
Sequence determinants of polyadenylation-mediated
regulation

Ilya Vainberg Slutskin,1,2 Adina Weinberger,1,2 and Eran Segal1,2
1Department of Computer Science and AppliedMathematics, Weizmann Institute of Science, Rehovot 7610001, Israel; 2Department
of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel

The cleavage and polyadenylation reaction is a crucial step in transcription termination and pre-mRNA maturation in hu-

man cells. Despite extensive research, the encoding of polyadenylation-mediated regulation of gene expression within the

DNA sequence is not well understood. Here, we utilized a massively parallel reporter assay to inspect the effect of over

12,000 rationally designed polyadenylation sequences (PASs) on reporter gene expression and cleavage efficiency. We

find that the PAS sequence can modulate gene expression by over five orders of magnitude. By using a uniquely designed

scanning mutagenesis data set, we gain mechanistic insight into various modes of action by which the cleavage efficiency

affects the sensitivity or robustness of the PAS to mutation. Furthermore, we employ motif discovery to identify both

known and novel sequence motifs associated with PAS-mediated regulation. By leveraging the large scale of our data, we

train a deep learning model for the highly accurate prediction of RNA levels from DNA sequence alone (R=0.83).

Moreover, we devise unique approaches for predicting exact cleavage sites for our reporter constructs and for endogenous

transcripts. Taken together, our results expand our understanding of PAS-mediated regulation, and provide an unprece-

dented resource for analyzing and predicting PAS for regulatory genomics applications.

[Supplemental material is available for this article.]

For the majority of human mRNAs the formation of the 3′ end is
directed by interaction between trans-acting factors and cis-ele-
ments in the polyadenylation sequence (PAS) leading to cleavage
and polyadenylation of the premature mRNA (Zhao et al. 1999;
Matoulkova et al. 2012). Naturally, sequences upstream of the
cleavage site, such as the canonical hexamer motif, fall within
the 3′ UTR (Hu et al. 2005; Matoulkova et al. 2012). In addition,
the premature mRNA includes sequences downstream from the
cleavage site which may also contain cis-elements regulating the
cleavage reaction (Zhao et al. 1999; Hu et al. 2005; Matoulkova
et al. 2012). Thus, both sequences within the 3′ UTR and down-
stream from it are of interest when searching for sequence features
affecting gene expression through modulating 3′ end processing.

The majority of previous research efforts to characterize cis-
regulatory elements affecting cleavage and polyadenylation fo-
cused on bioinformatics analysis of mRNA 3′ end data (Legendre
and Gautheret 2003; Zarudnaya et al. 2003; Hu et al. 2005) and
on mutational analysis of individual transcripts (Hart et al. 1985;
McDevitt et al. 1986; Zhang et al. 1986; Zhang and Cole 1987;
Connelly and Manley 1988; Goodwin and Rottman 1992; Sittler
et al. 1994; Moreira et al. 1995, 1998; Graveley and Gilmartin
1996; Antoniou et al. 1998; Natalizio 2002; Nunes et al. 2010;
Yoon et al. 2012). These studies revealed a number of upstream el-
ements (USEs) and downstream elements (DSEs) which were asso-
ciated with polyadenylation site selection and efficiency.
Moreover, it has been shown that different point mutants of the
canonical hexamer have a varied effect on the cleavage and poly-
adenylation reaction (Sheets et al. 1990; Thomas and Saetrom
2012), even though in some cases the motif might not be required
(Nunes et al. 2010). Despite the accumulating knowledge about
the sequence features associated with polyadenylation, the predic-

tion of functional polyadenylation sites is still limited to classifica-
tion of input sequences according to their predicted propensity to
serve as PASs, as opposed to prediction of exact cleavage sites
(Legendre and Gautheret 2003; Cheng et al. 2006; Magana-Mora
et al. 2017). Therefore, a comprehensive study of 3′ UTR anddown-
stream sequences in the context of cleavage and polyadenylation
efficiency may greatly advance our understanding of this crucial
process.

Some research efforts employed machine learning and deep
learning approaches to prediction of alternative polyadenylation
events and classification of sequences as PASs (Cheng et al. 2006;
Akhtar et al. 2010; Chang et al. 2011; Gao et al. 2018; Leung
et al. 2018; Bogard et al. 2019). The deep learning approaches high-
light the usefulness of convolutional neural networks (CNNs) for
regulatory genomics and provide valuable predictions for PAS clas-
sification and isoform choice. However, the quality of input data is
of the utmost importance for this kind of approach. A large data set
of diverse reporter constructs, not limited to a small number of
contexts, can thus contribute to model performance and general-
izability. Moreover, a broadly applicable approach for accurate
cleavage site prediction is yet to be established.

Recent progress in large-scale DNA synthesis promoted the es-
tablishment of massively parallel reporter assays (MPRAs) (Sharon
et al. 2012; Goodman et al. 2013; Kheradpour et al. 2013; Mogno
et al. 2013; Smith et al. 2013; Noderer et al. 2014; Muerdter et al.
2015; Rosenberg et al. 2015; Weingarten-Gabbay et al. 2016;
Vainberg Slutskin et al. 2018), which were employed in the study
of the regulatory outcomes of extensive variant libraries.
Moreover, intelligent design followed by systematic analysis of
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the MPRA data has been previously shown to advance the under-
standing of multiple regulatory processes (Sharon et al. 2012,
2014; Smith et al. 2013; Lubliner et al. 2015; Shalem et al. 2015;
Weingarten-Gabbay et al. 2016; Vainberg Slutskin et al. 2018).
However, given the numerous regulatory processes in which
3′ UTRs are involved, a major gap remains in our ability to predict
RNA levels from the relevant DNA sequences.

Here, we set out to advance ourmechanistic understanding of
PAS-mediated gene expression regulation by applying a MPRA ap-
proach developed in our lab. We leverage the intelligent design of
our large-scale library to quantify the effect of numerous PAS fea-
tures on RNA levels. We utilize a unique scanningmutagenesis ap-
proach to identify several mechanisms by which PASs regulate
expression levels. Moreover, we quantify the effect of defined
PAS features on expression and find associated known and novel
regulatory motifs. Finally, we apply deep learning models for the
accurate prediction of RNA levels and cleavage efficiency from
DNA sequence alone within our library as well as prediction of
exact endogenous cleavage sites. Taken together, our analysis
and models boost our understanding of PAS-mediated regulation
of gene expression and promote applications in the field of regula-
tory genomics.

Results

High-throughput measurement of expression levels and cleavage

maps for over 12,000 PASs

To get a quantitative measure for the effect of PASs on expression
levels and cleavage efficiency, we adopted an MPRA approach pre-
viously used in our lab (Vainberg Slutskin et al. 2018).Wedesigned
12,339, 210-nucleotide (nt)-long oligonucleotides, which are com-
prised of constant and variable regions (Methods). In our design,
we included both systematically mutated sequences as well as na-
tive sequences from human and viral genomes. To measure the
expression levels and cleavage efficiency, we transiently trans-
fected our library of reporter constructs into K562 cells. The
mRNA produced from the reporter was reverse-transcribed with a
poly(T) primer and amplified with gene specific primers for
paired-endsecond-generation sequencing.Weused the shorter for-
ward reads tomap the construct barcode to our reference sequences
and the longer reverse reads tomap the cleavage sites for each con-
struct. In addition, theplasmid libraryDNAwas also amplified, and
we used the plasmid DNA counts together with the cDNA forward
and reverse reads to calculate the normalized RNA levels and per
position cleavage efficiency, respectively, for each construct (Fig.
1A;Methods).We find that the expressionmeasurements arehigh-
ly reproducible between technical replicates (R=0.99, P<10−10)
(Supplemental Fig. S1A). Furthermore, we estimated the technical
noise of our system by examining groups of 10 constructs with
identical sequences except for the DNA barcode and find that the
median relative standard deviation (RSD) was 1.1% (Supplemental
Fig. S1B), indicating that our system exhibits low technical noise.
We note that the range of expression levels spanned by these
constructs is over 5000-fold. Finally, we examined the cleavage ef-
ficiency in similar groups of 10 constructs and findhigh agreement
across the different barcodes (Supplemental Fig. S1C–E).

Here, we applied multiple library design approaches to quan-
tify the effect of regulatory elements within PASs (Fig. 1B). First, we
used rational mutagenesis of three known PASs from human im-
munodeficiency 1 virus (HIV1) (Bohnlein et al. 1989; Valsamakis
et al. 1991), Simian virus 40 late (SVL) (Sadofsky et al. 1985;

Schek et al. 1992; Bagga et al. 1995), and the synthetic polyadeny-
lation sequence (SPA1) (Levitt et al. 1989). Next, we constructed a
large set (6197 constructs) of native PASs from K562 3′ end se-
quencing (Lin et al. 2012) data and from viral genomes (Hulo
et al. 2011; Brister et al. 2015) whose host is human. Finally, to per-
form an unbiased search for regulatory elements within PASs, we
applied a scanningmutagenesis approach on a subset of the native
PASs (Methods).

We subjected the library to our experimental pipeline and
obtained expression and cleavage efficiency measurements for
97.3% and 69.3% of the designed constructs, respectively. The dif-
ference in the percentage of the constructs can be attributed to the
higher coverage requirements for detecting cleavage (Methods;
Supplemental Note 2). We find that the assayed constructs span
over five orders ofmagnitude in expression levels (Fig. 1C). The ex-
pression distribution is highly skewed, with the majority of se-
quences exhibiting high expression, consistent with the design
of the library,which includeda largeproportionof sequenceshigh-
ly likely to function as PASs. To get a sense of the positions atwhich
the cleavage is most frequent, we plotted the mean cleavage effi-
ciency distribution (Fig. 1D). We observe a clear peak at position
145, which can be attributed to centering our variable regions on
the previously annotated cleavage sites in the native sequences in-
cluded in our library. We conclude that our MPRA approach can
measure the effect of 3′ UTR sequences on RNA expression levels
and per position cleavage efficiency over a wide range of values.

Scanning mutagenesis reveals complex relationships between

mutation position, cleavage efficiency maps, and expression levels

Scanningmutagenesis is anunbiased approach for discoveryof reg-
ulatory sequences. Here, we mutated 20-bp blocks of 629 native
PASsby replacing thenative sequencewitha randomone (avoiding
the introduction of certain sequences) (Methods) and measured
the effect on expression and cleavage efficiency. We find that mu-
tation blocks can decrease expression up to four orders of magni-
tude relative to wild type (WT), while in some cases there are no
significant deviations in expression (Fig. 2A). Moreover, clustering
of the changes in expression relative to WT upon mutation of the
different blocks revealed clusters of different response patterns
(Fig. 2B). The mutation block at positions 121:140 was frequently
associated with the largest reduction in expression. Given that
themost frequent cleavagewasobservedatposition145, this obser-
vation corresponds to the presence of an important upstream reg-
ulatory element. Moreover, positions 161:180 had a notable
effect onexpression, in linewitha less frequentpresenceof adown-
stream regulatory element.

We found PASs thatmaintained robust expression levels at all
mutation positions. We speculated that these results could be ex-
plainedbychanges in thecleavage efficiencymaps.Thus,weexam-
ined these changes at each position of the WT sequence and find
thatmutations can result in reduction of up to three orders ofmag-
nitude in cleavage efficiency (Fig. 2C). When examining the com-
bined measurements of expression and cleavage efficiency maps,
we noticed that some of the robust cases can be associated with
the presence of multiple cleavage sites, while others overlap with
the presence of new cleavage sites in the mutant sequences (Fig.
2D). In cases where we do see reduction in expression in regions
121:140and161:180, it indeedcorresponds tomutationsupstream
of and downstream from the cleavage site, respectively (Fig. 2E,F).
Moreover, when the cleavage site occurred at other locations,
we still observe a similar effect for the relative mutation blocks
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(Fig. 2G). In these cases, the reduction in expression corresponds to
the local reduction in cleavage efficiency. In the more intriguing
cases of robust expression of the given PAS upon scanning muta-
genesis, we find occurrences of cryptic cleavage sites appearing in
the mutant sequences that could explain the phenomenon (Fig.
2H,I). The cryptic cleavage sites could be focused (Fig. 2H) or dis-
persed (Fig. 2I) and occur upon mutagenesis of various regulatory
regions. However, we note that the presence of cryptic sites is not
sufficient for robustness as there are many PASs with cryptic sites
that are not robust (Fig. 2D).We also find cases of alternative polya-
denylation in theWT sequence (Fig. 2J), which could allow for com-
pensation for the mutagenesis by increasing the cleavage efficiency

of thePASswhose regulatoryelements remained intact.Weconclude
that in some cases the mutation of regulatory regions upstream of
anddownstream fromthe cleavage sitemay result indecrease in ex-
pression, while in other cases expression levels may be robust to
mutation owing to changes in the cleavage efficiency map.

Sequence determinants affecting polyadenylation-mediated

regulation of reporter gene expression

The cleavage and polyadenylation reaction is directed by interac-
tion between trans-acting factors and cis-elements in the prema-
ture mRNA (Zhao et al. 1999; Hu et al. 2005; Matoulkova et al.

B

A
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Figure 1. A high-throughput system for studying PAS-mediated regulation of gene expression. (A) A schematic representation of a massively parallel
reporter assay measuring expression and cleavage efficiency of PAS reporters (Methods). Briefly, sequences are designed in silico, synthesized, and cloned
into a reporter plasmid containing mNeonGreen. The plasmid is transiently transfected into K562 cells, from which RNA is extracted and reverse-tran-
scribed with a poly(T) primer. N= any base synthesized randomly, V = any base except T synthesized randomly, X =A, C, G or T preselected as described
in the Methods. The cDNA and plasmid DNA are amplified for paired-end second-generation sequencing. The barcodes of each library member are quan-
tified in the forward cDNA reads and the plasmid DNA reads. These are used to calculate normalized expression. The reverse cDNA reads are mapped to
their respective library members identified by the barcode in the forward DNA reads. Following stringent filtering, the cleavage efficiency distribution, nor-
malized by the plasmid DNA reads, is calculated. (B) Library design is based on the three illustrated schemes. First, wemutated three known PASs by varying
annotated regulatory elements and surrounding sequences. Second, we constructed a compendium of 6197 native PASs from annotated transcripts of
viruses whose host is human and from K562 3′ end sequencing data. Finally, we applied scanning mutagenesis by mutating every 20-bp sequence in se-
lected 629 native PASs (Methods). (C) A histogram depicting the distribution of RNA expression levels acquired by the methods in A. The −5 cutoff is used
later to define positive and negative sets for motif analysis. (D) Per position mean cleavage efficiency calculated over all library variants. Positions are indi-
cated as the distance from the mNeonGreen stop codon.
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2012). Thus, we examined the sequences surrounding the cleavage
sites measured by our assay. We find that sequences upstream of
the cleavage site are mostly A-rich and U-rich, while sequences
downstream were U-rich and slightly G-rich, as expected (Fig.
3A). Next, we quantified the effect of single nucleotide variants
of the canonical hexamer motif AAUAAA in native constructs on

expression (Fig. 3B). We find that the hexamer variants can span
up to 12-fold in median expression levels. Moreover, the grouping
by the hexamer variant alone is associated with different expres-
sion levels despite the varied sequences analyzed. We conclude
that the hexamer variants have a considerable effect on expression
although they do not fully explain the observed differences.

E F
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C

D
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Figure 2. Scanning mutagenesis reveals a
mechanistic link between cleavage efficiency
and expression levels. (A) Histogram of the
difference in expression between themutant
with the lowest expression and the WT PAS
for PASs with cleavage efficiency data. PASs
with differences≥−2 are considered robust.
(B) A clustered heat map where each row is
a native PAS subjected to scanningmutagen-
esis and each column is a range of mutated
20 bp. The values are the expression of the
mutant minus the expression of the WT for
PASs with cleavage efficiency data. Rows
were clusteredwithward hierarchical cluster-
ing using a cosine distance. Two main clus-
ters are observed, one that is robust to
mutagenesis and one that is sensitive at cer-
tain mutation blocks. (C) Histogram of the
differences in cleavage efficiency calculated
per variant per cleaved WT position. The −2
cutoff is used later to define positive and neg-
ative sets for motif analysis. (D) PASs with
cleavage efficiency data are classified based
on their behavior in the scanning mutagene-
sis data. Robust PASs showedminimal chang-
es in expression levels for all mutants, as
annotated in A. PASs whose WT sequence
has more than one cleavage site separated
byat least 10bases fromone another are clas-
sified as MultipleCleavageSites. PASs for
which at least one of their mutants has
more cleavage sites than the WT sequence
are classified as cryptic. (E–J) Visualization of
cleavage efficiency and expression levels for
example PASs. The right panel is a bar plot
of expression levels. The left panel is a heat
map of cleavage efficiencies, where each col-
umn is aposition along thePAS sequence and
each row refers to mutated positions within
the PAS. The color bar corresponds to the
measured cleavage efficiency for each variant
at each position. The mutated positions are
also visualized by the white blocks in the
heat map. Missing cleavage efficiencies in
the mutant variants at positions where the
WT had a measured cleavage efficiency
were imputed with the detection limit (see
Methods). Titles correspond to RefSeq IDs
of viral genomes followed by the number of
the PAS as annotated in the GenBank record.
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Figure 3. Multiple PAS sequence features have a considerable effect on expression levels and cleavage site location. (A) The nucleotide frequencies sur-
rounding the position of maximal cleavage efficiency of each variant. (B) Box plots comparing the expression levels of sequences grouped by the hexamer
found upstream of the position of maximal cleavage efficiency of each native PAS. Only native PASs with a single variation of the hexamer were included.
(C,D) Regulatory motifs found using DREME in 100 bp upstream of (C ) and 50 bp downstream from (D) the position of maximal cleavage efficiency found
in native sequences and also enriched in genomic sequences obtained from K562 3′ end sequencing data. The positive set consisted of library members
with expression higher than 2−5, which had cleavage efficiency data. The negative set consisted of library members with expression lower than 2−5. The
sequences were taken in corresponding length and orientation to the positive set but with respect to position 145. Only native library sequences were used
for the analysis. Only motifs that were significantly enriched in a set of endogenous 3′ UTR sequences (using AME) are presented (enrichment P-value <
0.01) (Methods). (E–G) Regulatory motifs found using DREME in scanning mutagenesis data upstream of (E), overlapping (F), or downstream from
(G) the position of maximal cleavage efficiency. Native and mutant 20-bp sequences were used as positive and negative sets, respectively. The regions
for analysis were selected with respect to cleavage positions that showed a difference in cleavage efficiency smaller than 2−2. Only motifs that were signifi-
cantly enriched in a set of endogenous 3′ UTR sequences (using AME) are presented (enrichment P-value < 0.01). All of the center motifs were enriched
upstream, while only the bottom two were enriched downstream (Methods). (H,I) CentriMo analysis for the positional preference of each motif found
upstream of (H) or downstream from (I) the analysis performed in C and D, respectively. The plot depicts positional distribution of the best match for
each of the motifs for results with Fisher E-value < 0.01. Positions are indicated relative to the position of maximal cleavage efficiency. The motifs are indi-
cated in the legend by their consensus sequence (Methods; Supplemental Fig. S2). (J) Expression as a function of ΔGopen, the change in ensemble free
energy required to expose the canonical hexamer with an additional 15 bp upstream and downstream. The analysis was performed on rationally designed
mutants of three PASs, SPA1 (left), SVL (center), and HIV1 (right).
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To elucidate additional regulatory
motifs, we turned to de novo motif dis-
covery using DREME following two
schemes (Bailey 2011). First, we analyzed
sequences upstream of and downstream
from the cleavage site for constructs
with sufficiently high expression (Fig.
3C,D). Second, we leveraged our unique
scanningmutagenesis data to identify se-
quence blocks that, whenmutated, had a
sufficiently large effect on cleavage effi-
ciency (Fig. 3E–G). The analyzed blocks
occurred upstream of, overlapping, or
downstream from the measured cleavage
site. To validate the discoveredmotifs, we
tested for their enrichment using AME
(McLeay and Bailey 2010) 100-bp up-
stream and 50-bp downstream endoge-
nous cleavage sites identified using
K562 3′ end sequencing data (Methods;
Lin et al. 2012). The discoveredmotifs us-
ing the two schemes are in good agree-
ment between them. Both highlight the
AWUAAA hexamer motif and U-rich ele-
ments upstream of the cleavage site and
GU-rich and U-rich elements down-
stream. Moreover, all of the motifs dis-
covered in the scanning mutagenesis
center subset are also enriched upstream
of endogenous sites, while only the GU-
rich and U-rich motifs are enriched
downstream. These results indicate that
thesemotifsmayalso occur in close prox-
imity to the cleavage site. Taken togeth-
er, our findings confirm the presence of
polyadenylation cis-regulatory elements
upstream of and downstream from the
cleavage site.

We hypothesized that the discov-
ered motifs may exhibit positional pref-
erence relative to the cleavage site.
Therefore, we calculated the positional
distribution of the best match for each
of themotifs found upstreamof or down-
stream from endogenous cleavage sites
using CentriMo (Bailey and Machanick
2012). The plotted data revealed that certain motifs have a posi-
tional preference (Fig. 3H,I). The top upstreammotif, which close-
ly resembles the canonical hexamer, shows a clear preference for
positions −10 to −40. However, we find an additional motif with
a similar positional inclination, WURAAA, which shares some in-
formationwith the canonical hexamer, yet is still different. Similar
analysis for the downstream motifs also reveals positional prefer-
ences, as in the case of DUKUBU and CUGUDU enriched closer
to the cleavage site and WUAAAW enriched further away from
the cleavage site. We find similar results when examining the po-
sitional preference of the motifs from the scanning mutagenesis
set (Supplemental Fig. S2). We conclude that the regulatory se-
quences governing the polyadenylation process are subject to pref-
erences in their distribution surrounding the cleavage site.

Despite the importance of linear regulatory sequences, RNA
secondary structure was shown to have an important role in 3′

UTR-mediated regulation of gene expression (Hans and Alwine
2000; Kertesz et al. 2007; Marín and Vaníček 2011; Wu and
Bartel 2017; Vainberg Slutskin et al. 2018). To test for the regulato-
ry effect of secondary structure surrounding the canonical hex-
amer, we mutated the sequences flanking the AAUAAA in three
known PASs, generating 135 constructs. For each mutant, we cal-
culated ΔGopen, the change in ensemble free energy required to ex-
pose the AAUAAA sequence. We find that very low ΔGopen values
are required in order to have a negative effect, of over two orders
of magnitude, on expression in all the three contexts tested (Fig.
3J). Moreover, in SPA1 we noted that below a certain threshold
(ΔGopen =−18 kcal/mol) the reduction in expression is linear
with respect to ΔGopen. We conclude that the effect of secondary
structure surrounding the hexamer motif is context-specific and
requires ΔGopen values below a particular threshold in order to be
observed.

BA

C

D

Figure 4. Prediction of expression levels and cleavage efficiencies from DNA sequence alone using
CNNs. (A) Model architecture for prediction of expression levels. The input DNA sequence is one hot en-
coded and fed into a CNN composed of two convolutional layers and one dense layer with a final output
of a single neuron with linear activation (Methods). (B) Scatter plot of predicted versus measured expres-
sion levels on held-out data. (C) Model architecture for prediction of cleavage efficiency maps. The input
DNA sequence is one hot encoded and fed into a CNN composed of two convolutional layers and two
dense layers with a final output of a vector of length 189, the number of positions considered. (D) Per
position mean cleavage efficiency calculated over all the library members in the test set. For each mem-
ber, the cleavage efficiencies were normalized by dividing by their sum, in order to facilitate comparison
between the measured distribution and the one achieved by the model. (E) Histogram of the absolute
differences between the measured and the most probable predicted cleavage site evaluated on library
held-out test data. Only constructs with measured cleavage efficiency maps were used.
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Highly accurate prediction of expression

levels and cleavage sites from

polyadenylation sequence

As our understanding of the polyaden-
ylation regulatory code is not complete,
we askedwhetherwe could build amodel
that would learn directly from the input
sequences, without carefully defined fea-
tures. Thus, we chose to apply a CNN to
predicting expression levels from DNA
sequences directly (Fig. 4A). The input
for the model is a 250-bp sequence en-
compassing the variable region, and the
output is the predicted expression value.
Our model predicts the observed expres-
sion with high accuracy both on training
(R=0.83) (Supplemental Fig. S3A) and
held-out test data (R=0.83) (Fig. 4B).
Our CNNmodel showed superior perfor-
mance over a gradient boosting tree-
based model (R=0.72 and R= 0.73 on
training and test, respectively) (Methods;
Supplemental Fig. S3B,C) and a k-mer
elastic net model (R=0.73 and R= 0.70
on training and test, respectively) (Meth-
ods; Supplemental Fig. S3D,E). These re-
sults indicate that the CNN can perform
highly accurate predictions of expression
from the DNA sequence alone, greatly
outperforming simpler models.

Next, we turned to the more chal-
lenging task of predicting the position
at which cleavage happens. We adapted
our CNN to output a vector correspond-
ing to the predicted cleavage efficiency
at each position (Fig. 4C). To assess mod-
el performance, we first compared the
distributions of the mean normalized
cleavage efficiencies (Fig. 4D; Supple-
mental Fig. S3F for training and test data, respectively). We ob-
served that the distribution of the predicted values closely
resembles that of the measured values. We then extracted the
most probable position of cleavage from the cleavage efficiency
maps and calculated the absolute difference between themeasured
and predicted most likely cleavage site for each construct. The dis-
tribution of absolute differences clearly shows good performance
for the majority of constructs (Fig. 4E; Supplemental Fig. S3G for
training and test data, respectively). These results demonstrate
that cleavage efficiency maps can be obtained from the DNA se-
quence alone and that the most probable cleavage site can be reli-
ably predicted.

Expression model interpretation and application to endogenous

cleavage site prediction

Oneof thechallenges inapplyingCNNstogenomics ingeneral and
MPRAs inparticular ismodel interpretation (Shrikumaret al. 2017).
Here, we applied visualization and analysis of the learned convolu-
tional filters to gain valuable insight into the sequence features un-
derlyingour expressionpredictions (Methods). To confirmthat our
model learns biologically relevant features, we checked for the en-

richment of the motifs in the endogenous cleavage sites identified
using K562 3′ end sequencing data. We found 22 and eight motifs
enrichedupstreamanddownstream, respectively (Figs. 5A,B). As in
our de novo motif discovery analysis (Fig. 3C–G), among the up-
stream motifs we find motifs that closely resemble the AWUAAA
hexamer as well as U-rich motifs, while among the downstream
motifs we find GU-rich and U-rich motifs. We conclude that our
model performance benefits from learning biologically relevant
regulatory motifs.

Another challenge in the studyof polyadenylation is the accu-
rate predictionof endogenous cleavage sites.Our expressionmodel
was trained using anMPRAdesigned to specifically quantify the ef-
fect of polyadenylation sequences on gene expression. Thus, we
hypothesized that it could score endogenous sequences for their
potential to serve as PASs. By walking along endogenous human
3′ UTRs at a single-base-pair resolution, we obtained a prediction
score for each position, identified the position with the maximal
predicted score, and calculated the most likely cleavage position
(Methods). We computed the predicted position for the endoge-
nous cleavage sites identified using K562 3′ end sequencing data
(Methods) and examined the distribution of differences between
measured and predicted cleavage sites (Fig. 5C). The predictions

BA

C

Figure 5. The expression model learns biologically relevant sequence motifs which contribute to high-
ly accurate endogenous cleavage site prediction. (A,B) Motifs were constructed for each filter from first
layer activations (Methods). The motifs were analyzed for enrichment upstream of (A) and downstream
from (B) endogenous cleavage sites using AME. Only motifs with an enrichment P-value < 0.001 are pre-
sented. (C) Histogram of the absolute differences between the measured and the predicted cleavage site
on a set of endogenous 3′ UTRs (Methods). Predictions were made by applying the expression model on
windows of 250-bp sequences shifted by 1 bp at a time. The position at which the maximal expression
was achieved was adjusted by 145, the most likely cleavage position within the reporter library. See also
Supplemental Figure S4.
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using our CNN model greatly outperform similar predictions gen-
erated using our gradient boosting tree or k-mer elastic net models
as well as a previously published support vector machine-based
model (Methods; Supplemental Fig. S4;Chenget al. 2006).Wecon-
clude that our CNN expressionmodel can be applied to prediction
of endogenous cleavage sites with high accuracy.

Discussion

In this work, we systematically tested the quantitative effect of an
unprecedented collection of PASs along with rationally designed
mutations thereof on expression levels and cleavage efficiency
maps. We used our measurements for our unique scanning muta-
genesis data set to gain mechanistic insight into changes and ro-
bustness of expression levels upon mutation mediated by
changes in cleavage efficiency. Moreover, we quantified the regu-
latory consequence of sequence features, such as canonical hex-
amer variability and accessibility. The large scale of our library
and scanning mutagenesis data allowed us to identify regulatory
motifs and their positional preferences within endogenous se-
quences associated with higher cleavage efficiency and gene ex-
pression levels. Furthermore, we developed a highly accurate
machine learning approach, based onCNN, for predicting gene ex-
pression and cleavage efficiencymaps directly from the inputDNA
sequence. Our CNN expression model performance can be ex-
plained, in part, by the learned biologically relevant regulatory
motifs. Finally, we show that our expression model can be applied
for highly accurate predictions of endogenous cleavage sites.

We have performed a MPRA employing rational design and
introduction of relatively long (162-nt) variable regions in order
to study the effect of PASs on gene expression and cleavage effi-
ciency in mammalian cells. We demonstrated that our method is
highly reproducible in expression measurements across replicates
(Supplemental Fig. S1A) and in cleavage efficiency measurements
across internal controls (Supplemental Fig. S1C). However, we
note a number of technical caveats which may still contribute to
the noise in our data. First, we cannot exclude that the expression
measurements of certain constructs are affected by regulatory ele-
ments other than PASs, such as miRNA seeds, AU-rich elements,
Pumilio recognition sites, and others (Rabani et al. 2017;
Vainberg Slutskin et al. 2018). However, as opposed to other ap-
proaches focused on analysis of endogenous data, our rational de-
sign approach biases our sequences to contain polyadenylation-
related regulatory sequences. Second, a common issue with
3′ end sequencing protocols based on reverse transcription with
a poly(T) primer is internal priming at poly(A) sequences other
than the poly(A) tail, contributing to inaccurate quantification
of cleavage efficiency. To reduce this risk, we performed reverse
transcription at elevated temperatures (50°C). Despite these and
other potential sources of noise in our data, we obtained highly
quantitative and reliablemeasurements (Supplemental Fig. S1), in-
dicating that the signal greatly surpasses the noise. We conclude
that our assay measures both expression levels and cleavage effi-
ciency maps simultaneously and reliably on a rationally designed
library of 12,339 constructs.

Many of the previously studied data sets for PAS-mediated
regulation of gene expressions were based on bioinformatics anal-
ysis (Legendre andGautheret 2003; Zarudnaya et al. 2003; Hu et al.
2005), thus limited to examination of native sequences in their na-
tive contexts only. Our approach allowed us, for the first time, to
isolate the effect of the PAS in a controlled sequence environment.
This enabled us to quantify the effect of different PAS-associated

regulatory elements on expression, thus highlighting their contri-
bution to the polyadenylation regulatory code. Moreover, our ex-
clusive scanning mutagenesis data provide an invaluable resource
to study the complex relationship between sequence, cleavage
efficiency, and expression. Thus, our technique allows us to gain
mechanistic insight into PAS-mediated regulation of gene
expression.

Using our scanning mutagenesis data set, we highlighted
multiple potential modes of regulation of gene expression by
PASs. Changes in the reporter expression levels, up to four orders
of magnitude, can correspond to changes in cleavage efficiency
and be explained by mutagenesis of regulatory elements at prede-
termined relative positions to the cleavage site (Fig. 2E–G). We
highlight scenarios where, despite mutagenesis of regulatory re-
gions, as evident by changes in cleavage efficiency at theWT posi-
tions, the construct expression levels remained robust. This
robustness can be explained by the cryptic cleavage sites that
rose upon mutations of sequences destructive to the native cleav-
age sites, thus providing evidence for the flexibility of polyadeny-
lation-mediated regulation of gene expression. Moreover, our data
introduced the possibility that a distal cleavage site can compen-
sate for mutagenesis of a proximal one, and vice versa, when mul-
tiple cleavage sites are detected in the WT sequence. Such insight
could not have been achieved via bioinformatics analysis or lower
throughputmethods and is highly dependent on our capability for
rationally designing the library.

The scale of our library allowed us to assay thousands of de-
signed and native sequences from viral and human genomes.
Our results are in line with previous studies, as in the case of
base frequencies surrounding the cleavage site (Wang et al. 2018)
and the effect of the hexamer motif on expression (Deng et al.
2018). Minor differences in the local base frequencies and the
ranking of hexamer mutants may be attributed to the differences
in assayed PASs and specific methods used. Moreover, our analysis
managed to derive both previously known (canonical hexamer,
UGUA and U-rich elements upstream and GU-rich elements
downstream) (Fig. 3) and novel (for example, ARUGGG) regulatory
motifs in regions surrounding the cleavage site. Moreover, some of
themotifs show considerable positional preference in endogenous
PASs, suggesting that their location relative to the cleavage site
may play a role in the regulatory process. Finally, we show that
the RNA structure surrounding the canonical hexamer may have
an effect of over two orders of magnitude on expression in a con-
text- and threshold-specific manner. Thus, our results underline
the complexity of polyadenylation-mediated regulation of gene
expression.

Amajor aspect of ourwork is the development of accurate pre-
dictivemodels for polyadenylation-mediated regulation fromDNA
sequence alone. The models are built to receive as input 250 bp of
DNA sequence of interest and predict the expression levels or the
cleavage efficiencymaps in our reporter system. The high accuracy
of our expression model stems from the CNNs capability to learn
biologically relevant sequence features on its own (Fig. 5A,B) as
well as the nonlinear relationships between those features. The
complexity of the deep learning approach for this task is justified
by the higher performance of the CNN model when compared to
the simpler gradient boosting tree and k-mer elastic net models.
This superior performance in expression prediction has great po-
tential, as shown in our endogenous cleavage site predictions
(Fig. 5C). Taken together, our prediction andmodel interpretation
results emphasize thebiological applicabilityofourCNNmodels in
particular and deep learning approaches for genomics in general.
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Previous work applying deep learning approaches to polyade-
nylation was either applied to endogenous data (Gao et al. 2018;
Leung et al. 2018) or to randomly mutated reporter constructs
(Bogard et al. 2019). When learning on endogenous data, multiple
factors other than the PASs, such as nucleosome composition and
epigenetic modification (Lutz and Moreira 2011), can have an ef-
fect on polyadenylation. These factors may hinder model perfor-
mance since they cannot be captured from the input 3′ UTR and
downstream sequence.When learning from randomlymutated re-
porter constructs, the gained insight may be limited to the exam-
ined sequence contexts. In this work, we rationally select or
mutate relatively long (162-nt) 3′ UTR inserts, allowing us to test
a large variety of carefully designed sequences, thus contributing
tomodel performance and generalizability. This approach comple-
ments previous efforts and provides additional insight, models,
and applications.

In summary, we used a quantitative high-throughput assay to
measure the regulatory effect of over 12,000 designed 3′ UTRs to
decipher the rules of PAS-based regulation. We identified various
modes of interaction between cleavage efficiency and expression
levels in our unique scanning mutagenesis data. Furthermore, we
analyzed sequence determinants of the cleavage site and identified
features affecting expression levels. Moreover, we leveraged the
scale of our library to construct predictive models for RNA levels
and cleavage efficiency maps. Finally, we applied our expression
model to predict exact endogenous cleavage sites using a unique
approach. These results contribute to a systematic functional un-
derstanding of PAS-mediated gene regulation and pose a valuable
resource for the regulatory genomics community.

Methods

Synthetic library design

General design notes

All the constructs were composed of an 18-nt forward primer,
12-nt barcode sequence, 162-nt variable region, and 18-nt reverse
primer sequences. Unique primer sequences were used to facilitate
targeted amplification of the 12,339 constructs pool from a larger
library of 55,000 constructs. We made sure all sequences excluded
restriction sites used for cloning.

Designing the rational mutagenesis set

We selected three PASs that were extensively studied and included
PASs from human immunodeficiency 1 virus (HIV1, RefSeq ID
K03455 bases 9512–9673) (Bohnlein et al. 1989; Valsamakis
et al. 1991), Simian virus 40 late (SVL, RefSeq ID J02400 bases
2600–2761) (Sadofsky et al. 1985; Schek et al. 1992; Bagga et al.
1995), and the synthetic PAS (SPA1) based on the rabbit β-globin
gene (Levitt et al. 1989). For each PAS, wemutated each annotated
regulatory element as well as all of the annotated elements togeth-
er by replacing the native sequence with a random one while
avoiding the introduction of undesired sequences (Supplemental
Note 1). In addition, we replaced the canonical hexamer with
each of its point mutants in each of the native sequences.
Moreover, the sequence upstream of and downstream from the
hexamer was mutated to span five GC bins with three constructs
in each bin (Supplemental Table S1).

Designing the compendium of native sequences

First, we selected annotated PASs in viral genomes whose host is
human (NCBI viral genome resource [Brister et al. 2015] and

ViralZone [Hulo et al. 2011]), resulting in 668 viral sequences
from 48 viral genomes. Second, we used cleavage site data in
K562 based on a 3′ end sequencing technique (Lin et al. 2012) to
select 5529 sequences spanning different canonical hexamer se-
quences and gene expression levels. In addition, the HIV1, SVL,
and SPA1 PASs were also included. The list of constructs contain-
ing the native sequences and the subset of constructs with a single
hexamer upstream of the cleavage site (for Fig. 3B) are provided in
Supplemental Tables S2 and S3, respectively.

Designing the scanning mutagenesis set

The mutagenesis was performed by mutating every nonoverlap-
ping 20 bp in the candidate sequences. The sequence within the
mutated block was replaced with a random sequence while avoid-
ing the introduction of undesired sequences (Supplemental Note
1). The candidate sequences included 572 of the viral PASs, 17 se-
quences based on a literature search (Hart et al. 1985; McDevitt
et al. 1986; Zhang et al. 1986; Zhang and Cole 1987; Connelly
and Manley 1988; Goodwin and Rottman 1992; Sittler et al.
1994; Moreira et al. 1995, 1998; Graveley and Gilmartin 1996;
Antoniou et al. 1998; Natalizio 2002; Zarudnaya et al. 2003;
Nunes et al. 2010; Yoon et al. 2012), and 40 randomly selected se-
quences from the K562 data (Supplemental Table S4; Lin et al.
2012).

Designing a set of constructs with multiple barcodes

We selected 20 sequences expected to span a large range of expres-
sion levels. For each variant, we generated 10 different barcodes
(Supplemental Table S5). Only one of the barcoded constructs
was selected for all other downstream analysis.

Experimental procedures

Construction of the master plasmid

A previously assembled construct in our lab (Vainberg Slutskin
et al. 2018) wasmodified to exclude the SV40 polyadenylation sig-
nal downstream frommNeonGreen by standard restriction and li-
gation cloning techniques. Correct clones were verified using
Sanger sequencing.

Synthetic library cloning

The library was cloned using a technique previously established in
our lab (Vainberg Slutskin et al. 2018). Briefly, a pool of 55,000 fully
designed single-stranded 210-oligomers (Agilent Technologies),
containing the 12,339 pool used in this study was amplified
using specific primers with restriction site–containing tails, SpeI
(Fw primer) and AscI (Rv primer). The underline represents the
18-nt complementary sequence to the ssOligos. The primers
were: AATCTTCACTAGTAGCAATGGGGTTCGGTATGCGC (Fw
primer), GCCTCGGCGCGCCAACTATCGTCTCGGGGAGCCTT
(Rv primer). The amplified library was cloned into the master plas-
mid using high-efficiency restriction ligation using SpeI and AscI
restriction sites followed by electroporation into Escherichia coli
10G electrocompetent cells (Lucigen). The cloned library was ana-
lyzed by colony PCR to ensure single insert ligation and purified
(MACHEREY-NAGEL NucleoBond Xtra Maxi kit).

Transfection into K562 cells

Transient transfection of K562 cells was performed in two repli-
cates using Lipofectamine 2000 (Thermo Fisher Scientific) follow-
ing the manufacturer’s protocol. The day of the transfection, 5 ×
106 cells were plated in 10mL of growthmedia without antibiotics
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and transfected using 20 µg of donor plasmid and 50 µL of
Lipofectamine 2000. Once 4 h have passed, the cells were centri-
fuged and resuspended in 20 mL of complete growth media.
Cells were harvested for RNA purification 24 h after transfection.

RNA purification and preparation for sequencing

Each of the replicates was harvested for RNA purification using a
NucleoSpin RNA II kit (MACHEREY-NAGEL) according to the
manufacturer’s protocol. DNase-treated purified RNA was re-
verse-transcribed using the SuperScript III First-Strand Synthesis
System (Thermo Fisher Scientific) with the designed poly(T) prim-
er: GCTCAAGCCACGACGCTCTTCCGATCTNANCNGNTNANC
NGNTNANCNGNANCNANTTTTTTTTTTTTTTTTTTVN, where N
is any nucleotide and V is any nucleotide except T. The cDNA
library was amplified with a forward gene-specific primer and a re-
verse primer complementary to the reverse transcription primer
tail with KAPA HiFi ready mix X2 (KAPA Biosystems). In addition,
the library was amplified with KAPA HiFi ready mix X2 (KAPA
Biosystems) from the plasmid DNA used for the transient transfec-
tion. The amplified DNA was used for library preparation for sec-
ond-generation sequencing (Supplemental Methods).

Computational analyses

Mapping second-generation sequencing reads

To determine the identity of the oligo after sequencing, a unique
12-mer barcode sequence was placed at the 5′ end of each variable
region. Barcodes were designed to differ by 3 nt or more and to
avoid the introduction of undesired sequences (Supplemental
Note 1). For the cDNA, we obtained ∼50 and ∼43 million reads
for replicate 1 and 2, respectively. For the plasmid DNA, we ob-
tained ∼11 million reads.

For the cDNA replicates, wemapped the reads to an “artificial
genome” in which each chromosome corresponds to a sample bar-
code. Each chromosomewas composed of repeats of the 8-nt sam-
ple barcode, 18-nt constant region, 12-nt variant barcode, 4 nt
from the variable region (42 nt total), and 60 “N’s. We obtained
paired-end NextSeq 500 reads in the length of 42 nt for R1 and
110 nt for R2. R1 reads shorter than 40 nt were discarded, while
the rest were trimmed to a maximum of 42 nt and mapped to
the artificial genome using NovoAlign aligner (http://www
.novocraft.com/products/novoalign/), filtered for minimal map-
ping quality of 60 and for perfectly aligned reads for the length
of 40–42 nt, and the number of reads for each designed oligo in
each sample was counted. For the plasmid sample, we mapped
the reads to a single “artificial chromosome” excluding the 8-nt
sample barcode. We obtained the same paired-end NextSeq 500
reads and mapped them similarly to the cDNA replicates with
the following differences. The R1 and R2 reads were combined
and trimmed to amaximumof 34 nt,mapped to the artificial chro-
mosome, and filtered for perfectly aligned reads for the length of
32–34 nt.

Computing RNA expression levels

To calculate RNA expression levels for a given variant, we required
that it would have at least 10 DNA reads. For each variant, we cal-
culated the log2 (cDNA reads + 1/plasmid DNA reads) as an esti-
mate for normalized RNA levels. The one pseudocount in the
numerator is added in order to account for the detection limit of
the assay. Since the agreement between the replicates was high
(R=0.99, P<10−10), we summed the reads between replicates for
each variant and repeated the calculation for the normalized
RNA levels. Only ∼4% of the variants that had at least 10 DNA

reads had zero cDNA reads. For the rest of the constructs, the nor-
malized RNA level was set to None (Supplemental Table S6).

Computing cleavage efficiency

For readswhose R1was properlymapped, the R2 readswere filtered
to perfectly match the pattern of the reverse transcription primer,
CACGACGCTCTTCCGATCTNANCNGNTNANCNGNTNANCNG
NANCNAN. Leading T nucleotides were stripped from the reads.
Reads whose remaining length was <10 nt were discarded. For
each variant, a FASTQ file of all of its remaining R2 reads was gen-
erated andmapped to a reference sequence of the variant followed
by a 307-nt constant sequence from the plasmid backbone
using NovoAlign aligner (http://www.novocraft.com/products/
novoalign/) without soft clipping. For each variant, at each posi-
tion, the number of reads with a perfect match for at least the first
two nucleotides was counted and the datawas arranged in amatrix
where each row is a variant and each column is a position. To re-
duce noise in our measurements, we applied a number of filtering
steps. First, positions with less than three reads were set to zero.
Second, positions that got <10% of the reads that the variant re-
ceived were set to zero. Finally, for constructs that remained with
<50% of the reads they had before filtering, we set the entire row
to zero. To calculate the cleavage efficiency, we calculated log2 (po-
sition cDNA reads/plasmid DNA reads) + 11 for each position for
each variant that had a minimum of 10 DNA reads. The shift by
11 was applied in order to shift all values to the positive scale.
Positions that resulted in a negative infinity following the log2 cal-
culation were set back to zero (Supplemental Table S7).

Scanning mutagenesis imputation of mutant cleavage efficiencies

In our scanningmutagenesis data,mutant constructswithmissing
cleavage efficiency at a position corresponding to a WT cleavage
site were imputed with the expected detection efficiency. The for-
mula log2 (2/plasmid DNA reads) + 11 was used since, when calcu-
lating the cleavage efficiencies, we required a minimum of three
cDNA reads per position per variant.

A set of endogenous 3′ UTRs for motif enrichment and cleavage site prediction
GENCODE V28lift37 comprehensive gene annotations for
GRCh37 were downloaded from the UCSC Table Browser
(Harrow et al. 2012). The published K562 3′ end sequencing data
(Lin et al. 2012) were assigned with the GENCODE genomic anno-
tations. Cleavage sites originating from 3′ UTR exons of coding
genes and supported by more than 10 3′ end sequencing reads
were selected. For each gene, a representative 3′ UTR sequence
was selected starting at the 5′-most position. The extracted se-
quences began 250 bp upstream of the 3′ UTR start and extended
to 1000 bp downstream from the cleavage site as indicated in
the K562 3′ end sequencing data. The set of genes with unique se-
quences contained 6964 genes (Supplemental Table S8). GRCh37
was complete and adequate for the performed analysis; thus,
GRCh38 would not significantly affect our conclusions.

Motif analysis

Motif discovery was performed using DREME 5.0.2 (Bailey 2011).
Positive and negative sets were used as described in the text.
DREME was run with the following parameters: -mink 6 -maxk 8
-g 20000 -norc -rna. The discovered motifs were subjected to en-
richment analysis with AME 5.0.2 (McLeay and Bailey 2010) in
the set of endogenous 3′ UTRs described above. Enrichment of up-
streammotifs was performed on 100-bp sequences upstreamof the
cleavage site with the next 100 bp serving as the negative set.
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Enrichment of downstream motifs was performed on 50-bp se-
quences downstream from the cleavage site with the sequence at
100–150 bp downstream serving as the negative set.

Analysis of positional preference for the discovered motifs
was performed using CentriMo 5.0.2 (Bailey and Machanick
2012). CentriMo was run with the positive and negative data sets
which were used for AME (McLeay and Bailey 2010) and with
the following parameters: ‐‐norc –local. The CentriMo output
was filtered for motifs with a Fisher E-value <0.01, the per position
counts were normalized by their sum to get probabilities and
smoothed with a moving average filter with a window size of five.

Calculation of ΔGopen

To calculate ΔGopen, we used the RNAfold function from Vienna
RNA 2.4.9 4 (Lorenz et al. 2011). We calculated the ensemble
free energy for the examined sequence and subtracted from it
the ensemble free energy with the constraint that the canonical
hexamer along with 15-nt upstream and downstream regions are
kept unpaired. The calculated difference is ΔGopen.

Prediction of expression levels

The data used for our model consisted of 11,822 sequences for
which we quantified mRNA expression levels. The data excluded
the subset of constructs which varied only in the barcode se-
quence. We used ∼90% of the data for training and ∼10% for
held-out test data. When splitting the data, we stratified the vari-
ants by themutagenesis scheme andmade sure that scanningmu-
tagenesis variants that share the sameWT PAS are kept in the same
data set. In a similar manner, we split the training data into 10-
folds for 10-fold cross-validation (Supplemental Table S9).

All deep learning predictions were made using a CNN de-
signed with keras 2.0.6 (https://keras.io/) in Python 2.7.8. The
basis for our architecture was inspired by previous deep learning
work applied to genomics data (Zhou and Troyanskaya 2015;
Angermueller et al. 2016; Kelley et al. 2016; Quang and Xie
2016; Gao et al. 2018; Leung et al. 2018; Bogard et al. 2019). The
250-nt input sequence, starting at the stop codon, was one hot en-
coded and fed into themodel. Themodel consisted of a 1D convo-
lution layer (num_filters = 64, kernel_size = 8) with relu activation,
max pooling layer (pool_size = 2, strides = 1), dropout layer (rate =
0.5), 1D convolution layer (num_filters = 32, kernel_size = 6) with
relu activation, max pooling layer (pool_size = 2, strides = 1), drop-
out layer (rate = 0.5), flatten layer, and a final dense layer with lin-
ear activation, and a single neuron output. L1 (0.0001) and L2
(0.0001) regularization was used in all the convolution and dense
layers. Themodel was compiled with Adam optimizer (lr = 0.0015)
andminimum squared error loss. Themodel was fitted with 75 ep-
ochs with a batch size of 256. The gradient boosting tree-based
model was made using XGBoost (Chen and Guestrin 2016)
0.72.1 with default parameters except for “objective”: “reg:linear”,
“n_estimators”: 300. The 250-nt input sequence, starting at the
stop codon, was one hot encoded, flattened, and fed into themod-
el. For the k-mer elastic net, we extracted nonoverlapping k-mer
counts for k-mers of length one to six for each 250-nt sequence
in the training and test data. The elastic net model (α=2.15×
10−2 and l1_ratio = 0.4) was implemented using scikit-learn
0.18.2 (Pedregosa et al. 2011). To assess the performance of each
of the models on training data, we employed 10-fold cross-valida-
tion. To assess performance of ourmodel on the held-out test data,
we trained the model on all of our training data and predicted the
values for the held-out test data. Themodel performance was eval-
uated by Pearson’s correlation between the measured and predict-
ed expression values. In addition to the describedhyperparameters

above, we tried numerous semirationally chosen hyperparameter
combinations for each of the models and chose the set of parame-
ters that produced optimal results in terms of loss curve behaviors
in train and test data and the Pearson’s correlation between the
measured and predicted expression values.

Prediction of cleavage efficiencies

The data used for our model consisted of 11,822 sequences for
whichwe quantifiedmRNA expression levels, excluding the dupli-
cate barcodes for the multiple barcodes subset. The output label
used was the 189 positions vector in which the cleavage sites
were detected, starting from position 41 and ending at position
230 after the stop codon. Variants for which no cleavage sites
were detected were still included with a vector consisting of only
zeros.

All predictions were made using a CNN designed with keras
2.0.6 (https://keras.io/) in Python 2.7.8. The 250-nt input se-
quence was one hot encoded and fed into the model. The model
consisted of a 1D convolution layer (num_filters = 128, kernel_
size = 12) with relu activation, max pooling layer (pool_size = 2,
strides = 1), dropout layer (rate = 0.5), 1D convolution layer (num_
filters = 64, kernel_size = 8) with relu activation, max pooling layer
(pool_ size = 2, strides = 1), dropout layer (rate = 0.5), flatten layer,
dense layer (units = 4096) with relu activation, and a final dense
layer with relu activation and 189 output neurons, each for a con-
sidered position of cleavage. L1 (0.0001) and L2 (0.0001) regulari-
zation was used in all the convolution and dense layers except for
the last dense layer, where L1 (10−6) and L2(0) regularization was
used. The model was compiled with Adam optimizer (lr = 0.0015)
and Poisson loss. The model was fitted with 100 epochs with a
batch size of 512. To assess the performance of ourmodel on train-
ing data, we employed 10-fold cross-validation. To assess perfor-
mance of our model on the held-out test data, we trained the
model on all of our training data and predicted the values for the
held-out test data. The model performance was evaluated by com-
paring the distribution of the per position mean cleavage efficien-
cy of the predicted values and the measured ones. In addition, we
preferredmodels thatwere able to predict cleavage efficiency for all
the constructs that hadmeasured values. Finally, for the constructs
that had both measured and predicted cleavage efficiency maps,
we examined the distribution of the absolute differences between
predicted andmeasured cleavage positions. The cleavage positions
were defined as the index ofmaximalmeasured or predicted values
along the vector of 189 positions. In addition to the described
hyperparameters above, we tried numerous semirationally chosen
hyperparameter combinations and chose the set of parameters
that produced optimal results in terms of loss curve behaviors
in train and test data and the described model performance
evaluation.

Expression model interpretation

To convert the first layer convolutional filters into sequence mo-
tifs, we fed the first layer with our test set data and acquired the lay-
er activations. The layer activations were converted into motifs by
searching for the position of maximal activation per sequence and
extracting the DNA sequence corresponding to the kernel size
(Alipanahi et al. 2015). Then, the sequences were converted into
a motif object using Biopython 1.68, and the position weight ma-
trices were converted intoMEME format. The motifs were used for
motif enrichment analysis using AME (McLeay and Bailey 2010) in
the endogenous 3′ UTR data upstream of and downstream from
the cleavage site as described for the motif analysis. Only motifs
with enrichment P-value<0.001 were reported.
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Prediction of cleavage sites on endogenous 3′ UTRs
Each of the expression models was applied to the endogenous se-
quences described above in a base-by-base manner. The index of
the highest score was added to 145, the most frequent cleavage
site within the library, and designated as the predicted cleavage
site. For polya_svm (Cheng et al. 2006) predictions, we supplied
the endogenous sequences as input and set the min_score to
zero in order to get all possible predictions. For each sequence,
the position with themaximal score was designated as the predict-
ed cleavage site.

Data access

The sequencing data generated in this study have been submitted
to the NCBI BioProject database (https://www.ncbi.nlm.nih.gov/
bioproject/) under accession number PRJNA548062. All other
processed data can be found in the Supplemental Material. All
the code required to train the predictors and to execute the predic-
tions on the endogenous sequences has been submitted as
Supplemental Code and is also available on GitHub (https://
github.com/segallab/PolyApredictors).
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