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ABSTRACT: Herein, we introduce a novel composite hydrogel
scaffold designed for addressing infectious jaw defects, a significant
challenge in clinical settings caused by the inherent limited self-
regenerative capacity of bone tissues. The scaffold was engineered
from a blend of carboxymethyl chitosan (CMCS)/sodium alginate
(SA) hydrogel (CSH), β-cyclodextrin/chlorhexidine clathrate (β-
CD-CHX), and strontium-nanohydroxyapatite nanoparticles (Sr-
nHA). The β-CD-CHX and Sr-nHA components were synthesized
using a saturated aqueous solution and a coprecipitation method,
respectively. Subsequently, these elements were encapsulated
within the CSH matrix. Comprehensive characterization of the
CMCS/SA/β-CD-CHX/Sr-nHA composite hydrogel scaffold via
scanning electron microscopy, X-ray photoelectron spectroscopy, and Fourier-transform infrared spectroscopy validated the
successful synthesis. The swelling and in vitro degradation behaviors proved that the composite hydrogel had good physical
properties, while in vitro evaluations demonstrated favorable biocompatibility and osteoinductive properties. Additionally,
antibacterial assessments revealed its effectiveness against common pathogens, Staphylococcus aureus and Escherichia coli. Overall, our
results indicate that the CMCS/SA/β-CD-CHX/Sr-nHA composite hydrogel scaffolds exhibit significant potential for effectively
treating infection-prone jaw defects.

1. INTRODUCTION
The rising incidence of jaw defects due to factors such as
inflammation, trauma, tumors, and congenital malformations
poses a significant challenge in clinical care, particularly
regarding the safe and effective repair and reconstruction of
these defects.1,2 Maxillofacial defects profoundly affect not only
the normal function and facial aesthetics of patients but also
have adverse effects on their physical and mental health.3,4

Bone defects in the oral and maxillofacial areas are often
situated in anatomically complex sites that are prone to
bacterial infection, producing a high risk of postoperative
bacterial infection following the reconstruction of jaw
defects.5,6 Staphylococcus aureus is the primary pathogen
responsible for these infections.7 Severe bacterial infections
can complicate treating jaw defects, potentially increasing
wound size and the likelihood of developing serious
osteomyelitis.8,9 Consequently, managing local infections and
fostering bone healing are critical aspects of bone repair.10 The
development of a biomaterial that possesses both antimicrobial
and osteogenic properties is therefore of significant clinical
importance for treating jaw defects susceptible to infection.11

Hydrogels are highly hydrophilic polymers that form an
interconnected three-dimensional (3D) porous network
through cross-linking12 and have found extensive application
in biomedical fields because of their exceptional biocompat-
ibility, hydrophilicity, and drug-delivery capabilities.13,14

Recent advancements in hydrogel technology have shown
promising results in enhancing cellular bioactivity and
achieving effective antimicrobial outcomes, thereby opening
new therapeutic possibilities for treating jaw defects.15

Chitosan-based hydrogels, in particular, have garnered
significant attention in biomedical research, especially for
drug delivery applications because of their excellent bio-
compatibility, cell adhesion properties, biodegradability,
antimicrobial efficacy, and stability.16−18 Carboxymethyl
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chitosan (CMCS) is a derivative of chitosan, obtained through
carboxymethylation. CMCS surpasses chitosan in several
aspects, including water solubility, moisture retention,
antioxidant, antibacterial, and antifungal properties, and is
therefore a highly promising material for drug delivery and
tissue engineering.19−21 Sodium alginate (SA), a naturally
occurring polysaccharide sourced from brown algae, has also
gained significant biomedical interest because of its out-
standing antioxidant properties, biodegradability, biocompati-
bility, and cost-effectiveness, making it a valuable component
in various biomedical applications.22,23

Chlorhexidine (CHX), a cationic bisguanidine, is frequently
utilized in dentistry owing to its outstanding broad-spectrum
antimicrobial activity.24 β-cyclodextrin (β-CD) has been
employed to encapsulate CHX within inclusion complexes
using the saturated ethanol solution technique. These
complexes have demonstrated potent sustained release and
antibacterial properties. The deployment of β-CD is crucial in
modulating the release of CHX, providing a controlled delivery
mechanism that enhances its effectiveness in clinical
applications.25−27

To overcome the limitations of conventional hydrogels, such
as poor mechanical properties and insufficient antimicrobial
capacity, researchers have been developing hydrogels endowed
with antimicrobial and osteoinductive features.7,28,29 These
hydrogels incorporate ceramic materials such as nanohydrox-
yapatite (nHA) and antimicrobial agents. nHA shares
structural and biochemical similarities with the mineral
composition of animal and human bone tissues and is
considered an ideal material for bone defect healing due to
its exceptional biocompatibility, osteoconductivity, osteoin-
ductivity, and bioactivity.30−32 Recent studies showed that
incorporating metal ions into nHA can significantly improve
the mechanical, biological, and antimicrobial characteristics.
Various metal ions, such as Y3+, Zn2+, Mn2+, Mg2+, Sr2+, Ti4+, or
Ag2+, have been doped into nHA to enhance the
physicochemical attributes;33−36 the selected dopant must
improve the physicochemical properties of nHA without
compromising its biological efficacy.37 Among these, Sr2+, a
trace element in human bone tissue, is known for its
osteoinductive properties, biocompatibility, and relevance in
treating osteoporosis.38,39 The biological prowess of Sr2+ has
increased the focus on developing strontium-nanohydroxyapa-
tite (Sr-nHA) in recent years. Studies have validated that Sr-
nHA not only promotes cell adhesion and growth but also
stimulates osteoblast activity and inhibits osteoclasts in
vitro.37,39 Ding et al. highlighted that varying levels of
strontium doping in nHA produced different effects on bone
regeneration, with Sr-nHA having a 100% Sr/Ca + Sr molar
ratio and exceptional osteogenic properties.40

While previous research has established the promising
osteogenic properties of Sr-nHA,40 significant evidence has
demonstrated the robust antibacterial characteristics of β-CD-
CHX.25 However, few systematic studies have explored the
encapsulation of β-CD-CHX with Sr-nHA in composite
hydrogel scaffolds. Thus, this study focused on the design
and development of Sr-nHA nanoparticles and the incorpo-
ration of β-CD-CHX into CMCS/SA hydrogels. The primary
objective was to comprehensively investigate the properties, in
vitro biocompatibility, bone regeneration potential, and
antimicrobial efficacy of these novel composite hydrogel
scaffolds. Our aim was to create a filler material tailored for
treating jaw defects that offers the dual benefits of

antimicrobial and osteogenic properties that are crucial for
repairing jaw defects in scenarios with a risk of infection.

2. EXPERIMENTAL SECTION
2.1. Materials. β-CD was sourced from Shanghai Boao

Biotechnology, and CHX was procured from Sigma-Aldrich.
CMCS, SA, and NaH2PO4 were acquired from Dalian Meilun
Biotechnology Co., Ltd. Cross-linking agents 1-ethyl-(3-
(dimethylamino)propyl)carbodiimide hydrochloride (EDC)
and N-hydroxysuccinimide (NHS) were supplied by Shanghai
Aladdin Biochemical Technology Co., Ltd. SrCl2 and
ammonium hydroxide (NH3·H2O) were obtained from
Shanghai Macklin Biochemical Co., Ltd.

2.2. Preparation and Characterization of Sr-nHA. Sr-
nHA was synthesized using the coprecipitation technique.40 A
solution of NaH2PO4 was gradually added to a vigorously
stirred SrCl2 solution, maintaining a Sr/P molar ratio of 5:3,
and NH3·H2O was used to adjust the pH of the reaction
mixture to 10.0. The reaction proceeded at 50 °C for 1 h,
followed by continuous stirring for an additional 2 h, and then
left to age for 24 h at ambient temperature. The resultant
precipitate was then filtered and thoroughly washed three
times with anhydrous ethanol, followed by three washes with
distilled water. Subsequently, the material was freeze-dried,
yielding Sr-nHA with a Sr2+/(Ca2+ + Sr2+) molar ratio of 100%.
Sr-nHA was characterized with transmission electron micros-
copy (TEM) (Jeol/JEM 2100, USA), and qualitative analysis
was conducted via Fourier-transform infrared spectroscopy
(FTIR; NEXUS-470, Thermo Nicolet, USA). The elemental
composition of Sr-nHA was determined using X-ray photo-
electron spectroscopy (XPS; ESCALAB250XI, USA). The
crystal structure of Sr-nHA was measured via X-ray diffraction
(XRD; D8 Advance, Germany).

2.3. Preparation and Characterization of Composite
Hydrogel Scaffolds. β-CD-CHX was synthesized using the
saturated aqueous solution method. β-CD was first dissolved in
double-distilled water to create a saturated solution, while
CHX was dissolved in ethanol to achieve a 1:1 molecular ratio
with β-CD. The CHX solution was then incrementally added
to the stirred β-CD solution. The reaction proceeded at 50 °C
for 1 h. Subsequently, the mixture was cooled, filtered, and
ground to yield CHX/β-CD powder through evaporation and
further grinding. EDC and NHS were used as the cross-linking
agents to fabricate the hydrogel. SA was grafted onto CMCS to
form CMCS/SA hydrogels (CSH), as previously described.41

For this, 0.15 g of CMCS was dissolved in 5 mL of a 0.9%
NaCl solution at room temperature, and 0.15 g of SA was
dissolved in 5 mL of deionized water. After thorough stirring,
the CMCS/SA mixture was obtained. Then, 112.5 mg each of
EDC and NHS were added to 10 mL of the CMCS/SA
solution and stirred for 1 h to activate the carboxyl group of
SA. The mixture was then left to react for 12 h to yield the
CSH hydrogel. To integrate β-CD-CHX and Sr-nHA, they
were added to the CMCS/SA solution and stirred for 1 h,
ensuring a uniform dispersion. The final concentrations were
set at 0.1% (w/v) for β-CD-CHX and 6% (w/v) for Sr-nHA.
Following this, hydrogels such as CSH, CHX-CSH (containing
β-CD-CHX), Sr-nHA-CSH (containing Sr-nHA), and Sr-
nHA@CHX-CSH (containing both β-CD-CHX and Sr-nHA)
were prepared. Composite hydrogel scaffolds were charac-
terized using scanning electron microscopy (SEM). Qualitative
analysis of the hydrogels was conducted using FTIR, and the
elemental compositions were analyzed via XPS.
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2.4. Physical Properties. 2.4.1. Swelling Study. The
lyophilized hydrogel sample was weighed (W0) and soaked in 5
mL of PBS for 48 h to achieve swelling equilibrium, and then
the hydrogel surface solution was blotted with filter paper
before weighing the expanded hydrogel (W1). The swelling
ratio of the hydrogel was calculated as follows:

= ×W W WSwelling ratio ( )/ 100%1 0 0

2.4.2. Degradation Behavior. The masses (W0) of the four
lyophilized hydrogel groups were weighed. Subsequently, the
hydrogels were immersed in 5 mL of PBS at 37 °C. The
hydrogels were then removed from PBS at different time
points, lyophilized, and weighed (Wt). The degree of in vitro
degradation was calculated using the following equation:

= ×W WRemaining (%) / 100%t 0

2.5. Cell Proliferation Assessment. The experimental
setup included five groups: control, CSH, CHX-CSH, Sr-nHA-
CSH, and Sr-nHA@CHX-CSH groups. After fabrication, the
hydrogels were sterilized under UV light for 2 h and then
soaked in a cell culture medium that contained 1% penicillin/
streptomycin and 10% fetal bovine serum. Extracts from these
hydrogels were collected after 24 h at 37 °C and stored at 4
°C. The effect of these hydrogel scaffolds on cell proliferation
was evaluated using MC3T3-E1 cells. These cells were seeded
in 96-well plates at 5 × 103 cells per well and incubated at 37
°C with 5% CO2. Each group had five replicated samples
prepared. On days 1, 3, and 5 after seeding, 10 μL of CCK-8
solution was added to each well and incubated for 1 h. The
absorbance was measured at 450 nm using an enzyme marker
to assess cell proliferation. Additionally, cell proliferation was
visualized using AM/PI staining after 1, 3, and 5 days of
incubation. Stained cells were observed under fluorescence
microscopy to analyze cell proliferation patterns.

2.6. Cell Osteogenic Differentiation. To prepare the
osteogenic induction medium for each group, 10 mmol/L
sodium β-glycerophosphate, 50 μg/mL ascorbic acid, and 0.1
μmol/L dexamethasone were added to the extracts. MC3T3-
E1 (ATCC, CRL-2594) cells were then cultured in 12-well
plates. Once the cell density had reached 80%, the medium was
replaced with the osteogenic induction medium, which was
subsequently changed every 2 days. ALP staining was
performed using ALP kits from the Nanjing Jianjian
Bioengineering Institute and from the Dalian Meilunbio
Bioengineering Institute after 7 and 14 days of culture. For
mineralization analysis, cells were fixed in 4% paraformalde-
hyde for 30 min on day 21. Each well was then treated with a
2% alizarin red solution (provided by Dalian Meilunbio
Bioengineering Institute) and incubated for 45 min. Samples
were observed under a microscope and photographed. To
dissolve the calcium nodules, each well was treated with 100
nmol/L cetylpyridinium chloride at room temperature for 30
min. Optical density values were measured using a microplate
reader at 562 nm.

2.7. In Vitro Antibacterial Activity. The antimicrobial
properties of the hydrogels were assessed by measuring the
diameters of the inhibition zones surrounding cultures of S.
aureus and E. coli. Hydrogels were fashioned into cylinders with
a 12-mm diameter and a 5-mm height and then sterilized
under UV light for 2 h before use. A 200-μL volume each of S.
aureus (ATCC 6538) and E. coli (ATCC 8739) cultures was
uniformly spread on sterile Luria−Bertani (LB) agar plates and
incubated at 37 °C for 1 h. Subsequently, hydrogels from each
group were placed on LB agar plates containing bacteria and
incubated at 37 °C for 24 h. Plates were photographed after
incubation, and the dimensions of the zones of inhibition were
measured.

2.8. Statistical Analysis. Each experiment was conducted
in triplicate, ensuring independent replication for each set.

Figure 1. TEM image of Sr-nHA (A,B), XPS spectra (C), FTIR spectra (D), and XRD spectra (E) of Sr-nHA.
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Data analysis was performed using GraphPad Prism 9 software,
with results presented as the mean ± standard deviation. For
group comparisons, one-way analysis of variance was
employed. The significance levels are indicated as follows: *P
< 0.05, **P < 0.01, and ***P < 0.001.

3. RESULTS AND DISCUSSION
3.1. Characterization of Sr-nHA. Representative TEM

images of Sr-nHA nanoparticles showed a regular rod-like
morphology that was consistent with that seen in prior
research (Figure 1A,B);42 additionally, slightly darker areas
were present, indicative of the stacking of the Sr-nHA
nanoparticles. The XPS spectra (Figure 1C) validated the
presence of elements O, P, and Sr in Sr-nHA with binding
energies at approximately 529, 132, and 267 eV, respectively.
The FTIR spectrum of Sr-nHA (Figure 1D) exhibited the
characteristic absorption peaks of PO4

3− at 1008, 948, 593, and
556 cm−1. Furthermore, the presence of hydroxyl groups was
corroborated by the weaker, broader bands observed in the
3600−3000 cm−1 range. The XRD pattern of Sr-nHA was
consistent with that of the standard card JCPDS #33-1348
(Sr5(PO4)3(OH)) (Figure 1E). The diffraction peaks at
24.45°, 30.5°, and 31.72° are considered to belong to the
(002), (211), and (300) crystal planes, which are typical of the
characteristic diffraction peaks of Sr-nHA and are consistent
with results from previous studies.40,43 Collectively, the TEM,
XPS, FTIR, and XRD analyses substantiated the successful
synthesis of Sr-nHA nanoparticles.

3.2. Characterization of Composite Hydrogel Scaf-
folds. The microstructural morphology of four varieties of

lyophilized composite hydrogel scaffolds is shown in SEM
images in Figure 2. Each group of scaffolds exhibited a 3D
porous structure, with pores caused by the formation of ice
crystals during the freeze-drying process.44 This 3D porous
structure is advantageous for promoting cell proliferation and
nutrient transportation.45 The CSH hydrogel, in particular,
exhibited comparatively smooth pore walls (Figure 2A,E). The
introduction of β-CD-CHX into CSH did not alter the 3D
porous architecture of the hydrogel. However, under high
magnification, the pore walls of the CHX-CSH hydrogels
appeared marginally rougher than those of the CSH group,
with occasional protruding particles noticeable on the surface
(Figure 2F). The incorporation of Sr-nHA further roughened
the surface texture of both Sr-nHA-CSH and Sr-nHA@CHX-
CSH scaffolds (Figure 2C,D,G,H), with a more pronounced
presence of protruding particles. This is probably due to the
dispersion of nanoparticles on the scaffold surfaces, which
causes a degree of agglomeration.40 Surface roughness has
been reported to be critical for cell adhesion to hydrogels, and
an increase in surface roughness causes a subsequent increase
in the surface area of the hydrogel, which provides more
adhesion sites for cells and favors cell proliferation and new
bone formation.46 The average pore sizes of CSH, CHX-CSH,
Sr-nHA-CSH, and Sr-nHA@CHX-CSH were 515.16 ± 49.92,
524.11 ± 86.64, 150.30 ± 32.07, and 173.99 ± 52.72 um,
respectively. The pore sizes of Sr-nHA-CSH and Sr-nHA@
CHX-CSH were significantly smaller than those of CSH and
CHX-CSH, which may be attributed to the increase in the
degree of cross-linking of the hydrogel upon the addition of Sr-
nHA, producing a denser lattice.47 Suitable pore sizes facilitate

Figure 2. SEM images of CSH, CHX-CSH, Sr-nHA-CSH, and Sr-nHA@CHX-CSH (A−D: 100×, E−H: 500×). (I) Pore size of hydrogels.
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cellular material exchange and metabolic waste discharge.48 Sr-
nHA@CHX-CSH had a pore size similar to that of human
cancellous bone (pore size: 100−200 μm), which is crucial for
bone repair.49 A 100−300-μm pore size of the scaffold has
been proven to be the most suitable for the growth of
osteoblasts.50 Thus, we constructed Sr-nHA@CHX-CSH
hydrogels with a 3D porous structure, suitable pore size, and
rough surface, which are expected to provide a favorable
environment for bone repair.
The XPS analysis indicated that Sr-nHA@CHX-CSH

contains C, N, O, P, Na, Cl, and Sr (Figure 3A). This
composition aligns with the total elemental constitution of Sr-
nHA, β-CD-CHX, and CSH. Notably, the XPS spectrum of Sr-
nHA-CSH displayed P 2p and Sr 3p peaks that were absent in
that of CSH. The O/C ratios for Sr-nHA@CHX-CSH (1.17)
and Sr-nHA-CSH (1.10) exceeded those of CSH (0.47),
implying that the incorporation of β-CD-CHX and Sr-nHA
contributes additional O atoms and modifies the chemical
structure of the hydrogel surface.11 These XPS findings
confirm the successful creation of the composite hydrogels.
The FTIR spectrum of CSH (Figure 3B) exhibited broad

peaks at 3303 cm−1, indicative of the −OH and −NH2
stretching vibration absorptions. Additionally, peaks at 1592
and 1409 cm−1 were observed, corresponding to the
asymmetric and symmetric stretching vibrations of the
carboxyl group, respectively. With the incorporation of Sr-
nHA, the Sr-nHA-CSH sample revealed characteristic −PO4
peaks at 1008, 947, 591, and 555 cm−1. The FTIR spectrum of

Sr-nHA@CHX-CSH demonstrates peaks similar to those of
Sr-nHA-CSH, suggesting that the structural integrity of the
composite hydrogel remained largely unchanged after the
addition of β-CD-CHX. Notably, the Sr-nHA@CHX-CSH
spectrum encompassed all characteristic peaks of its con-
stituents (β-CD-CHX, Sr-nHA, and CSH). This comprehen-
sive spectral representation is indicative of the successful
synthesis of the composite hydrogel through the physical
comingling of its components. Furthermore, the addition of β-
CD-CHX and Sr-nHA to CSH did not appear to alter the
chemical structure and composition of the original CSH
matrix, which is consistent with the results obtained from XPS
analysis.

3.3. Physical Properties. 3.3.1. Swelling Study. As shown
in Figure 4A, all 4 groups of hydrogels showed favorable
swelling characteristics, with average swelling rates of
1809.83% ± 144.06%, 1621.25% ± 95.09%, 612.01% ±
82.05%, and 658.43% ± 52.98% for CSH, CHX-CSH, Sr-nHA-
CSH, and Sr-nHA@CHX-CSH, respectively. The swelling of
the hydrogels was significantly reduced by the incorporation of
Sr-nHA, which was attributed to the hydrophobicity of Sr-nHA
and the filling of the pores of the hydrogels with Sr-nHA after
incorporation, as this reduced the water storage space of the
hydrogel.51

3.3.2. Degradation Behavior. The remaining amounts of
CSH, CHX-CSH, Sr-nHA-CSH, and Sr-nHA@CHX-CSH
amounted to 53.23% ± 2.42%, 56.34 ± 2.23%, 70.61 ±
2.71%, and 72.89 ± 2.11% by the fourth week (Figure 4B).

Figure 3. (A) XPS spectra and (B) FTIR spectra of β-CD-CHX, Sr-nHA, CSH, CHX-CSH, Sr-nHA-CSH, and Sr-nHA@CHX-CSH.

Figure 4. Equilibrium swelling studies (A) and the degradation test (B) of CSH, CHX-CSH, Sr-nHA-CSH, and Sr-nHA@CHX-CSH.
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The degradation rate of hydrogel was reduced by the addition
of Sr-nHA compared with that of CSH and CHX-CSH, which
was attributed to the introduction of a large number of divalent
cations and the enhancement of the cross-linking density of the
hydrogel by the addition of Sr-nHA.52 Hydrogel scaffolds
require a certain amount of degradation to consistently release
nanoparticles for their antimicrobial and osteogenic capabil-
ities.53

3.4. Cell Proliferation. MC3T3-E1 cells were incubated
with hydrogels for 1, 3, and 5 days, and the cells were then
stained with AM/PI and observed for cell proliferation using a
fluorescence microscope. Over time, the number of cells
noticeably increased across all five groups. Both the Sr-nHA-

CSH and Sr-nHA@CHX-CSH groups exhibited a significantly
higher count of MC3T3-E1 cells than that in the control, CSH,
and CHX-CSH groups (Figure 5A). The OD values between
the CSH and CHX-CSH groups did not significantly differ, nor
did the values between the Sr-nHA-CSH and Sr-nHA@CHX-
CSH groups (Figure 5B). This indicates that the addition of β-
CD-CHX did not affect cell viability. However, the cell counts
in both the Sr-nHA-CSH and Sr-nHA@CHX-CSH groups
were significantly higher than those in the control, CSH, and
CHX-CSH groups (P < 0.05). The higher cell proliferation
rates in the Sr-nHA-CSH and Sr-nHA@CHX-CSH groups
could be attributed to the improved roughness of the hydrogels
after loading with Sr-nHA, which provided more adhesion sites

Figure 5. AM/PI staining images (A) and cell proliferation evaluation of Control, CSH, CHX-CSH, Sr-nHA-CSH, and Sr-nHA@CHX-CSH
groups for 1, 3, and 5 days (B).

Figure 6. ALP staining images (A) and quantitative analysis of ALP activity (B) after 7 and 14 days of culture.
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for the cells and thus effectively promoted cell proliferation.
Furthermore, Sr2+ from Sr-nHA has been reported to promote
the proliferation of MC3T3-E1 cells.54 Thus, the Sr-nHA@
CHX-CSH hydrogel demonstrated excellent cytocompatibility,
making this a promising material for bone implants,
particularly for treating bone defects.

3.5. Cell Osteogenic Differentiation Experiment. After
7 and 14 days of osteogenic induction, both the Sr-nHA-CSH
and Sr-nHA@CHX-CSH groups exhibited noticeably more
pronounced ALP staining than that in the control, CSH, and
CHX-CSH groups (Figure 6A). This enhanced ALP staining
suggests an accelerated differentiation of MC3T3-E1 cells into
osteoblasts in these groups, with a larger number of cells
undergoing differentiation. The quantitative ALP analysis
(Figure 6B) indicates significantly higher ALP activity in the
Sr-nHA-CSH and Sr-nHA@CHX-CSH groups than that in the
control, CSH, and CHX-CSH groups (P < 0.001).
Interestingly, the quantitative analysis of ALP staining in the
control, CSH, and CHX-CSH groups revealed no statistical
difference between these, indicating that the incorporation of
β-CD-CHX into the hydrogels did not significantly affect their
ability to stimulate osteogenic differentiation. The mineraliza-
tion of cells after 21 days of osteogenic induction (Figure
7A,B) is a critical phase in late osteogenesis. Both the Sr-nHA-
CSH and Sr-nHA@CHX-CSH groups showed enhanced
deposition of calcium and higher levels of mineralization
compared with those in the control, CSH, or CHX-CSH
groups because of the excellent osteoinductivity of the Sr2+
element and nHA.48,54,55 This was consistently evident in both
the calcium nodule staining and the quantitative analysis of it.
In addition, the porous structure and rough surface of
hydrogels provide a large specific surface area that is conducive
to increasing cell activity and promoting tissue infiltration,
which consequently promotes osteogenic differentiation of
cells.48

Thus, the efficacy of Sr-nHA@CHX-CSH in promoting
osteogenic differentiation and mineralization was effectively
verified by using in vitro cellular osteogenic induction
experiments and shown to display a good application prospect
in treating bone defects.

3.6. Antibacterial Experiment. The presence of inhib-
itory rings around CHX-CSH and Sr-nHA@CHX-CSH is
shown in Figure 8. Notably, the inhibitory rings of CHX-CSH
and Sr-nHA@CHX-CSH did not significantly differ, whereas
these were nearly imperceptible for CSH and Sr-nHA-CSH;
these results were confirmed by histogram analysis (Figure
8B), where CHX-CSH and Sr-nHA@CHX-CSH produced

significantly larger zones of inhibition compared with those of
CSH and Sr-nHA-CSH (P < 0.001). Thus, incorporation of β-
CD-CHX into the hydrogels notably enhanced their
antimicrobial capabilities against S. aureus and E. coli.25

However, the addition of Sr-nHA did not markedly improve
the antimicrobial properties of the composite hydrogels.
Therefore, the results from Figure 7 indicate that Sr-nHA@
CHX-CSH has effective antimicrobial properties against S.
aureus and E. coli. The healing process of jaw defects has a high
risk of infection because of the specifics of this anatomical
site.5,6 Sr-nHA@CHX-CSH can provide a favorable anti-
infective effect and has a good prospect for oral clinical
application.

4. CONCLUSIONS
This study successfully synthesized composite hydrogel
scaffolds exhibiting commendable osteogenic and antibacterial
properties. SEM analysis of the surface morphology of these
scaffolds revealed a porous structure with a rough surface
texture on the pore walls, which is conducive to cell adhesion.
The successful incorporation of β-CD-CHX and Sr-nHA into
the composite hydrogel scaffolds was verified via FTIR and
XPS analyses. The favorable hydrophilicity and biodegrad-
ability of the composite hydrogel were revealed by the analysis

Figure 7. ARS staining images (A) and quantitative analysis of cell mineralization (B) after 7 and 14 days of culture.

Figure 8. Antibacterial test results (A) and the diameter of the
inhibition zone (B) for S. aureus and E. coli of CSH (a), CHX-CSH
(b), Sr-nHA-CSH (c), and Sr-nHA@CHX-CSH (d).
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of the swelling and in vitro degradation behavior. Notably, the
hydrogel scaffold demonstrated impressive biocompatibility
and antimicrobial efficacy. Furthermore, the hydrogel exhibited
a marked capacity to induce osteogenic differentiation and
mineralization in osteoblasts. Thus, these hydrogel scaffolds
hold significant potential for treating jaw defects, particularly in
cases where an elevated risk of infection is present.
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