finally categorize vessels into arteries or veins. The DRIVE dataset is used
for assessing its performance and it achieves an accuracy of 84%.

2.2. Traditional-Machine and Deep-Learning Based Techniques

Few HR systems have also been developed in the past to classify two stages by using
traditional-machine and deep-learning-based techniques. Those HR systems are briefly
described in the subsequent paragraphs.

HR is identified in [28] by feature extraction from initially processed color retina
fundus images. The first initial fundus image processing step is to transform them using
contrast limited adaptive histogram equalization (CLAHE) to the green channel, which
clarifies the vessels’ view. Next, the optic disc (OD) is separated using morphological
closing. Then, by applying subtraction, the fundus background is removed, and features
are identified by employing zoning. Lastly, the extracted features are used to train a feed-
forward artificial neural network classifier. The classifier results in an accuracy of 95%.
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In [29], the authors used an extreme learning machine (ELM) classifier for segmenting
retinal fundus vessels. It is trained with the aid of 39 features. A segmentation accuracy
of 96.07%, specificity of 98.68% and sensitivity of 71.4% are achieved using the DRIVE
dataset. Recently, deep learning (DL) approaches have been frequently utilized for retinal
fundus images classification. The DL methodology is characterized by minimal input image
pre-processing requirements. Numerous image processing stages, such as the extraction
of low-level features and segmentation, are implied in the DL architecture. The authors
of [30] introduce an early trial for the recognition of HR using a convolutional neural
network (CNN) as a DL model. The CNN is fed with a stream of (32 × 32) bunches of
the grey level transformed version of the original retina fundus images. Their approach
identifies the input fundus images into either HR or normal with an identification accuracy
of 98.6%. Another recent hypertensive retinopathy (Dense-Hyper) identification approach
is implemented in [31]. Their approach employs a trained features layer and a dense feature
transform layer into the deep residual learning architecture. It is used to categorize two
classes of HR. Therefore, it is limited in its ability to apply for assistance to ophthalmologists
for recognition of five stages of HR.

Many researchers employ the DL architectures in mid-level tasks, such as retina vessels
segmentation or optic disk separation, that are necessary for high-level tasks such as the
classifications of DR or HR. A DL architecture [32] composed of a deep neural network
(DNN), and a random Boltzmann machine (RBM) is used for quantifying any alteration in
retinal blood arteries vessels using AVR ratio and OD region determination. They achieve a
good detection accuracy. In [33], the authors present an approach to locate the fovea center
relative to the OD position using 7-layer CNN architecture. Their system output consists
of a four nodes layer that signifies the fovea center, OD, retina blood vessel and retina
background. The system uses the DRIVE dataset for performance assessment and results
in a classification accuracy of 92.68%. Other trials [34–36] use CNN for the segmentation of
retinal veins and arteries. Those trials employ a low-quality dataset of 100 fundus images
and the DRIVE datasets for performance evaluation, and they achieve accuracies of 88.89%
and 93.5%, respectively. An automated CNN-based approach for the detection of exudates
in the microscopic retinal fundus images is presented in [37]. Throughout the CNN training
process, the features are comprehensively extracted. The CNN inputs are odd-size bunches
where the pixel in the middle of the bunch is the one under processing. Convolution layers
are used to identify the likelihood of exudation or not exudation of each pixel. Since no
exudates appear around the optic disk, the OD area is removed. In addition to the input
and output layers, the CNN model consists of four convolving and pooling layers. The
system is tested using the diabetic retinopathy image dataset (DRiDB) dataset and shows a
77% F-Score.

Recently, the authors in [38] developed the Arsalan-HR system to detect vessels
from retinograph images using a dual-residual-stream-based method. The authors used
semantic segmentation to recognize HR and non-HR stages of hypertensive retinopathy
in a deep-learning architecture with few parameters. The authors tested the Arsalan-HR
system on three publicly available datasets such as DRIVE, the child heart health study in
England (CHASE-DB1) and STARE on limited datasets without considering the multistage
of HR. In addition, they did not consider the pre-processing step to enhance the contrast
of vessels. However, many HR-related lesions are important to detect for the recognition
of the stage of HR. Similarly, in [39], the authors developed a Kriplani-AVR system to
recognize two stages of HR based on the AVR ratio of blood vessels. The Kriplani-AVR
system was tested on the DRIVE dataset. In that study, the authors aggregated the residual
neural network with CNN and achieved 94% detection accuracy. More recently, in [40], the
authors developed a Tang-Semantic system based on semantic segmentation by a CNN
architecture for the detection and localization of diabetic retinopathy (DR)-related lesions.
The Tang-Semantic approach is useful to detect DR, but it cannot be applied to detect HR
due to the AVR ratio. The authors detected only DR-related lesions without an AVR ratio.
As a result, it is limited in its capacity to detect all stages of HR.
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3. Materials and Methods

The major three stages are integrated (as shown in Figure 2) to develop this HYPER-
RETINO grading system for hypertensive retinopathy (HR). These are preprocessing steps
to enhance the HR-related lesions, the detection of lesions by semantic and instance-based
segmentation and grading through a dense feature transform layer by the four dense
blocks. Finally, a classification decision is performed based on the SoftMax layer to predict
five stages of HR. Overall, the HYPER-RETINO system is used to determine the local
regions within input retinal fundus images to recognize various stages of HR. This section
demonstrates the proposed framework for recognizing and classifying of five-stage of HR.

Figure 2. A systematic flow diagram of the HYPER-RETINO system for the diagnosis of five-stage of HR- eye related
disease classification.

3.1. Acquistions of Datasets

A recognition system of grading for hypertensive retinopathy (HYPER-RETINO) is
evaluated in terms of performance and compared with state-of-the-art HR systems in terms
of five stages of hypertensive retinopathy by collecting different retinograph image datasets.
It is pertinent to mention that there is no study available that uses an online dataset for the
recognition of multi-stage HR. As a result, we requested two experienced ophthalmologists
to create a gold standard for the identification of five stages of HR using private and
public data sources. In total, 1400 images are collected from one private (PRV-HR) and
six online data sources (DR-HAGIS [12], DRIVE [41], DiaRetDB0&1 [42], DR1&DR2 [43],
Kaggle-DR [44] and APTOS-DR [45]), as described. In this five stage dataset, the division
of each class is as follows: normal of 400 images, mild-HR of 200, moderate-HR of 200,
severe-HR of 200 and malignant-HR of 400 retinograph images. These retinograph images
are of various sizes. Therefore, to make standard size, we have resized all retinograph
images to (700× 600) pixels in JPEG format. A visual example of this dataset is displayed in
Figure 1. If the data augmentation technique is applied, then we can be able to increase the
size of the acquired dataset. However, we applied the data augmentation technique offline
in this paper to increase the size of the dataset. In the data augmentation step, the flipping
(horizontally + vertically) and rotation from 90 degrees to 180 degrees without scaling are
applied. This increases the number of training images from 1400 to 2800. The retinograph
images in these datasets have different light illumination and unclear HR-related lesions.
Therefore, we have performed a pre-processing step developed in this paper to enhance
the HR-related lesions with light and contrast adjustment in a perceptual-oriented color
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space. After the pre-processing step, the HR-related lesions are identified by two expert
ophthalmologists for providing us with ground truth. To generate a ground truth mask,
we used a free online annotation tool. These ground truth masks help to compare the
performance of proposed semantic and instance-based segmentation techniques. In this
paper, the size of the mask is fixed by resizing the ground truth of retinograph images
to (700 × 600) pixels. To pretrain the DenseNet network, these HR-related regions are
extracted from each retinograph image.

3.2. Proposed Methodology

To develop this HYPER-RETINO system, we have developed several steps, which are
explained in the subsequent subsections. It was noticed that the retinograph images in
these datasets had different light illumination and unclear HR-related lesions. Therefore,
we have performed a preprocessing step developed in this paper to enhance the HR-related
lesions with light and contrast adjustment in a perceptual-oriented color space. After
the pre-processing step, the HR-related lesions are detected from each image through a
combination of semantic and instance segmentation techniques, and then these HR-related
regions are classified by a pretrain DenseNet architecture. Those steps are explained in the
subsequent subsections and visually represented in Figure 2.

3.2.1. Preprocessing in Perceptual-Oriented Color Space

The purpose of the preprocessing phase is to reduce the impact of lighting differences
between images, such as the brightness and angle of incidence of the fundus camera.
This preprocessing is carried on in two steps such as color space transformation, the
correction of the lightening and the enhancement of the contrast. By converting retinal-
colored fundus images into gray-scale images, much useful information has vanished. As
a result, the classification of spatial information presented on pixels is lost. Therefore, it
is important to represent retinograph images in a perceptual-oriented color space, which
considers the viewing conditions. In this paper, we have selected the CIECAM02 color
appearance model [46] because it is more advanced compared to other color spaces. In
practice, the CIECAM02 provided the most advanced features, including six dimensions
of color appearance: brightness (Q), lightness (J), colorfulness (M), chroma (C), saturation
(s) and hue (h). This color appearance model is unable to construct a true-color space,
so the original input is transformed to CIECAM02 space with lightness, chroma and
hue correlates (J, C, h). Hence, the JCh color planes are utilized to enhance the image.
Compared to other color spaces such as HSV, CIELUV or CIELab, the JCh color space is
not completely uniform, but it provided most of the uniformity to account for all of the
perceptual phenomena. To improve the uniformity, it has advanced metrics very similar to
CIEDE2000 in CIELab.

Accordingly, the JCh uniform color space is the color system adopted by the proposed
method because of its better uniformity and adaptation to human perception. Thus, the
luminance improvement (J-plane) process must be carried on correctly to confirm that
the improved images retain the correct color information. This can be accomplished by
obtaining a luminance gain matrix LG (α, β) on a J-color plane image as follows:

G(α, β) =
r′(α, β)

r(α, β)
=

g′(α, β)

g(α, β)
=

b′(α, β)

b(α, β)
(1)

where r′, g′ and b′(α, β) are the values of the RGB components of a pixel in the improved
fundus image at (α,β) coordinates, while r, g and b(α,β) are the RGB values of original fun-
dus image at (α,β) coordinates. The luminance matrix is defined as shown in Equation (2)
for the color invariant improvement of an RGB image.

LG(α, β) =
∂′(α, β)

∂(α, β)
=

∂′(α, β)√
∑c∈{r,g,b} c2(α, β)

(2)
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where, the ∂(α, β) function is the luminance intensity of a pixel at (α, β) coordinates and
∂′(α, β) is the luminosity enhanced image. At this point, the Adaptive Gamma Correction
(AGC) technique is used to boost the brightness of a given image. The cumulative distribu-
tion function of the normalized histogram of the input fundus image is used to calculate the
weight for the gamma correction method in this method. The brightness boost leads to a
partial contrast improvement. However, in cases of low-contrast fundus images, a contrast
enrichment technique is required to improve the image. Ben Graham’s method [47] is
utilized then to finally improve the contrast of the retinograph images. Afterward, the J*
plane of Jch color is combined, and then inverse transform is applied to reconstruct and
visualize the enhanced image, as shown in Figure 3. This figure shows the results of the
color contrast enhancement process. The results show a significant enhancement for the in-
put fundus images, the first row in Figure 3, compared to the enhanced fundus images, the
last row in Figure 3. This figure shows the visual example of light adjustment and contrast
enhancement in JCh perceptual-oriented color space to enhance the retinograph images.

Figure 3. A visual example of the proposed light adjustment and contrast enhancement in the
CIECAM02 (JCh) perceptual-oriented color space of malignant hypertensive retinopathy.

3.2.2. Lesions Detection by Semantic and Instance Based Segmentation

Image segmentation is a critical and challenging aspect of image processing. Image
segmentation divides an image into several regions with similar properties. Simply de-
scribed, it is the process of separating a target from its surroundings in an image. Image
segmentation algorithms are now progressing in a faster and more accurate direction. It
is a very complicated task to segment HR-lesions from the retinograph image through
simple image segmentation techniques. As a result, we have used the latest semantic- and
instance-based segmentation techniques to detect HR-related lesions. These techniques are
described in the upcoming sub-sections.

Semantic image segmentation, also known as pixel-level classification, is the task of
grouping together image parts that belong to the same object class. Image segmentation
is like pixel-level prediction in that it categorizes each pixel. For example, a glaucoma
image has many regions with different colors, which are segmented pixel-wise. Recently,
several deep learning studies [48] focus on semantic segmentation to do pixel-level clas-
sification. Convolution neural networks (CNN) also have excellent feature extraction
capabilities; they do not need the manual extraction of image features or unnecessary
image preprocessing. Currently, CNN has been used in medical image segmentation.
Fully convolution layers neural network-based semantic segmentation is considered more
successful in medial image segmentation tasks in recent times due to the advancement
of deep learning technology. Semantic segmentation necessitates the extraction of dense
features via a network with deep layers. However, the network with too many layers
suffers from a vanishing gradient [49]. In our work, we use a shallow CNN model that
consists only of convolution layers for feature extraction to alleviate this problem. The
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model we use is not computationally complex, and it works well on a limited dataset. The
architecture of our proposed deep model includes three convolutional layers with a kernel
size of (3 × 3) to get the feature map and a sigmoid function, as shown in Figure 4a. The
proposed work uses images and masks (labeled images), as shown in Figure 4b,c. These
images and their respective masks are used to train our model. The size of the mask used
is the same as the input size of a retinograph image. These mask images are used as input
into the deep learning model to extract features from the image mask and generate an
output feature map. Afterward, a random forest (RF) machine learning classifier takes the
output feature map from the deep learning model as an input to classify the pixels and
obtain each pixel’s information. In general, classification tasks in the CNN model, such
as VGG and ResNet fully connected layer, are used at the network’s end. The probability
information about categories is obtained using the SoftMax layer. However, the category
probability information is one-dimensional, and only the category of the entire image can
be identified, not the variety of each pixel of an image. Therefore, a fully connected method
is suitable for the image segmentation task [50].

Instance segmentation can be defined as the combination of object detection and
semantic segmentation schemes. Following the object detection strategy, the instance
segmentation achieves distinct class instances present in an image [51]. This shows the
difference between instance segmentation compared to semantic segmentation. Several
studies report instance segmentation. In our work, first, we generate the output mask
using the U-Net model and then we apply a few image processing operators on processed
images to get instance segmentation. The U-Net solves problems associated with general
CNN networks used for medical image segmentation because it has a perfectly symmetric
structure and skips connection. Medical images, unlike standard image segmentation,
frequently contain noise and have blurred borders. Consequently, objects in medical
imaging are too complicated to identify or distinguish, merely relying on low-level visual
features. Meanwhile, it is also impossible to derive correct boundaries based on image
semantic traits due to a lack of image detail information. On the other hand, the U-Net
efficiently fuses low-level and high-level image characteristics by mixing low-resolution
and high-resolution feature maps via skip connections, making it ideal for medical im-
age segmentation tasks. The U-Net has become the industry standard for most medical
image segmentation tasks, inspiring many significant advancements. The simple U-net
architecture shown in Figure 4d is used to predict test images. This U-net model is famous
end-to-end architecture composed of an encoder and decoder. The encoder part of the
model is used to extract features from the input image of size (256× 256). Also, the decoder
portion is restored to the extracted feature to output the final segmented result having the
same input size.

Instance segmentation can be defined as the combination of object detection and
semantic segmentation schemes. Following the object detection strategy, the instance
segmentation achieves the distinct class instances present in an image [51]. This shows
the difference between instance segmentation and semantic segmentation. Several studies
report instance segmentation. In our work, firstly, we generate the output mask using U-
Net model, and then we apply a few image processing operators on processed images to get
instance segmentation. The U-Net solves problems associated with general CNN networks
used for medical image segmentation because it has a perfectly symmetric structure and
skips connection. Medical images, unlike standard image segmentation, frequently contain
noise and have blurred borders. Consequently, objects in medical imaging are complicated
to identify or distinguish, merely relying on low-level visual features.
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Figure 4. A visual example of HR-related lesions segmentation steps. Where figure (a) shows the shallow CNN architecture
with the Random Forest (RF) classifier used for sematic-based segmentation, figure (b) represents the malignant-HR image,
figure (c) shows the corresponding mask, figure (d) shows the design architecture used for semantic-based segmentation
through the U-Net model to refine detection results and, finally, figure (e) indicates the image processing steps to get the
final regions of HR-related lesions.

Meanwhile, it is also impossible to derive correct boundaries based on image se-
mantic traits due to a lack of image detail information. On the other hand, the U-Net
efficiently fuses low-level and high-level image characteristics by mixing low-resolution
and high-resolution feature maps via skip connections, making it ideal for medical im-
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age segmentation tasks. The U-Net has become the industry standard for most medical
image segmentation tasks, inspiring many significant advancements. The simple U-net
architecture shown in Figure 4d is used to predict test images. This U-net model is famous
end-to-end architecture composed of an encoder and decoder. The encoder part of the
model is used to extract features from the input image of size (256 × 256). The decoder
portion is restored to the extracted feature to output the final segmented result, having the
same input size.

After generating the mask image using the U-net architecture, we have applied some
image processing techniques (as shown in Figure 4e) to get the instance segmented image.
First, we threshold the processed image using the Otsu algorithm. Then, we have used a
morphological opening operation to remove noise from the image. Afterward, we apply
the dilate function and distance transform function to determine the sure background
and foreground based on the threshold value of 0.2. Then, we use the subtract operator
to determine the unknown pixel in the processed image. Next, we define the markers
to understand the connecting and not connecting pixel in our image. With the help of
markers, the unknown pixel is also changed to a background pixel. Finally, the watershed
algorithm is applied to segment each instance of an image. The image processing steps are
then applied to enhance the detected boundaries. Finally in this paper, we have detected
several distinguished features to classify five severity-levels of HR. In total, these distinct
HR-related features are detected based on repeated experiments, and these features are
statistically significant in the classification task.

3.2.3. DenseNet Architecture for Classification

DenseNet169 is chosen as one of the best models in terms of accuracy and F1-score.
Transfer learning is an efficient way [52,53] to achieve accurate results in classification
problems using a small dataset. Those transfer learning (TL) algorithms are successfully
applied to recognize the severity level of diabetic retinopathy (DR). Accordingly, we
have been inspired by the past results based on the DenseNet169 model as a pretrain TL
architecture to recognize five stages of HR. Hyper-tuning deep transfer learning models
(DTL) can also boost performance. A DTL model based on DenseNet169 is proposed in this
paper. A visual architecture of DenseNet is displayed in Figure 5. The proposed models
used their learned weights on the ImageNet dataset, as well as a convolutional network’s
structure, to extract features. Direct connections from all preceding layers to all subsequent
layers are added to boost communication in the DenseNet169 model.

Figure 5. A visual architecture of proposed HYPER-RETINO transfer learning developed to predict
five stages of diabetic HR when the diagnosis is through retinograph images, where TL shows the
transition layer and DB represents the dense block.
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The feature concatenation can be mathematically explained as:

Xl = Hl ([x0, x1, x2, . . . , xl−1]) (3)

Here, x0, x1, x2, . . . , xl−1 is a concatenation of a features map generated by a non-
linear transformation Hl, which can be described as a composite function consisting of
batch normalization (BN), supplemented by a rectified linear unit function (ReLU) and
a convolution unit of (3 × 3). Dense blocks are formed in the network architecture for
downsampling purposes, and they are separated by layers called transition layers, which
consist of BN, a (1 × 1) convolution layer and, finally, a (2 × 2) average pooling layer.
Because of its architecture, which considers feature maps as a global state of the network,
DenseNet169 performs well even with a slower growth rate. As a result, each subsequent
layer has access to all of the feature maps from the previous layers. Each layer adds k
feature maps to the global state, with the total number of input feature maps at the first
layer specified as:

fmaps(kl) = k N(l − 1) + k0 (4)

where k0 denotes the channels in the input layer. A bottleneck layer that is a (1 × 1)
convolutional layer is added before each (3× 3) convolution layer to increase computational
efficiency by reducing the number of input feature maps, which are usually more than the
output feature maps k. The bottleneck layer generates 4k feature maps. For classification,
two dense layers with 128 and 64 neurons, respectively, are added. If the dimensions
of function maps vary, DenseNet is divided into DenseBlocks, each with its own set of
filters but the same dimensions. The transition layer uses downsampling to perform batch
normalization; this is a crucial step in CNN.

Even though each DenseNet layer only produces k output feature maps, it usually
has a lot more inputs. To reduce the number of inputs and thus boost the computational
performance, a bottleneck (1 × 1) convolution can be added as a transition layer before
each (3 × 3) convolution. A fundamental issue in DenseNet is the variance of the sizes of
the feature maps. Consequently, it is impossible to group them and there is no difference
if the grouping is concatenation or an addition. Therefore, DenseNets are divided into
DenseBlocks, with the feature map dimensions remaining constant within each block but
with the number of filters changing between them. From a conceptual perspective, the
network is a series of parallel and serial calculations that map an input to an output. In this
section, the way the proposed architecture imparts knowledge and learn is explained. This
supervised learning allows the network to alter the way the steps are computed, allowing
the output to be changed. Remembering that the general structure of supervised learning is
achieved in the training phase through the training data such as understanding the output
relative to each input allows you to determine the error about the network output.

A Denseblock deep-learning architecture is performed on various parts of the fundus
image during each decoding step, and the HR-related features are determined by the
previous hidden state and Denseblocks features. In the transition layer, the activation
function creates convolution features that have pre-trained features, denoted as (X) with
dimensions (16 × 16 × 1024). The DenseNet input consists of the current image plus
the multiplication elementwise of X with a deterministic and soft visual-spatial feature
outputting the subsequent DenseNet map each time. The DenseNet uses a piloted layer
to combine the most salient portions of the network states. By using filters, the DenseNet
architecture layers are very narrow, and the problem of gradient vanishes. To solve this
issue, the DenseNet used each layer to have direct access to the gradients from the loss
function and to the original input image. Therefore, we used the multiclass loss function in
this paper.

The Kullback Leibler divergence loss (KLD-L) function in this paper before the SoftMax
layer is used to backpropagate the DenseNet architecture. This KLD-L achieved better
performance when compared to the categorical crossentropy loss function. Therefore, the
KLD-L function provides how much information is lost as compared to other loss functions.
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In practice, the KLD-L measures how one probability distribution differs from a baseline
distribution. Loss zero means that all distributions of features or data are identical. In a
multi-class classification problem, this divergence loss function is a more common and
preferable utilized function in the past, which is the same as the multi-class entropy function.
This KLD-L function provided the loss at this epoch, which is obtained by calculating the
cross-entropy loss. The network’s parameter is optimized by a backpropagation algorithm
to minimize the loss of network output.

Figure 6a represents the DenseNet model loss vs. epochs plot. Finally, the SoftMax
function is calculated by Equation (5). Let H = (h1, h2, h3 . . . hT) be the dh×T matrix of all
the hidden states. The prediction mechanism (Y) outputs a (r × T) matrix of weights W,
computed as follows:

Y = So f tMax (tan h (W·H)) (5)

Figure 6. Training and validation dataset used to calculate the loss and accuracy of the final DenseNet model. The model
received the retinograph as an input and is trained until there is convergence on the augmented dataset. (a) Model loss;
(b) model accuracy.

4. Experimental Results

Experiments results are achieved on a statistical analysis of 1400 fundus images,
including stage normal (NR) of 400, mild (MLD-HR) of 200, moderate (MOD-HR) of 200,
severe (SEV-HR) of 200 and malignant (MLG-HR) of 400 by using sensitivity (SE), specificity
(SP), accuracy (ACC) and region under the receiver operating curve (AUC) metrics. The
set of 1400 hypertensive retinopathy images are obtained from six different online sources
and one private medical hospital. By using data augmentation, we have doubled these
1400 HR images to 2800 HR images for better training and testing of the network model.
In this paper, the five-stage based hypertensive retinopathy (HYPER-RETINO) system is
developed to identify the severity level of hypertension. For better results and comparisons,
all retinograph images are resized to (700 × 600) pixels. A computer Lenovo X1 carbon
with 8 cores, 16GB RAM and 2GB Gigabyte NIVIDA GPU is used to develop the HYPER-
RETINO program in Python. In our experimental tests, the losses for training, validation
and accuracy over the validation set are measured. The parameter setting values used in
the DenseNet architecture consist of (Optimizer: Adam, Learning Rate: 0.001, dropout
rate: 0.2, Loss Function: Kullback Leibler divergence loss, Batch size: 10, Epochs: 80) to
train the network. Figure 5 displays the loss and accuracy of the training and validation
datasets when divided 50% and 50%, respectively, over the epochs. In addition, we
have performed state-of-the-art comparisons with four recent HR systems. DL-based
HR models are utilized, such as DenseHyper [31], Arsalan-HR [38], Kriplani-AVR [39]
and Tag-Semantic [40] because of the ease of their implementation. Mostly, they were
developed to detect lesions from retinograph images for diabetic retinopathy (DR) or HR
stage classification.
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Experimental results are analytically measured in terms of statistical metrics. The
HYPER-RETINO system is evaluated and compared with other state-of-the-art hyperten-
sive systems in terms of sensitivity (SE), specificity (SP), F1-score, Matthews correlation
coefficient (MCC) and accuracy measures. In addition, to access the performance of the
HYPER-RETINO system on five stages of hypertension, the comparisons are also per-
formed by using different features, machine-learning and deep-learning (DL) models. An
area under the receiver operating curve (AUC) is also plotted to show the performance.
From Equation (6) to Equation (11), the sensitivity (SE), specificity (SP), F1-score, Matthews
correlation coefficient (MCC) and accuracy are calculated.

Senstivity (SE) = True Positive Rate (TPR) =
TP

TP + FN
(6)

Speci f icity (SP) = 1− False Positive Rate (FPR) =
FP

FP + TN
(7)

F1− score =
2TP

2TP + FP + FN
(8)

Precision =
TP

TP + FP
(9)

Matthews correlation coe f f icient (MCC) =
TP× TN − FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(10)

Accuracy =
TP + TN

TP + FP + TN + FN
(11)

The sensitivity (SE) statistical metric is also known as the true positive performance
(TPR) measure, and it is calculated by Equation (6). The specificity (SP) is measured
by the (1-FPR) metric and calculated by Equation (7). Whereas the precision metric in
Equation (9) is used to find out the number of True Positive predictions. In Equation (9),
the recall metric is measured to calculate the number of positive predictions divided by
the number of positive class values. In Equations (8) and (10), the Matthews correlation
coefficient (MCC) and F1 Score both convey the balance between the SE and SP. In all of
these Equations (6)–(11), the true positive (TP) parameter decides the classifier recognized
as a true positive case. False Positive is defined as when the actual class mark is negative
(N) (FP). On the other hand, a true negative (TN) is counted if and only if both the predicted
and actual class labels were N. When the classifier judgment is N but the actual mark is
P, the false negative (FN) is counted. The value of the features set extracted is studied in
this section, with the aim of demonstrating the relative contributions of different features
to saliency analysis and HR-related lesion detection from retinograph images. A 10-fold
cross-validation test is also used to compare the AUC to other state-of-the-art deep-learning
architectures. In general, the AUC curve and confusion matrix were mostly used to access
the index to assess the networks’ overall classification accuracy. The AUC value was found
to range from 0.5 to 1.0. The system with the highest AUC outperforms the others. The
HYPER-RETINO system’s efficiency has been statistically evaluated.

Firstly, an experiment is conducted to check the performance of the pre-processing step
to enhance the contrast in a perceptual-oriented color space. The pre-processing method
is implemented with the HYPER-RETINO system to obtain the higher classification and
detection result of the fundus image. The preprocessing methods are obtained before
inputting the retinograph images into the HYPER-RETINO to assess the precision and
robustness of the HYPER-RETINO procedure. In fact, the pre-processing step results
in the reduced overall complexity of the network model. The pre-processing methods
of the retinograph images are composed of color space transform, light adjustment and
enhanced contrast. After the pre-processing of the retinograph images, the distinct feature
set is obtained by semantic and instance-based segmentation techniques. The detection of
HR-related features is visually displayed in Figure 7. This figure clearly displays that the
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HR-related features are accurately detected. Without using pre-processing step and color
space transform, the detection accuracy of the five stages of hypertensive retinopathy is
significantly decreased as shown in Figure 8b,c.

Figure 7. A visual example of the proposed semantic and instance segmentation of HR lesions where
there is (a) no sign of abnormality, (b) mild HR, (c) moderate HR, (d) severe HR and (e) malignant HR.

The second experiment is performed after the image preprocessing to check the
performance of the utilized U-Net model with a watershed transformation approach for
the accurate pixel and HR lesion classification. It is concluded from this experiment that
the proposed segmentation art results for both semantic and instance-based techniques
are like the human expert ground truth masks using a small number of samples. Thus, the
proposed semantic and instance segmentation framework is the best possible strategy for
the retinal ophthalmologists to be implemented in the real-time clinical environment to
identify and classify the HR lesions within the image.
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Figure 8. Experimental results obtained with pre-processing and without pre-processing of the proposed model to predict
and detect five stages of hypertensive retinopathy, where (a) shows the five stages of the severity level detection result,
(b) presents the accuracy of the detected HR-related lesions related to each image with preprocessing and (c) without
preprocessing on 2800 retinograph images by data augmentation.

The third experiment is conducted to check the performance of the HYPER-RETINO
system based on a 10-fold cross-validation test. These results are depicted in Table 1 based
on five stages of hypertensive retinopathy (HR). In Table 1, a total of 1400 images are
utilized and measured in the five stages. On average, the SE of 90.5%, SP of 91.5%, ACC
of 92.6%, PR of 91.7%, MCC of 61%, F1 of 92%, AUC of 0.92 and E of 0.60 are achieved. It
shows that the proposed HYPER-RETINO system is outperformed to recognize five stages
of HR such as MILD-HR, MODERATE-HR, Severe-HR, Malignant-HR and Normal (no
sign of severity).
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Table 1. Results of the HYPER-RETINO system on 1400 retinograph images for five stages of HR.

No. Data Set SE% SP% ACC% PR% MCC% F1% AUC E

1 Mild 90.4 91 91 90.4 60 88 0.89 0.56

2 Moderate 88.2 88.5 87.5 88.2 58 89 0.92 0.60

3 Severe 87 89.4 89.5 89.5 61 91 0.93 0.62

4 Malignant 89.7 90.8 95 89.7 65 93 0.90 0.57

5 Normal 94 93 91 94 60 95 0.91 0.58

Average 90.5 91.5 92.6 91.7 61 92 0.92 0.60

MCC: Matthews correlation coefficient, SE: Sensitivity, SP: Specificity, F1: F1 score, ACC: Accuracy, E: Training errors and AUC: Area under
the receiver operating curve.

Fourth, the experiment is conducted to check the performance of the HYPER-RETINO
system on the size of the retinograph image. During classification, though, it is difficult
to enter the original retinograph image into the proposed HYPER-RETINO system, since
the pixel size of the original retinograph image acquired in the dataset is of variable sizes.
As a result, the image of this dataset is resized and cropped to (700 × 600) resolution. The
effect of pixel sizes is mentioned in Table 2 based on the proposed HYPER-RETINO system
on five stages of HR eye-related diseases. In practice, this table illustrates that the effect
of pixel size decreases the accuracy of the system and increases computational efficiency.
Compared to other sizes of the retinograph images, the size is fixed to (700 × 600) as a
standard, because the network architecture of the HYPER-RETINO system has the highest
accuracy in classifying the five stages of hypertension.

Table 2. Results obtained by varying the image input size and masks of the HYPER-RETINO system on 1400 retinal images.

No. Data set SE% SP% ACC% PR% MCC% F1% AUC E

1 600 × 700 93 90.5 91.5 92.6 60 90 0.92 0.60

2 512 × 512 92.5 89 88.5 89.2 59 87 0.89 0.65

3 500 × 500 91 88 87.5 86.4 58 84 0.83 0.75

4 450 × 450 89 86 86.5 85.2 56 82 0.82 0.80

5 400 × 400 85 83 83.5 80.6 54 79 0.78 0.90

6 380 × 380 75 71.5 72.5 73.6 51 71 0.70 0.905

MCC: Matthews correlation coefficient, SE: Sensitivity, SP: Specificity, F1: F1 score, ACC: Accuracy, E: Training errors and AUC: Area under
the receiver operating curve.

The fifth experiment is performed to check the performance of utilized pooling layers
in the deep learning architecture based on different sizes based on average and maximum
pooling layers. An average pooling technique is used to reduce the error caused by the
increase in the variance of the estimated value in the limited size of the neighborhood,
whereas the maximum pooling technique is used to select maximum features in the neigh-
borhood. Therefore, Table 3 is derived based on average and maximum pooling techniques.
To perform these comparisons, the HYPER-RETINO architecture is used to recognize five
stages of the hypertension in terms of 6-pooling, 7-pooling, 8-pooling, 9-pooling and 10-
pooling average and maximum layers. Compared to the average pooling technique, the
maximum pooling is provided to get high performance (SE of 91.5%, SP of 89.5%, ACC
of 90%, PR of 89.3%, MCC of 62%, F1 of 88%, AUC of 0.89 and E of 0.64). Significantly,
the increase in the pooling layer provides lower performance. As a result, the six-pooling
layers with the maximum strategy are used to implement the HYPER-RETINO system.
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Table 3. Results achieved by varying input pooling size of the HYPER-RETINO system.

No. Architecture SE% SP% ACC% PR% MCC% F1% AUC E

1 6-P-ND-M 91.5 89.5 90 89.3 61 88 0.89 0.64

2 6-P-D-A 89.2 88.1 88 89.2 58 87 0.88 0.67

3 7-P-ND-M 87.3 86.5 86 87.3 57 86 0.87 0.69

4 7-P-D-A 86.4 85.2 85.4 86.4 55 85 0.86 0.72

5 8-P-ND-M 84.1 83.5 83.1 84.1 54 84 0.84 0.74

6 8-P-D-A 80.6 79.1 79.3 80.6 53 81 0.80 0.76

7 9-P-ND-M 78.7 76.5 77.5 78.7 51 79 0.78 0.78

8 9-P-D-A 75.5 74.6 74.4 75.5 48 75 0.75 0.80

9 10-P-ND-M 73.3 72.5 72.1 73.3 46 72 0.73 0.83

10 10-P-D-A 72.2 71.1 71.6 72.2 45 71 0.72 0.85

-P-ND-M: Pooling-no dropout-maximum layers, -P-D-A: Pooling-dropout-Average layers, MCC: Matthews correlation coefficient, SE:
Sensitivity, SP: Specificity, F1: F1 score, ACC: Accuracy, E: Training errors and AUC: Area under the receiver operating curve.

The sixth experiment is performed to check the performance of the HYPER-RETINO
architecture over different sizes of dense blocks. It became evident by experiments that
the dense connection provides better results compared to other deep network models with
the same depth. This sixth experiment is very important to understanding the property of
model overfitting. In practice, the denseblock is used to reduce overfitting and solve the
gradient vanishing problem without using optimization. Compared to other sizes of blocks,
the 4-denseblock outperforms on the identification of five stages of HR and achieved SE of
90.5%, SP of 91.5%, ACC of 92.6%, PR of 91.7%, MCC of 61%, F1 of 92%, AUC of 0.92 and E
of 0.60. Therefore, the increased size of denseblock provides lower performance results.
The accuracy of the HYPER-RETINO network for the five stages of the classification of
hypertension is not improved as the number of denseblock increases.

The seventh experiment is conducted to compare the proposed system with other state-
of-the-art systems based on two stages and five stages of the severity level of hypertensive
retinopathy (HR). Tables 4 and 5 are used to describe those comparisons on the selected
dataset of two-stage and five-stage HR, and corresponding graphs are visually displayed
in Figure 9. In comparison to other state-of-the-art approaches for HR recognition that
use deep learning (DL) models, few research efforts use DL approaches for classifying
HR from fundus videos. These four DL-based HR models are utilized: DenseHyper [31],
Arsalan-HR [38], Kriplani-AVR [39] and Tag-Semantic [40]. This is because of their ease
of implementation. Compared to other systems, the proposed system outperformed in
both two stages and five stages-based recognition of HR when the eye is a diagnosis by
retinograph images. The results are explained in the subsequent paragraphs.

Table 4. State-of-the-art comparison analysis based on 1400 HR images to recognize two stages in the pattern form
SE%/SP%/ACC%/AUC.

Methods NR MLD-HR MOD-HR SEV-HR MLG-HR

Arsalan-HR [38] 84.5/83.5/83.5/0.84 85.5/85.5/85.5/0.85 84.5/85.5/84.5/0.85 80.5/81.5/82.5/0.80 84.5/83.5/83.5/0.84

Kriplani-AVR [39] 82.5/81.5/82.5/0.82 83.5/82.5/83.5/0.83 83.5/82.5/82.5/0.82 80.5/81.0/82.0/0.81 82.5/81.5/82.5/0.82

Tag-Semantic [40] 83.1/82.2/81.5/0.83 84.1/85.2/84.5/0.84 83.1/82.2/81.5/0.82 82.1/82.2/81.5/0.82 83.1/82.2/81.5/0.83

DenseHyper [31] 85.5/83.5/83/0.84 87.5/84.5/83/0.86 85.6/84.5/84/0.85 82.5/84.5/84/0.82 84.5/83.5/83/0.84

HYPER-RETINO 94.1/93.4/91/0.92 90.0/91.4/91/0.89 88.5/88.2/87.5/0.92 90.5/93.5/96/0.93 89.5/90.5/95/0.90

NR: Normal retinograph images, MLDR: Mild hypertensive retinopathy, MOD-HR: Moderate hypertensive retinopathy, severe HR
(SEV-HR) and MLG-HR: Malignant hypertensive retinopathy.
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Table 5. State-of-the-art comparison analysis based on 1400 HR images to recognize five stages of HR.

No. Methods SE SP ACC AUC

1 Arsalan-HR [38] 78.5% 81.5% 80% 0.80

2 Kriplani-AVR [39] 74.5% 73.5% 74% 0.74

3 Tang-Semantic [40] 80.5% 79.5% 81% 0.82

4 DenseHyper [31] 81.5% 82.5% 83% 0.84

5 HYPER-RETINO 93% 90.5% 92.5% 0.92

SE: Sensitivity, SP: Specificity, ACC: Accuracy, AUC: Area under the receiver operating curve.

Figure 9. Visual representation of State-of-the-art comparisons of the HYPER-RETINO system in
terms of the AUC curve five stages of HR from 2800 HR images with a preprocessing step.

Table 5 shows the performance of a proposed HYPER-RETINO method compared to
other methods. As can be observed from this table, the Arsalan-HR [38] model obtained
a SE of 78.5%, SP of 81.5%, ACC of 80% and AUC of 0.80. Furthermore, the Arsalan-HR
approach is based on a simple CNN model that is unable to derive useful and simplified
features to distinguish HR and non-HR. The identification accuracy of 98.6 percent is
reported in Arsalan-HR [38] due to the use of small training and the testing dataset of HR.
The authors in the Kriplani-AVR [39] scheme used the aggregate residual neural network
(ResNeXt) model as a classifier, and they achieved 94% of accuracy on the structured
analysis of the retina (STARE) dataset. For segmentation and feature extraction, the device
employs image processing techniques. The classifier’s input is a function vector made up
of the A/V Ratio rather than the fundus picture. To equate the proposed HYPER-RETINO
method to Kriplani-AVR [39], we follow the same steps and tested it on the model Kriplani-
AVR. On average, the Kriplani-AVR model achieves SE of 74.5%, SP of 73.5%, ACC of 74%
and AUC of 0.74, which is slightly higher than the Arsalan-HR [38] system.

Recently, the authors in Tag-Semantic [40] have developed a deep model based on
pretrained CNN with an interpretable Tag-Semantic approach to recognize the stage of
diabetic retinopathy (DR) instead of hypertensive retinopathy (HR). However, this Tag-
Semantic system can be used to detect the two stages of HR in case of the detection of the
HR-related lesions. Therefore, this approach is included in the comparisons, as this system
is closed to the proposed HYPER-RETINO system. The Tag-Semantic approach was used
to extract lesions from retinograph images by using CNN and 3 layers of CNN models and
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then using the guided backpropagation approach to adjust weights in the network. Com-
pared to Arsalan-HR [38] and Kriplani-AVR [39], the Tag-Semantic system outperforms
and achieves SE of 80.5%, SP of 79.5%, ACC of 81% and AUC of 0.82 values. Moreover, in
the DenseHyper [31] system, the authors obtained SE of 81.5%, SP of 82.5%, ACC of 83%
and AUC of 0.84, which is greater compared to previous methods. In comparison, the SE,
SP, ACC and AUC of our proposed HYPER-RETINO model were all higher, with SE of
93%, SP of 90.5%, ACC of 92.5% and AUC of 0.92. As a result, they have a high level of
precision. On the other hand, the HYPER-RETINO system developed in this paper has
been evaluated with a large dataset. Thus, the HYPER-RETINO achieves an accuracy of
classification of 92.5%.

A visual example in Figure 7 shows the detection and recognition of the five stages of
HR based on the proposed semantic and instance segmentation techniques in a DenseNet
DL architecture. This figure shows the various stages of HR in case of a normal (no
sign of abnormality), mild HR, moderate HR, severe HR, and malignant HR. Next, the
eighth experiment is conducted to evaluate the performance of the proposed Hyper-
Retino system on a large dataset. To perform this experiment, we have applied the data
augmentation technique to increase the size of the dataset and gold standard masks from
1400 to 2800 retinograph images. However as mentioned before, we have performed the
data augmentation technique in an offline fashion. In the data augmentation step, the
flipping (horizontally + vertically) and rotation from 90 degrees to 180 degrees without
scaling are applied. This increases the number of training images from 1400 to 2800. As
shown in Figure 8b,c, the Hyper-Retino achieved a detection accuracy of HR for five
stages up-to-the-mark with and without the preprocessing step. In addition, the visual
representation of state-of-the-art comparisons of the HYPER-RETINO system in terms
of the AUC curve with 2800 HR images is displayed in Figure 9 with a preprocessing
step. It noticed that the preprocessing step contributes toward getting high classification
accuracy compared to no preprocessing step as shown in Figure 10. In addition, a visual
representation of state-of-the-art comparisons indicates that the proposed HYPER-RETINO
system is better than other detection systems.

Figure 10. A visual example of the preprocessing step to enhance retinograph images related to
malignant hypertensive retinopathy.

5. Discussion

A few computerized systems were developed in the past to recognize hypertensive
retinopathy (HR) by using two stages such as HR and non-HR. Those systems, on the
other hand, focused on extracting HR-related features by using handcrafted techniques
and deep-learning (DL) models. Furthermore, defining advanced features to understand
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multistage HR (five-stage) is challenging for DL models. The classification accuracy is
greatly increased when deep-feature methods are used. In this paper, a new hypertensive
retinopathy (HYPER-RETINO) mechanism has been formed to grade the HR into five
stages such as regular (NR), mild (MLD-HR), severe (MOD-HR), severe HR (SEV-HR) and
malignant (MLG-HR). To create the HYPER-RETINO grading system, four major phases are
used, such as a pre-processing step to improve HR-related lesions in perceptual-oriented
color spaces (as shown in Figure 10), an initial semantic-based segmentation of HR-related
lesions, the refinement of instance-based segmented regions and the classification of lesions
by a pretrained DenseNet architecture.

In this paper, the derived HR-related features set is effective in recognizing the five
stages of hypertensive retinopathy (HR). The HYPER-RETINO system is developed by
motivating ophthalmologists to quantify the different types of HR-related lesions in retinal
images. The accurate detection of retinal lesions is a challenging problem due to variations
across patients, image intensity inhomogeneity, irregular shape and appearance of lesions.
As a result, the DenseNet architecture on distinct extracted regions is applied to recognize
the severity of HR.

According to a comprehensive literature review of retinopathy hypertension (HR), a
single and accurate approach to recognize the five stages of the severity level of this disease
is not available. Moreover, the automatic identification of multiple HR-related lesions
at the pixel level has not been utilized before. Based on the knowledge, this is the first
work of research based on a deep-learning (DL) architecture that can detect hemorrhages,
microaneurysms, exudates, etc. automatically from retinal fundus images. Overall, the
HYPER-RETINO approach outperforms the most current alternative approaches according
to the experimental findings, which are based on six freely available datasets along with one
private dataset. The proposed approach is capable not only of detecting lesions in images,
but it can also be reliable in locating and measuring the size of those lesions to understand
the severity level of this disease. It is worth noting that the statistical assessment metrics
show that the HYPER-RETINO system outperforms deep learning-based methods, which
have recently attracted a lot of attention.

With no complex parameter tuning or training data collection, the semantic and
instance-based segmentation technique can detect both dark and light lesions to classify
five stages of HR. The object size (which distinguishes the MA from the HE) or strength
magnitude may be used to differentiate these lesions (which discriminate between the dark
and bright lesions). The proposed approach can detect the vasculature, optic disk, macular,
retinal vessel segmentation, optic disk recognition, macular extraction and anomalies.
The proposed approach (HYPER-RETINO) would make a major contribution to health
informatics by providing an effective instrument for retinal image analysis.

As stated in the related work Section 2, a few classification systems were developed
in the past for the classification of two-stage (HR and non-HR) related eye disease. Those
approaches are developed based on the latest trend, namely, deep-learning methods,
rather than conventional machine learning approaches. When HR automated systems
are designed using conventional approaches, there are several major difficulties. The
first difficulty is that identifying and extracting relevant HR-related lesion features from
retinograph images to determine HR properties using sophisticated pre- or post-image
processing methods is extremely difficult. There are no datasets available with clinical
expert labeling to identify such HR-related lesion patterns to train and validate the network.
As a result, computerized programs have a hard time detecting disease features. The
authors use manual hand-crafted features to train the network and compare the output of
conventional and new deep-learning models, according to the literature. Consequently,
finding the best features necessitates the use of an automatic strategy. Deep-learning
algorithms have the highest outcomes as compared to conventional approaches. Many
different models, on the other hand, use qualified models created from scratch to learn
features automatically, but they all use the same weighted scheme at each step. Layers can
find it difficult to move weights to higher levels of the network for specific decisions.
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As seen in Tables 4 and 5, the HYPER-RETINO method outperformed the Triwijoyo-
CNN-2017 [7] and Pradipto-CNN-RBM-2017 [33] state-of-the-art HR recognition systems in
terms of precision as compared to general DL models. This is because the HYPER-RETINO
framework was built using the DenseNet architecture with a pretrained strategy approach
and is based on qualified features. In addition, the DenseNet architecture was pretrained
to extract, localize and specialize features. Moreover, the semantic- and instance-based
segmentation provided the best results in the proposed HYPER-RETINO system to detect
various HR-related lesions.

The HYPER-RETINO method for HR identification can be enhanced in the future by
offering a larger dataset of retinograph images obtained from various sources. To improve
the model’s classification accuracy, it may be possible to use hand-crafted features instead
of only deep features. Since then, several researchers have used the saliency maps technique
to segment DR-related lesions and then used a trained classifier to separate those lesions
from retinograph images. Only the segmentation phase has been done in those studies.
These saliency maps will be combined in the future to improve HR eye-related disease
recognition accuracy. Furthermore, the HR severity varies. However, the extraction of
those HR-related lesions with different thresholds will be used to detect the disease level of
HR. As a result, it can be a useful option for clinicians to employ them to solve the problem
of hypertension. Two expert ophthalmologists helped us in evaluating the performance of
the proposed automatic classification system. Based on the system’s recommendation, they
informed us that the obtained results of the automatic analysis of hypertensive retinopathy
are useful for them in the diagnosis of the diseases and help them significantly.

6. Conclusions

Only a few computerized systems have been built in the past to identify two-stage
diabetic hypertensive retinopathy (HR) based on retinography and deep-learning architec-
tures. However, these systems are dependent on image processing to extract characteristics
from several HR-related lesions (ratio of arteriolar to venular diameter, blood vessels, optic
disk, cotton wool spot, microaneurysms, tortuosity and hemorrhages) and to classify them
by machine-learning algorithms. As a practice, the recognition mechanism for hyperten-
sion is made up of domain-expert knowledge of feature selection and image processing.
According to our knowledge, there are few frameworks presented in the past for the two
stages (HR versus non-HR) based recognition based on deep learning (DL) models. These
systems have been tested on small datasets without preprocessing steps. Therefore, it
is hard to use them as a screening method for the identification of the severity level of
HR. Moreover, the precision of classification is not up-to-the-mark. In this paper, a novel
computerized hypertensive retinopathy (HYPER-RETINO) system is developed to detect
five stages of HR based on semantic- and instance-based dense layer architecture and a
pre-training strategy to solve the above-mentioned problems. At last, the HYPER-RETINO
system can detect HR and it can help to assist the ophthalmologist as well as facilitate
mass screening. The applicability of the HYPER-RETINO method to reliably diagnose
hypertensive retinopathy is verified by experimental findings. In future works, we will try
to develop a differentiation system between diabetic retinopathy (DR) and hypertensive
retinopathy (HR).
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