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Abstract
Understanding how an animal utilises its surroundings requires its movements through

space to be described accurately. Satellite telemetry is the only means of acquiring move-

ment data for many species however data are prone to varying amounts of spatial error; the

recent application of state-space models (SSMs) to the location estimation problem have

provided a means to incorporate spatial errors when characterising animal movements.

The predominant platform for collecting satellite telemetry data on free-ranging animals,

Service Argos, recently provided an alternative Doppler location estimation algorithm that is

purported to be more accurate and generate a greater number of locations that its prede-

cessor. We provide a comprehensive assessment of this new estimation process perfor-

mance on data from free-ranging animals relative to concurrently collected Fastloc GPS

data. Additionally, we test the efficacy of three readily-available SSM in predicting the move-

ment of two focal animals. Raw Argos location estimates generated by the new algorithm

were greatly improved compared to the old system. Approximately twice as many Argos lo-

cations were derived compared to GPS on the devices used. Root Mean Square Errors

(RMSE) for each optimal SSM were less than 4.25km with some producing RMSE of less

than 2.50km. Differences in the biological plausibility of the tracks between the two focal an-

imals used to investigate the utility of SSM highlights the importance of considering animal

behaviour in movement studies. The ability to reprocess Argos data collected since 2008

with the new algorithm should permit questions of animal movement to be revisited at a

finer resolution.

Introduction
The accurate depiction of animal trajectories is central to understanding their ecology, from
predicting habitat types critical to their persistence [1] to realistically portraying the degree of
individual variability in space-use within a population or species [2]. Technological develop-
ments over the past 30 years have led to a number of different electronic tagging options,
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ranging from simple VHF radio telemetry and light geolocation to satellite telemetry which can
involve both tracking and a host of different sensors. Recently, incorporation of Global Posi-
tioning System (GPS) technology into animal-borne tags has led to significant advances in the
scale and resolution of questions that can now be answered [3]. However, the ability to answer
questions is contingent upon the methods used to collect such data and the biology of the ani-
mal as well as limitations related to feasible logistics and financial constraints. For large animals
in situations where they can be recaptured, the use of archival Fastloc GPS tags are a typical
compromise between cost and location accuracy. These instruments provide highly accurate
location estimates at very high temporal resolution [4]. Historically though, and for animals
for which recapture probabilities are low or non-existent such as whales [5] and green turtles
[6], satellite telemetry has been the dominant means of acquiring information on wide-
ranging movements.

The Argos System is the most commonly used method for acquiring satellite telemetry data
from animals. This system uses the Doppler shift in frequencies between the transmitter (ani-
mal telemetry device) and Argos transceiver modules mounted on low-orbiting satellites to
make Doppler-based location estimations [7]. Location estimates require a minimum of two
received messages during a single satellite pass and until very recently this estimation process
was performed by a non-linear Least Squares (LS) technique [8]. The resulting estimates are
classified into one of seven location classes (LCs) each of which has a measure of uncertainty
associated with it. The errors associated with the highest quality LCs (3,2 and 1) have a 68th

percentile error described by Argos as ranging from 0.25 to 1.5 km while the remaining LCs
(0, A, B and Z) have no estimated errors. In the last decade reasonable estimates of error asso-
ciated with the lower quality LCs have been made, using empirical data collected from animal-
borne telemetry devices [9,10]. More accurate measures of Argos error have been conducted
that capture the issues inherent with collecting telemetry data from wide-ranging animals by
‘double-tagging’ individuals with Fastloc GPS and Argos telemetry devices, and measuring the
differences in temporally-matched locations along the animal’s trajectory [9,11,12,13]. In addi-
tion, Argos provide estimates of the true error around modelled positions using a 2-dimension-
al ellipse, derived from the covariance matrix of messages received by the Argos module [8].

Deriving empirical values of error and precision in location estimation have proved critical
in addressing the issues surrounding animal track reconstruction. Recent improvements in
computing power and advances in statistical techniques have given rise to a suite of modelling
techniques that predict the likely path of an animal, which incorporate measures of uncertainty
of the location estimates. These state space models (SSM) typically consist of two conditional
stochastic models, one that describes the theoretical movement of an animal (process model)
and another that describes the actual data collected including some estimate of the uncertainty
(error) in the estimation of locations (measurement model). The utility of SSM to the location
estimation problem has led to the development of numerous techniques to reconstruct an ani-
mals’ path, ranging from Kalman filters that treat time as a continuous variable [14,15] to
Bayesian methods that estimate the probability of an animal being in a certain location at dis-
crete time intervals [16,17]. The most common estimates of the error structure surrounding lo-
cation estimates in these models are currently based on the empirically-derived measurements
of error conducted by [10].

In spite of the obvious importance of accurate location estimation to studies of animal habi-
tat use and preference, there are only four studies that have assessed the actual performance of
SSMs [9,11,15,18]. Three of these studies examined Argos location estimates calculated using
the LS algorithm, with two of them using SSMs that are readily-available to researchers. Imple-
menting a Bayesian SSM [16], [9] estimated a mean distance of 2.2 ±2.4 km separation between
modelled and true tracks of hawksbill turtles Eremtmochelys imbricata. Error rates from a
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custom-written Kalman filter applied by [15] to data from two grey seals (Halichoerus grypus)
demonstrated marked sensitivity to pre-processing of telemetry data at varying speed thresh-
olds. Optimal root-mean-square-errors (RMSE) for each animal (5.90 km and 12.76 km, re-
spectively) demonstrated that ~80% of all locations produced were less than 10 km from the
true location. Using the same continuous-time correlated random walk (crawl) model em-
ployed in the current study, [19] estimated a mean error of 3.2 km (±0.1 km) to concurrently-
collected archival Fastloc GPS locations, stating that 79% of predicted locations were less than
5 km from the true location.

Since 2011, Service Argos has offered the research community the option to receive their te-
lemetry data processed by a different algorithm. This new Square Root Unscented Kalman Fil-
ter (SRUKF), implemented in an interacting multiple model algorithm, provides a location
estimate for satellite overpass. Service Argos claim that mean spatial errors of poor-quality LC
location estimates are reduced by up to 76% using the new SRUKF algorithm and that up to
12.7% more derived location estimates are generated [13,20]. Indeed, the fourth study examin-
ing SSM performance used raw Argos data generated using the SRUKF method [18] and de-
scribed accuracies of 5.6km (±5.6km) from interpolated GPS locations of seven harbour seals
(Phoca vitulina) and six fin whales (Balenoptera physalus).

The ability to re-process Argos Least Squares telemetry data collected after January 2008
using the new SRUKF algorithm provides researchers with the opportunity to revisit questions
of movement behaviour at a higher spatial resolution than before, at minimal additional cost.
In light of this, and the fact that Service Argos will probably remain the most widely-used
means for collecting telemetry data on animals that are unlikely to be recaptured, there is a crit-
ical need to assess the performance of SSM techniques on SRUKF-derived Argos data. In this
study we use individuals from two coastally-resident arctic marine mammal species from Sval-
bard, the bearded seal Erignathus barbatus and the ringed seal Pusa hispida to achieve two in-
terdependent aims 1) to derive error estimates of Argos location estimates generated by the
new SRUKF algorithm relative to Fastloc GPS locations and 2) to assess the performance of dif-
ferent SSMs in estimating locations.

Materials and Methods
Prototype Satellite Relay Data-Loggers (SRDLs, Sea Mammal Research Unit, University of St
Andrews, Scotland) were attached to six adult female bearded seals (August 2011 N = 4; August
2012 N = 2) and 10 adult female ringed seals (August 2012 only), in Svalbard Norway. Pro-
gramming details for telemetry devices are outlined in Supplementary Materials. All research
activities including both animal care and field site permitting during this study were approved
and carried out under permits from the Norwegian Animal Care Authority (Forsøksdyrutval-
get ref. 2010/45416 and 2011/42085) and the Governor of Svalbard (Sysselmannen på Svalbard
Ref. 2011/00488-52). In addition to the standard sensors for measuring dive data, each SRDL
contained an Argos-linked Fastloc GPS transmitter. All tags were programmed to the same
specifications (S1 File), and the default speed parameter was used for the Argos Kalman filter-
ing process (10ms-1). We are unaware of any other speed parameter setting being used in the
marine mammal research community, and can thus not comment on the effects of varying this
threshold with respect to the outcome of the Argos SRUKF process. Capturing and handling of
these animals was conducted using the same methods as those outlined in [21]. Argos locations
are derived as a by-product of all messages transmitted from the SRDL to the satellite system,
while transmitted GPS data consist of a random subset of locations collected by the Fastloc
GPS receiver on the animal, resulting in temporally decoupled Argos and GPS positions. Cali-
bration studies of Fastloc GPS data show errors (at the 95th percentile level) between 24.2 m
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and 140 m for locations estimated by eight and five satellite acquisitions, respectively [22]. We
removed all GPS locations with less than five satellite acquisitions, and henceforth assume the
remaining GPS locations reflect the true position of the animal [23].

Kalman-filtered Argos error estimation—accuracy and precision
To facilitate comparison with earlier studies estimating Argos location errors from the LS posi-
tioning algorithm, we identified SRUKF-derived Argos locations that were temporally-proxi-
mate (i.e. within 5 min) to GPS positions using the methods outlined in [12] and [9]. This
subset of data was used to calculate the distance (km) and direction (degrees) of error between
each Kalman location and its matched true location using the great circle method. LS derived
Argos location estimates exhibit a longitudinal bias [10,15]. Consequently, Rayleighs Tests of
mean directionality were used to determine whether the same patterns existed for locations de-
rived by the new Argos method. Errors were further decomposed into their longitudinal and
latitudinal estimates for each Argos location class (LC) and we present the overall 68th and 95th

percentile values of error (km) as well as those for latitude and longitude for each LC.
In terms of modelling error distributions, lognormal distributions have positive-only values,

which in terms of spatial error distributions would suggest a continuous bias in one direction
(for example, longitudinal errors were always to the east of the true location). As such, this dis-
tribution is appropriate for describing absolute error magnitude (precision) but not errors that
have a directional component (accuracy). Conversely, the T distribution is commonly used to
model spatial error in the context of location filtering and smoothing models as it is robust to
extreme values [9,10,14]. To measure the spatial accuracy of the SRUKF data we estimated the
parameters of the T distribution (scale τ and degrees of freedom ʋ) for errors in each LC using
maximum likelihood methods and using the resulting estimates to generate the error structures
for subsequent modelling.

To assess the precision of errors within each LC, we employed the adjusted quantile method
of outlier detection to estimate the proportion of errors that are greater than expected, given
the ideal distribution of the data using the R package ‘mvoutlier’ [24]. For each LC, robust esti-
mates of Mahalanobis Distances (rMD) between paired latitudinal and longitudinal error esti-
mates were computed. This metric was chosen because it is a scale-invariant measure of the
similarity between two datasets but is very sensitive to the presence of outliers [15] and robust
estimates were calculated using the R package ‘robust’. We then computed the empirical cumu-
lative distribution function (ECDF) of pairwise rMD, which we assumed contained outliers.
Given that rMD are best described by a X2 distribution [25], we constructed a cumulative dis-
tribution function (CDF) from 100 simulated datasets generated using the X2 distribution. To
avoid mistaking extreme values as outliers, we calculate an adaptive threshold using the supre-
mum of differences between the rMD ECDF and X2 CDF for each point over the 95th quantile
[24]. Thus, samples from the ECDF that have an abnormally large deviation (P<0.001) are de-
clared as outliers.

Location modelling
To test the efficacy of readily-available location-processing models with the new SRUKF Argos
data, we utilised telemetry data from two focal animals (one bearded seal and one ringed seal).
These individuals were selected based on the duration of their tracking records and how far
they travelled. Pre-processing Argos data to remove the most aberrant location estimates is
common practice [15] with several ‘destructive’ (data removal) techniques being available
[26,27]. We pre-processed our data with the speed filter (SF) implemented in the R package
‘trip’, which is a forwards-backwards speed averaging algorithm that determines the required

Argos Kalman Filter and State-Space Models

PLOS ONE | DOI:10.1371/journal.pone.0124754 April 23, 2015 4 / 16



velocity to move between consecutive points and removes points which require a speed greater
than a predetermined threshold [27]. Raw Argos location data were filtered at four speed
thresholds (1.5, 2.5, 15 and 27 ms-1) prior to being used as input to the location-processing
models to test the sensitivity of model performance to pre-processed data [15]. We fitted three
different location filtering models that are available in the open-source statistical framework of
‘R’ [28] to each of the four speed-filtered Argos dataset from the two focal animals. Each model
was fitted twice; once with the error structures that are presented by the authors of each of the
respective models and once with error structures derived from the current study; henceforth
these are referred to as the old and new models, respectively.

Model (1) crawl Package. The continuous-time correlated random walk model developed
by [14] makes inferences using pre-processed data by considering time as a continuous process,
modelling the irregular temporal spacing of location estimates as a series of discrete time sam-
ples. The output of this analytical framework is a continuous movement path model from
which location predictions can be made at any time. An error model that allows the location es-
timate to vary with respect to its LC is constructed from a ratio of the 95% percentiles of the lat-
itudinal and longitudinal error of the most accurate LC relative to the remaining LCs as
reported in [10]. We then constructed the same error model and used ratios of our derived
error estimates as input, fitting the model over each focal track with the original error matrix
and then with our estimates. We then generated an estimated Argos location for each GPS lo-
cation timestamp to facilitate comparison using the same 5-minute rule outlined previously.

Model (2) bsam Package. The method of estimating the location of an animal from Argos
data developed by [17,29] treats time as a discrete process, predicting spatial locations at regu-
lar time intervals from irregularly-collected telemetry data under an empirical Bayesian state
space framework. This approach implements a Markov Chain Monte Carlo algorithm to esti-
mate the posterior probability of an animal being at a location, given the estimate of that loca-
tion and the error associated with it. Briefly, a first-order random correlated walk and the
Argos data are used as process and measurement models, respectively. The uncertainty of loca-
tion estimates � is incorporated into the measurement model as a three-parameter T distribut-
ed error term �t ~ t(0, τt, ʋt) with mean 0, scale parameter τt and degrees of freedom ʋt for each
component of location error at time t, respectively. In the original code, estimates of τ and ʋ
are derived from [10] and are in units of km. We use these estimates, and subsequently con-
structed our own as outlined above. Prior to modelling, τmust be converted into degrees using
appropriate conversions based on the latitude and longitude at which the data were collected.
We thereby incorporate the fact that the distance in km of one degree of longitude at 80° N is
~17% of the same measure at the equator (19 km cf. 111 km). Given the large number of Argos
location estimates provided per day by the new SRUKF algorithm, we estimated a new location
every hour. Models were allowed to ‘burn-in’ for 30,000 samples across four chains after which
a further 10,000 samples were taken from the posterior distribution after convergence had
been assumed. Temporal autocorrelation between samples was reduced by taking every 10th

sample after burn-in, and model convergence was checked from trace plots and by calculating
the Gelman-Rubin convergence statistic for each model fit [30].

Model (3) tripEstimation package. [31] propose a Bayesian solution that permits the esti-
mation of an animal’s path, as opposed to point estimates of its location at discrete times. In
this modelling system, secondary information such as bathymetric data and estimates of travel-
ling speed can be incorporated into the estimate of the path that serve to guide it in a biological-
ly meaningful manner. We employed a digital elevation model land mask against which
location proposals were matched [32]. Proposed locations that were on land were rejected and
new proposals were generated until they met the criteria of the land mask, similar to the proce-
dures employed by [31]. posterior estimates of locations yi follow a bivariate (lat/lon) normal
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distribution centred on the true location μi, such that yi ~ N(μi, σ
2(ri)) where the distribution

variance σ2 is a function of the location error estimate r. However [31] acknowledge that in the
case of the Argos location service, a longer-tailed t distribution may be more appropriate.
Thus, we input our estimates of positional variance σ2(ri) for the alternate error model. Posteri-
or estimates were sampled sequentially using a block-updated Metropolis-Hastings algorithm
run over three chains of 40,000 iterations, thinned to every 10th estimate to reduce serial auto-
correlation. Point estimates representing those that fall along the most likely path were derived
by extracting the most likely location and these were used for estimating error magnitudes. We
present the model output as composite images of the time spent along the full path estimate
[31,33].

Model location accuracy
For model (1) SSM-estimated locations for each model fit were available at the time of GPS lo-
cations. For outputs from the other two models we repeated the process used to construct
Argos error structures, isolating SSM locations that were temporally coincident with the true
path from which distance metrics could then be calculated. The performance of each SSM is
described in two ways; first, the distribution of location error magnitude (km) was quantified
by computing its empirical cumulative distribution function (ECDF). Secondly, we repeated
the adjusted quantile method of outlier detection described earlier for the latitudinal and longi-
tudinal error components of the modelled locations.

Results
A total of 78,521 Argos location estimates were received from all bearded seals (N = 6) and
ringed seals (N = 10) over their tracking periods, which ranged from 18.8–283.5 d, with each
individual providing a mean of 21.6 (± 0.94) Argos locations per day. Pre-processing with a
27 ms-1 speed filter removed 2.1% of the Argos location estimates. In concordance with other
marine mammal tracking studies, the distribution of LCs was heavily skewed towards classes
‘A’ and ‘B’ (S1 Fig) though the entire dataset contained only 31 LC ‘Z’ location estimates with
12 remaining after coarse speed filtering. The same individuals provided a total of 30,711 GPS
locations over the same tracking periods, averaging 8.3 (± 0.01) GPS locations per day. Each
animal had approximately 280.4 (± 79.2; range 45 to 1210) Argos and GPS location estimates
that were within 5 mins of each other. Derived 68th percentile estimates for LCs 0, A and B
were considerably improved compared to those generated from similar studies using LS Argos
data (Table 1), with the SRUKF Argos data from LCs ‘A’ and ‘B’ errors estimated at 1.71 km
and 2.19 km, respectively. Except for LC 3, less than 6% of all location estimates were classified
as outliers (S2 Fig) and there was no latitudinal offset (Rayleighs Test Z = 0.01, p = 0.45; S3A
Fig). However, the 95th percentile of all estimated errors was less than 5.5 km from the true lo-
cation for both species combined and followed a circular-normal distribution (Rayleighs Test
Z = 0.01, p = 0.74; S3B Fig).

The distributions of longitudinal and latitudinal LC errors between each species were simi-
lar (Kolmogorov-Smirnov two-sample test D> 0.32, p> 0.06 in each case) suggesting that
combining the error estimates for further analysis was appropriate (Table 1). Descriptors of LC
errors (overall error estimates and their longitudinal and latitudinal components) for each spe-
cies were fitted with T distributions (Kolmogrov-Smirnov one-sample test D< 0.21, p>0.07 in
all cases) and the parameters of τ and ʋ were estimated by maximum likelihood; these are pre-
sented in Table 1.

Both focal animals remained in the coastal waters of western Svalbard throughout the dura-
tion of tracking but displayed different movement patterns (Fig 1). Location acquisition rates
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for the bearded and ringed seal averaged 57.9 ± 0.7 tx d-1and 31.3 ± 0.84 tx d-1 (range 19–85
tx d-1 and 1–70 tx d-1), respectively, with ringed seal transmission rates appearing to decline
throughout the tracking period (S4 Fig). The lowest speed threshold (1.5 ms-1) retained 77.3%
and 86.9% of the raw Argos locations for the focal bearded and ringed seal, respectively
(Table 2). Overall RMSE derived from modelled locations ranged from 2.42–5.54 km across
both animals, with the continuous-time crawl package and tripEstimation package providing
location estimates closest to the true path for the bearded and ringed seal, respectively. For the
bearded seal, the crawl package performed best with data pre-processed at the highest speed
threshold. Sensitivity to altering speed thresholds and alternate error structures on RMSE val-
ues for the bearded seal was minimal; however, for the ringed seal the pattern was reversed
(Table 1). Both Bayesian methods performed best with the new error structures, improving lo-
cation estimate accuracy by as much as 0.82 km (Table 2). For the ringed seal, the tripEstima-
tion package performed best after raw data were pre-processed at the lowest speed threshold,
providing location estimates as accurate as 2.42 km from true locations (Table 2). There were
contrasting differences between the two animals in the sensitivity of the bsam model, which
performed best at high thresholds for bearded seal Argos data, but worst for the ringed seal
(Table 2). The empirical cumulative distributions of error magnitude showed that, for models
with the lowest RMSE, 95% of all errors were less than 4.11 km (Fig 2). Based on idealised log-
normal distributions generated from the data (S1 Table), typically less than 4.6% of the error

Fig 1. Raw Kalman filtered Argos tracks (black) and GPS tracks (red) for the focal A) bearded seal and B) ringed seal. Dots highlight instrumentation
site (blue) and the final location (yellow).

doi:10.1371/journal.pone.0124754.g001
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estimates from these models could be classified as outliers, irrespective of the error structure
used (S5 Fig). The optimal model for each sensitivity level for the bearded seal fitted well, with
the exception of two regions in which all models departed from the GPS trajectories (Fig 3).
However, plotting a realistic trajectory for the ringed seal using GPS data was not feasible given
the lack of GPS location estimates during (presumed) transiting movements between fjords.
Modelled Argos location data provided more detail regarding these transit paths, particularly
at the southern end of its trajectory. Even though a greater number of Argos locations were
available than GPS for the ringed seal dataset, the generally poor transmission rate of location
estimates from either source prevented models from estimating a biologically reasonable path
for this focal animal (Fig 3).

Discussion
The new SKURF filtering process claimed to provide a greatly increased number of more accu-
rately estimated locations and more precisely described LC error structures than locations de-
rived using the Least Squares (LS) algorithm that was used previously. We have documented
the performance of Argos telemetry data derived from the SRUKF algorithm, relative to con-
currently-collected Fastloc GPS data from wild animals as they moved through their environ-
ment. Our study shows that the 68th percentile of errors from high-quality LCs (3,2 and 1)
SRUKF-derived locations are comparable to those from similar studies using LS [9,10,12].
However there was a dramatic increase in the accuracy of lower-quality LCs (0,A and B) using

Table 2. Root Mean Square Error (RMSE) estimates (km) between modelled Argos locations and the
true (GPS) position at varying sensitivities for three commonly-used location error correctionmodels
freely-available within the R statistical framework; crawl [14], bsam [17] and tripEstimation [31].

RMSE (km)

crawl
(N = 4,184)

bsam
(N = 677)

tripEstimation

Species Speed threshold
(ms-1)

Locations
retained (%)

Old New Old New N Old New

Bearded
seal

100 95.9 2.79 2.83 4.61 4.25 1321 4.59 4

54 94 2.79 2.94 4.6 4.78 1319 4.69 3.97

10 85.1 2.93 2.88 4.81 4.63 1319 4.15 3.92

5 77.3 2.97 2.92 4.82 4.71 1097 3.99 3.17
N = 1,435 N = 260

Ringed
seal

100 99 3.01 4.44 5.53 5.23 407 3.21 2.43

54 98.1 3.15 5.05 5.54 5.33 405 3.05 2.45

10 91.5 2.48 3.51 3.99 3.82 386 2.84 2.56

5 86.9 2.53 3.32 3.81 3.7 375 2.51 2.42

‘Old’ and ‘New’ reflect the effect of applying the original error structures derived from data in [10] and errors

estimated from data in the present study, respectively. Variable ‘N’ for the tripEstimation results reflects the

reduction in the pre-processed dataset. For all models, the new error structures incorporated a correction

for differences in the distance covered by one degree of longitude at high latitude was applied. Optimal

model results are highlighted in bold italics. Both bsam and tripEstimation models performed better with

error structures derived from the current study, providing the most accurate location estimates at the lowest

speed threshold with the exception of the bearded seal bsam model. Sensitivity of models to different

speed thresholds was apparent, though the differences in error estimates were minimal.

doi:10.1371/journal.pone.0124754.t002
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SRUKF, with errors between 50–80% of the magnitude determined for LS Argos data and in-
line with those reported by Argos [8]. Similarly, the precision of location estimates within each
LC was also high with less than 6% of errors outside the theoretical distributions determined
by the data and no directional bias in errors, which is commonly reported from LS Argos loca-
tions [10,12], Typically, researchers collecting telemetric data on marine wildlife collect data
that are heavily skewed to low-quality LCs because of the behaviour of these animals and the
environment in which they move. Thus, the increased accuracy of SRUKF will likely be of
greatest benefit to researchers whose study organisms (and environments) tend to return low
quality location estimates, such as most marine taxa [34,35,36]. However, given that the two
focal animals in this study were tracked under the same extrinsic conditions the importance of
animal behaviour in determining data quality and subsequent ability to accurately characterise
movement should not be ignored.

Fig 2. Spatial errors of the best modelled Argos location estimates relative to the true (GPS) position for the focal A) bearded seal and B) ringed
seal using three different location error correctionmethods. * denotes use of the original error structure provided the most accurate modelled locations.
Red dotted lines signify the 95% percentile of the empirical cumulative distribution function (right side axis) for each suite of errors. Generally, 95% of all
errors were less than 4.2 km from the true position, with modelled locations being most accurate for the ringed seal.

doi:10.1371/journal.pone.0124754.g002
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State-space model performance
Service Argos has been providing researchers with the ability to remotely collect wildlife telem-
etry data for over 30 years. The issues surrounding location accuracy and precision have been
documented for almost as long [37]. However, the implementation of state space models
(SSM) to the location estimation problem has permitted the incorporation of location uncer-
tainty into movement models [17]. We demonstrate the sensitivity of three different, readily-
available movement models to differences in data pre-processing and error covariance specifi-
cation. The lowest speed threshold used (1.5ms-1) retained over 70% of raw location data,

Fig 3. Optimal state-space modelled (SSM) Argos location data (black) overlaid with GPS locations (red) for the focal A) bearded seal and B)
ringed seal. * denotes optimal model was constructed using the error structures derived from data in [10]. Modelled location and GPS point estimates are
shown as black and red dots, respectively. For each tripEstimation model, the underlying time-spent along the full path estimate is shown in purple (obscured
in the bearded seal plot in favour of displaying point estimates). Black boxes highlight areas of departure by each model from the true path. Modelled location
estimates for the bearded seal fitted well with GPS locations with the exception of two areas, at the very northerly edge of its trajectory, and just south of Prins
Karls Forland. Note the sparse numbers of GPS location estimates for the ringed seal, particularly during transit movements between fjords. Although there
were ~50% fewer Argos location estimates for the ringed seal, all models reconstructed some aspects of these transit movements despite showing a number
of erroneous land locations. The exception was the tripEstimation modelled data, presumably due to the effects of incorporating a land mask during the
modelling process.

doi:10.1371/journal.pone.0124754.g003
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contrasting strongly with the ~30–40% retention shown in other studies using the Least
Squares algorithm on Argos data [9,15], highlighting the lower number of aberrant location es-
timates provided by the SRUKF algorithm. The sensitivity of models to speed thresholds was
evident in estimates of RMSE which varied by as much as 1 km; however, the majority were
considerably less. For both Bayesian models tested, the most accurate location estimates were
generated using the error structures derived from the data in this study, though RMSE values
tended to differ between error structures by less than 900 m.

To our knowledge, there have been only three studies that have examined the performance
of SSM in refining location estimates, despite the rapid increase in the application of SSM to te-
lemetry data [17]. Our RMSE estimates are comparable to, or lower than, these studies with
95% of all location estimates being less than 4.11 km from the true position. The better perfor-
mance of the SSM likely reflects the increased accuracy of lower quality LCs from SRUKF
Argos data relative to the earlier LS filtering method, improved quantification of location error
structures or a combination of both factors. In light of the improved accuracy of SRUKF Argos
locations we described, the magnitude of differences in RMSE between old and new error struc-
tures was predictable. However, it is worth noting that our error structure also corrected for
the conversion of error distance to degrees longitude at high latitude, an aspect that the original
error structures failed to address. As such we recommend that attention is paid to longitudinal
correction when collecting telemetry data at high latitudes; this might be particularly important
when modelling Least Squares Argos data given its larger error estimates.

Interestingly, for both focal animals the old error structure performed best for the continu-
ous-time CRAWL model though for the bearded seal the RMSE differences between error
structures were often less than 150 m. Additionally, the difference in RMSE for the ringed seal
CRAWL model results at all speed thresholds were up to an order of magnitude greater than
seen in the bearded seal. The error structure in this model is simplistic relative to the other two
and the ability to manipulate its effect on the location estimation process is limited. Most
Argos and Fastloc GPS location estimates for the ringed seal were received while the animal
was resident in one of three fjords. The relatively low number of Argos location estimates dur-
ing transit movements between fjords coupled with the tighter error estimates we provide likely
resulted in the poorer track model, relative to the greater flexibility afforded by the original
error structure. This is evident in both the raw and modelled tracks presented in Fig 2 and
S5 Fig.

Each ringed seal modelled track deviated noticeably from the linearly interpolated GPS
track, primarily during periods of presumed transit between fjords. Relying exclusively on Fas-
tloc GPS data during these transits to reconstruct movement paths would lead to either biologi-
cally meaningless trajectories (moving across considerable tracts of land) or the paths would
overlook key areas of habitat use, best demonstrated at the northern-most extent of the ringed
seal track. Similarly, the bearded seal’s modelled tracks deviated from GPS-derived track in sev-
eral regions even though there appeared to be a sufficient number of Argos Kalman locations
to adequately infer a realistic trajectory. The reasons for this are unclear, and may simply be an
artefact of the error modelling process.

Implications for ecological inference
Accurately characterising the movement of animals is an essential first step to further studies
which attempt to assess habitat usage and areas of ecological significance [38]. For example,
there are several methods available to estimate the hidden (unobserved) behavioural state of an
animal based on derived aspects of its movement parameters such as changes in turning angle
or speed [39,40] which are underpinned by accurate location estimation. Commonly, increased
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track tortuosity and slower travelling speeds are assumed to reflect animals searching for food
whereas directed, higher speed movements are interpreted as transiting behaviour between
food patches [41]. From a management and conservation perspective, the utilisation of space
(habitats) by animals is central to the decision-making process [42]. Multi-sensor telemetry de-
vices can now collect high resolution environmental data that can be linked to animal move-
ment patterns to infer preferred habitat structures at individual, population and species levels
[43] as well as characterising areas of ecological significance to guilds of predators [38]. These
animal-borne sensors can be supplemented by additional remote-sensed data from satellites;
oceanographic anomalies and terrestrial biophysical parameterisation are widely available in
varying spatial resolutions.

The differences in temporal scale over which Argos and Fastloc GPS locations are collected
would determine the spatial scale over which state-space modelled locations can be estimated.
The increased number of sensors being integrated into telemetry instruments places consider-
able demands on available satellite bandwidth, forcing data to be summarised, compressed and
prioritised into the messages that are sent via Argos [44]. The SRUKF algorithm returns esti-
mated locations from any number of messages, unlike the earlier Least Squares method which
required a minimum of two messages. Conversely, Fastloc GPS locations are returned as a ran-
dom sample of the total number of fixes conditional on the user-programmed settings of the
instrument. The mean number of daily Argos locations received in this study was about one
per hour. In comparison, Fastloc GPS locations were received approximately one-third as often
(one every three hours). Thus, given that errors around SRUKF Argos location estimates can
now be appropriately modelled, the greater number of estimates may be tractable to recon-
structing biologically-meaningful tracks. Consequently, Argos-derived estimates of animal
movement may be more amenable to further behavioural-based study at a higher resolution
than less-frequent but undoubtedly more accurate Fastloc GPS point estimates.

Conclusions
We show that the new Argos SRUKF algorithm generates location estimates with accuracies
that are often less than 4 km from true positions when compared to concurrently-collected Fas-
tloc GPS data, and that these data can be used to reconstruct realistic animal trajectories. Fur-
thermore, the quantitative estimates of error provided in the current study can be used as input
for numerous location-correction models. Although only two focal animals were used to dem-
onstrate the utility of SSM with the new Argos location data, we discussed the relative impor-
tance of animal behaviour in determining the quality of track reconstruction. However, we
recommend that telemetry users consider the influence of environmental factors, including lat-
itudinal coverage of satellites and the effects of temperature on transmitter function with re-
spect to the performance of Argos location estimation algorithms and to consider if, in this
context, our findings are appropriate to use in their studies.

Supporting Information
S1 Fig. Distribution of Argos Location Classes (LCs) in the entire dataset. Similar to other
marine mammal telemetry studies, raw Argos locations were heavily skewed towards the least
accurate LCs (‘A’ and ‘B’), though only 31 LC ‘Z’ were present in the dataset.
(TIF)

S2 Fig. Assessment of Service Argos Location Class (LC) precision for telemetry data de-
rived from the Square Root Unscented Kalman Filter (SRUKF) algorithm. ‘N’ represents
number of paired Argos-GPS locations used to quantify the errors. Robust estimates of
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Mahalanobis Distances were constructed from latitudinal and longitudinal errors for each
paired location. Black lines indicate cumulative distribution functions (Y axis) of 100 simulated
datasets (grey) generated from an ‘ideal’ X2 distribution. Dotted grey lines highlight the adap-
tive cut-off used to define outliers described in Filzmoser et al. (2005). Estimated error outliers
typically made up< 6% of all Argos-GPS paired location estimates. Note the effect of smaller
sample sizes at the higher quality LCs on the simulated distributions.
(TIF)

S3 Fig. Direction and magniture of spatial errors compared to true (GPS) locations of A)
all Kalman-filtered Argos location estimates and B) the 95th percentile of error estimates
collected from bearded seals (N = 6) and ringed seals (N = 10) between 19th July 2011 and
18th April 2013 along the west coast of Svalbard. North is represented by ‘0’. Radial values re-
flect error magnitude in km. Large outliers were observed which did not follow a circular nor-
mal distribution, following a north-south offset. When only the 95th percentile of errors was
considered, the directional bias disappeared and the error distribution followed a circular
normal pattern.
(TIF)

S4 Fig. Number of daily Argos location estimates received for the focal animals (bearded
seal = black; ringed seal = red). Smoothed LOESS curves are fitted to highlight the temporal
trend in transmission rates. In total, 13,415 and 7,937 location estimates were received over
240 d and 255 d for the bearded and ringed seal, respectively. The bearded seal transmitted al-
most twice as many locations over a similar time period, with a relatively constant rate of trans-
mission while the number of daily location estimates received from the ringed seal decreased
throughout the tracking period.
(TIF)

S5 Fig. Adaptive outlier detection of modelled SRUKF Argos telemetry data relative to con-
currently-collected GPS data from a focal A) Bearded seal and b) Ringed seal.
(TIF)

S1 File. Electronic tag program settings.
(DOCX)

S2 File. Telemetry data for focal animals.
(PDF)

S1 Table. Parameters describing idealised (outlier-free) mean and standard deviation (±SD
of estimates) of lognormal probability distributions of Mahalanobis distances derived from
location error magnitude between optimally-modelled Argos location and true (GPS) loca-
tions. The background and implementation of each state space model is detailed in text and is
explained in further detail in Johnson et al. (2008), Jonsen et al. (2005) and Sumner et al.
(2009). Data collected from two focal animals tracked using GPS-CTD-SRDL instruments be-
tween 19th July 2011 and 18th April 2013 along the west coast of Svalbard. These data were
used to determine the precision of modelled location estimates using the adjusted quantile out-
lier detection method (S5 Fig)
(DOCX)
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