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Combination of electroencephalogram (EEG) recording and functional magnetic

resonance imaging (fMRI) plays a potential role in neuroimaging due to its high spatial

and temporal resolution. However, EEG is easily influenced by ballistocardiogram (BCG)

artifacts and may cause false identification of the related EEG features, such as epileptic

spikes. There are many related methods to remove them, however, they do not consider

the time-varying features of BCG artifacts. In this paper, a novel method using clustering

algorithm to catch the BCG artifacts’ features and together with the constrained ICA

(ccICA) is proposed to remove the BCG artifacts. We first applied this method to

the simulated data, which was constructed by adding the BCG artifacts to the EEG

signal obtained from the conventional environment. Then, our method was tested to

demonstrate the effectiveness during EEG and fMRI experiments on 10 healthy subjects.

In simulated data analysis, the value of error in signal amplitude (Er) computed by ccICA

method was lower than those from other methods including AAS, OBS, and cICA (p <

0.005). In vivo data analysis, the Improvement of Normalized Power Spectrum (INPS)

calculated by ccICA method in all electrodes was much higher than AAS, OBS, and

cICA methods (p < 0.005). We also used other evaluation index (e.g., power analysis)

to compare our method with other traditional methods. In conclusion, our novel method

successfully and effectively removed BCG artifacts in both simulated and vivo EEG data

tests, showing the potentials of removing artifacts in EEG-fMRI applications.

Keywords: neuroimaging, EEG-fMRI, ballistocardiogram artifacts, clustering algorithm, constrained ICA

INTRODUCTION

Simultaneous recording of electroencephalogram (EEG) and functional magnetic resonance
imaging (fMRI) can make full use of the complementarity between the high temporal resolution
of EEG and the millimeter spatial resolution of fMRI when studying brain activity (Jorge et al.,
2014; Murta et al., 2015). Simultaneous EEG-fMRI acquisition is an important tool for further
understanding of brain function and dysfunction including neurofeedback (Zotev et al., 2014),
recognition memory, epilepsy (Dong et al., 2015, 2016), and schizophrenia (Ford et al., 2016) etc.
However, this neuroimaging technique has one disadvantage that two major artifacts, gradient
artifacts (GA) and ballistocardiogram (BCG) artifacts, can be induced on EEG data. GA can
be removed by average artifact subtraction (AAS) (Allen et al., 2000). However, BCG artifacts
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removal is hard due to its non-stationary nature. As mentioned
in Allen et al. (1998), Debener et al. (2008), and Mullinger et al.
(2013), the mechanisms of BCG artifacts generation are most
likely related with the electrodes movement caused by heart beat
inside the static magnetic field of the MRI scanner, presenting
an evident interpersonal variance character. The amplitude of the
BCG artifacts is proportional to the intensity of themagnetic field
inside the MRI scanner (Yan et al., 2010; Mullinger et al., 2013)
and its shape changes over time (Debener et al., 2008). These
characteristics of the BCG artifacts make it hard to predict and
characterize, causing troubles in artifact removal. Furthermore,
the EEG signals mainly at alpha frequencies (8–13Hz) and below
are easily contaminated by BCG artifacts (Bonmassar et al., 2002),
which are important for our study. Therefore, in EEG-fMRI
applications, BCG artifact removal is a meaningful issue and
more difficult than GA removal (Laufs et al., 2008).

Currently, there are two main approaches to remove the
BCG artifacts, namely time domain methods and spatial-pattern
techniques. For example, spatial filtering schemes based on
a principal component analysis (PCA) and an independent
component analysis (ICA) use the statistic signatures of the BCG
artifacts to remove artifacts (Bénar et al., 2003; Niazy et al.,
2005; Srivastava et al., 2005). Other techniques just use the quasi-
periodic of the BCG artifacts, like average artifact subtraction
(AAS) (Allen et al., 2000), optimal basis sets (OBS) (Niazy
et al., 2005), moving general linear models (mGLMs) (Vincent
et al., 2007), and adaptive filtering techniques (Bonmassar et al.,
2002). However, spatial-pattern techniques are time-consuming,
while waveform removal techniques depend highly on the user
experience. In addition to traditional techniques shown above,
a reference-removal of BCG artifacts with harmonic regression
(Krishnaswamy et al., 2016), the dictionary learning method
(Abolghasemi and Ferdowsi, 2015), the real-time OBS method
(Wu et al., 2016), and the specific data recording called DRPE
(direct recording prior encoding) (Xia et al., 2014) are also widely
used to remove BCG artifacts to achieve better separation of
BCG and EEG. On the other hand, decreasing the electrode
movements can be considered as an important method to reduce
BCG artifacts (Allen et al., 1998).

To the best of our knowledge, blind source separation
methods can also be used to remove BCG artifacts. The
ICA method can decompose EEG signals into independent
components (ICs) and subtract the artifacts-related ones to
remove the artifacts (Nakamura et al., 2006; Mantini et al.,
2007). However, the problems of ICA-based methods are non-
reproducibility of the results (Briselli et al., 2006; Grouiller
et al., 2007) and the choice of artifacts-related ICs are based
on subjective experience. In order to resolve the problem of
component selection, Leclercq et al. (2009) developed a new
technique based on ICA called constrained ICA (cICA). They
set a constrained condition that made the component selection
more intelligent and could furthest select the most similar BCG
artifact-related components. As mentioned in their article, the
method demonstrated more robustness and was computationally
more efficient than other ICA-based or traditional methods.
But the cICA method didn’t put the variability of artifacts into
consideration, and there may be residual artifacts.

In this article, we propose a novel method of clustering-
constraint ICA (ccICA) to remove the BCG artifacts which takes
into account artifacts’ time-varied shape, amplitude, and scale.
The efficacy of the ccICA was tested in simulated and real data
and compared with traditional OBS, AAS and cICA methods.
The results for both time and frequency domains showed that our
method is promising in removing BCG artifacts from EEG data
recorded in MRI environment.

MATERIALS AND METHODS

Data Acquisition and Subjects
In order to verify the effectiveness of our method, acquisition
of EEG-fMRI data from 10 healthy subjects (age range: 20–
25; 7 males and 3 females) was applied. In all recordings, the
subjects lay relaxed in the scanner with eyes closed and head
fixed. The subjects were given written notice and consented to
the participation in this study. The experiments were carried
out in accordance with the Declaration of Helsinki (2000) of
the World Medical Association and the protocols approved by
the Institutional Review Board at Changzhou University. Data
acquisition was done with EEG amplifier andMR scanner offered
by Changzhou Key Laboratory of Biomedical Information
Technology.

We also collected three additional task-EEG data to verify the
efficiency of the method by extracting ERP “N170” from them.
“N170” is a “face-sensitive” event-related potential (ERP) that
occurs at around 170ms over occipito-temporal brain regions.
The experiment included 56 trials and the duration of each trial
was 4 s. The subjects were first asked to look at some face images
in learning stage, and then some other face images were shown
in the screen. The subjects chose “1” if they saw the face before;
otherwise, they chose “2.”

Functional images were obtained from the subjects on a 3.0T
scanner (Magnetom Sonata, Philips, Holland) with parameters:
TR = 2000ms, TE = 35ms, Flip angle = 90◦, FOV = 230
× 180 mm2. Each volume consisted of 24 slices. EEG data
were acquired using an MR compatible EEG amplifier (EGI,
America) with sampling rate of 1,000Hz and a cap with 64
Ag/AgCl electrodes positioned according to the system provided
by EGI. In addition, an extra electrode was placed in the chest for
electrocardiogram (ECG) signal acquisition as well. All channels
were online referenced to Cz. These data were collected during
continuous fMRI using an echo planar imaging (EPI) sequence.

Ballistocardiogram (BCG) Artifacts
BCG artifacts are caused by cardiac-related activities which
distort the EEG signals in the static magnetic field. Its causes
and characteristics are described in literature (Allen et al., 1998;
Bonmassar et al., 2002). In general, the electrodes’ movement
is caused by heart beat-related activities (Allen et al., 1998) and
the magnitude of the BCG artifacts may be as much as 400 µV
in 3.0T (6–8 times that of EEG) (Allen et al., 2000). Moreover,
considerable variation of BCG artifacts’ shape, amplitude, and
scale over time was another characteristic observed.
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FIGURE 1 | The block diagram of ccICA method.

TABLE 1 | The Er of BCG artifact removal using different methods.

Method Er (µv)

OBS(pc = 4) 19.32

AAS 19.10

cICA 9.38

ccICA 8.45

BCG Removal Algorithm
In this section, our novel method as well as reported cICA was
applied to remove the BCG artifacts. Since every technology
needs to detect the QRS peak in ECG, the same QRS detection
algorithm for each of them is used, and details are described in
the next section. QRS peak detection, AAS and OBS algorithm
implementation throughout FMRIB plug-in were provided by
the University of Oxford Centre for Functional MRI of the
Brain. Available techniques used for comparison are shown below
before introducing our algorithm.

QRS Peak Detection
The earliest ECGR-peaks detection algorithmwas put forward by
Allen et al. (1998) in simple thresholding detections. However,
they were defective due to time-consumption and being poorly
robust in the MR environment. Thus, Christov (2004) proposed
a combined adaptive threshold algorithm for the detection of
the ECG R-peak. Niazy et al. (2005) modified this algorithm by
computing a complex lead from some ECG channels. The ECG
channel should be band-pass filtered from 7 to 40Hz firstly, and
then the complex lead was calculated by using a k-Teager energy
operator (k-TEO) (Mukhopadhyay and Ray, 1998; Kim et al.,
2004) to the filtered ECG channel and by setting all negative
values to zero, (see Equation 1):

ECG(n) = max(E2(n)− E(n− k)E(n+ k), 0) (1)

Where ECG is the complex lead, n is the time index, E is the
filtered ECG, and k is a frequency selection parameter (Kim

FIGURE 2 | The simulated EEG signal. (A) The clean EEG data used to

construct the simulated contaminated EEG data. (B) The ECG signal. (C)

Original signal with and without BCG artifact.
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FIGURE 3 | Performance comparison between ccICA and other methods. (A) BCG artifact removal using AAS (red line). (B) BCG artifact removal using OBS (pc = 4)

(red line). (C) BCG artifact removal using cICA (red line). (D) BCG artifact removal using ccICA (red line).

TABLE 2 | The sensitivity (Se) and specificity (Sp) of the R-peak detection

algorithm.

Subject No. Se (%) Sp (%)

1 99.61 99.80

2 99.57 99.79

3 99.43 100

4 99.05 99.80

5 99.50 99.75

6 100 99.78

7 99.74 100

8 86.78 83.96

Avg 97.96 97.86

Std 4.53 5.62

Std(without subject 8) 0.29 0.11

et al., 2004). Next, the combined adaptive thresholding algorithm
was applied (Christov, 2004) to detect the peaks. The sum
of the steep-slope threshold (M), the integrating threshold for
high-frequency signal components (F), and the beat expectation
threshold (R) are used as theMFR threshold, (see Equation 2):

MFR = M + F + R (2)

When ECG(n)≥MFR(n), it will be detected as a QRS peak. For
more information about the QRS peak detection, please check the
original paper (Niazy et al., 2005).

Clustering Combined with cICA (ccICA)
BCG artifacts could be identified and removed using classical
ICA algorithms; however, component selection in ICA is
easily influenced by subjective factors and sources have to be
estimated through cumbersome iterative search. In contrast,
newly proposed cICA can be used to identify BCG-related
sources through finding the closest source to a given constraint
(Leclercq et al., 2009). This indicates that the identified
components closely match the constraint and thus this consumes
less computational cost. Moreover, the whole process wasmarked
by its automated, data driven and not observer-dependent nature.

The constraint set in cICA algorithm assumes that BCG
artifact is a quasi-periodic signal, which is less practical and does
not fully capture the characteristics of BCG artifacts. In cICA
framework, for each channel an average BCG-artifact template
is calculated across successive EEG signal by a simple average,
regardless of the beat-to-beat variability in heart rate and shape
and amplitude differences of BCG artifacts.

Hence, in this study a clustering-constrained ICA (ccICA)
method is proposed. In ccICA, clustering algorithm is applied
to classify the BCG artifacts into different types and to detect
outliers before cICA. In ccICA, signals fromECG channel are first
segmented according to Wu et al. (2016). Then, the hierarchical
clustering (Ward, 1963) algorithm is used to subdivide the ECG
segments into L groups. The distance between every pair of ECG
segments (can be measured by either Single Linkage or Average
Linkage) is computed and a distance table is obtained. It is then
used to determine the optimal separation of a partition of L,
satisfying that data variability within each cluster is minimized.
The clustering algorithm then assign each ECG segment to a

Frontiers in Neuroscience | www.frontiersin.org 4 February 2018 | Volume 12 | Article 59

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Wang et al. Ballistocardiogram Artifacts Removal

FIGURE 4 | Eight channel EEG signals before and after BCG artifact removal applied by ccICA method and one channel ECG signal is used to mark the location of

R-peak and BCG artifact. (A) Signals before BCG artifact removal. (B) The ECG signal. (C) Signals after BCG artifact removal by ccICA method.

specific cluster. Given the relationship between BCG artifacts
in EEG signals and ECG, the positions of BCG artifacts in
EEG signal are determined referring to the positions of R-
peak in ECG, i.e., if the R-peak’s location is Ri (in time),
the corresponding BCG artifacts in EEG is identified in Ri +
210ms (Allen et al., 1998). In this way, the BCG artifacts are
extracted and separated into L groups referring to ECG segments.
Finally, by combining the clustering results, the constrained
ICA (cICA) algorithm (Leclercq et al., 2009) is used to get
corrected EEG signals. Figure 1 shows a simple block diagram
of our ccICA method. In Figure 1, the ECG data will be
classified into m kinds using clustering algorithm, then the
raw EEG data will also be classified into m kinds due to the
relationship which has been described above. The raw EEG
epoches in one cluster are combined continuously. Hence, the

raw EEG data will be recombined into m segments. Then, the
cICA algorithm will be applied into each raw EEG segment.
Last, all clean EEG segments are decomposed into epoches
according to the clustering labels to reconstruct the corrected
EEG data.

According to cICA Leclercq et al. (2009), cICA assumes that
the EEG signal is a linear mixture of statistically independent
artifacts sources and neural sources. The number of sources
should be equal to the number of channels, and their size is
defined to be [N channels × T time points]. D is the recorded
EEG signals [N channels× T time points], andW is a fixed scalar
matrix. The goal of the ICA is to find the W, which is a square
matrix of size N.

The row vectors of W can be viewed as a non-orthonormal
base of an N-dimensional space. During preprocessing, an
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FIGURE 5 | The average power of the first twenty harmonic frequencies before (blue bars) and after (red bars) using ccICA method, it indicates that the BCG artifacts

have been suppressed in a large part.

orthonormal matrix W̃ is deducted from W. The identification
of the artifact-related row-vectors in W̃ would make it possible to
find the complementary orthonormal set of vectors. More details
of the cICA algorithm could refer to Leclercq et al. (2009).

Evaluation Index
To evaluate the efficacy of the clustering combined with cICA
method, several evaluation analyses were conducted, including
time domain and frequency domain. Some evaluation indexes are
described below.

Error in Signal Amplitude
The error in signal amplitude is an important technical index
to evaluate the efficacy between our method and other methods.
The error in signal amplitude (Er) after BCG artifacts removal is
defined as:

Er =
1

n

n
∑

i=1

∣

∣x(i)− y(i)
∣

∣ (3)

where x(i) is the amplitude of sample i in the data after BCG
artifacts removal, and y(i) is the amplitude of i in the original EEG
data. Moreover, this equation could be used to compare different
methods.

Sensitivity (Se) and Specificity (Sp)
For the ECG recording, the occurrence of actual ECG R-peak
was determined through a visual inspection. The total count of
QRS complexes was considered as the true positive number, TP.

The QRS complex which was not detected by the algorithm was
considered as a false negative, FN . Another condition detected in
the absence of an actual QRS complex was considered as a false
positive, FP. If the position of the detected QRS complex had a
time-shift error, it was also considered as false negative or false
positive. The Se and Sp were used to demonstrate the accuracy
of the ECG detection algorithm and the quality of our data. Both
were calculated for each data-set as follows:

Se =
Tp

Tp+ FN
(4)

Sp =
Tp

Tp+ Fp
(5)

Power Spectra
To compare the efficiency of the newmethod with the AAS, OBS,
and cICA methods, the power spectra of the signals before and
after algorithm applied was evaluated. Meanwhile, the obtained
signals after applying different methods were also compared. The
power spectrum was calculated as

S(ejw) =
1

n

∣

∣

∣

∣

∣

n
∑

l=1

xle
−jwl

∣

∣

∣

∣

∣

2

(6)

where ejw represents a superposition of a cosine signal with a
sinusoidal signal. S(ejw) is the power spectrum, and xl is the value
of sample l in each EEG channel.
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FIGURE 6 | BCG artifacts removal using other methods. (A) Signals without removing BCG artifacts. (B) BCG artifacts removal using OBS and the part of residual

artifacts were marked with red arrows. (C) BCG artifacts removal using AAS (D) BCG artifacts removal using cICA.

FIGURE 7 | The ERP “N170” extracted by different methods and comparisons between them. (A) Raw signal and ccICA method. (B) AAS method and ccICA

method. (C) OBS method and ccICA method. (D) cICA method and ccICA method.
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TABLE 3 | The SNR of “N170” computed by different methods.

Method AAS OBS cICA ccICA

SNR(dB) 1.46 0.79 1.54 3.21

Improvement of Normalized Power Spectrum (INPS)
Another quality index for assessing BCG artifacts removal
algorithms quality is the Improvement of Normalized Power
Spectrum(INSP)introduced by Tong et al. (2001), which indicates
the power attenuation in the corrected signal:

INPS(Chan,N) =

N
∑

j=1
Pj

before

N
∑

i=1
Pi

after

(7)

where Pbefore and Pafter are mean power in a 1Hz window
centered on the jth harmonic of the heart frequency respectively
before and after BCG artifact removal for a particular channel
Chan. The INPS indicates the power attenuation, the larger INPS
means that more power has been reduced. However, the larger
INPSmay not indicate reduction of more artifacts, and the useful
signals may also be reduced.

Relative Root Mean Square Error (RRMSE)
Relative root mean square error is also calculated in each method
and compared quantitatively. The RRMSE is defined as follows
(Li et al., 2013; Despotovic et al., 2016):

RRMSE =

√

1
n

n
∑

i=1
(H̄i,m

d
− H̄i,c

d
)2

n
∑

i=1
H̄i,m
d

× 100 (8)

Where H̄i,c
d

is the ith calculated value, which represents the

corrected signal. H̄i,m
d

is the ithmeasured value, which is the raw
signal. n is the sample points.

RESULTS

Simulated Data
Simulated data consisted of original EEG signal (obtained out
of the MRI scanner) and varying BCG artifacts. Moreover, the
original data (without fMRI) without adding the BCG artifacts
were compared. In general, the construction of the simulated data
can be divided into three steps.

First, we averaged all the artifact segments from one channel
of real EEG data without removing the BCG to generate the
BCG artifact template. Second, we randomly and independently
scaled the BCG template in terms of amplitude and time span to
simulate the varying BCG artifacts. Finally, varying BCG artifacts
were added to the original EEG data (without fMRI) to generate
the simulated data. The interval between the peaks and their
amplitude were randomized.

The Er values we calculated according to differentmethods are
shown in Table 1.

In Table 1, it can be seen that the Er of the method we
proposed is much lower than other methods. Both the AAS
method and OBS method have much higher Er values than ours.
Further comparison between cICA and ccICA is needed.

Figure 2 shows simulated EEG signals with and without
adding BCG artifacts as well as corresponding simulated
ECG signal. Figure 2A shows the original single channel (O1
electrode) EEG data used to construct the simulated data
obtained in the isolated room with 50Hz-frequency interference
filtered. Figure 2B is the simulated ECG signal detecting the
R-peak, as marked with the red arrows. Figure 2C shows the
simulated EEG signal with BCG artifacts used to evaluate the
efficiency of the ccICA method.

Figure 3 shows the simulated signal before and after BCG
artifact removal using four different methods respectively. The
blue curves denote the simulated signals without artifact removal
and the red curves denote the signals after BCG artifacts removal.
From the vision of Figures 3A,B, the residual artifact is very
obvious and some BCG artifacts can’t be removed. Figures 3C,D
show the results using cICA and ccICA, both methods can
remove almost all BCG artifacts, but compared with Figure 2C,
the signal tendency after using ccICA method is more uniform.
In other words, the signal after using ccICA closely matches the
original EEG signal. Hence, the method we proposed seems to
provide cleaner signals after BCG artifacts removal.

In Vivo
All real data were collected simultaneously using fMRI, including
64 channels EEG data and one channel ECG data. The
simultaneous ECG data were used to detect the BCG artifacts’
locations in EEG data. The gradient artifacts were removed by
AAS (Allen et al., 2000). The sensitivity (Se) and specificity
(Sp) are index to illustrate the robustness of R-peak detection
algorithm proposed by Niazy et al. (2005).

Table 2 illustrates the sensitivity and specificity of the ECG R-
peak detection algorithm. The first seven data’s average Se and Sp
aremore than 99%, suggesting the robustness of R-peak detection
algorithm (Christov, 2004) amended by Niazy et al. (2005) in
detecting ECG R-peak in the analysis. The data of subject eight
had a visible difference due to the fall of ECG electrodes or some
other reasons. Therefore, this kind of data was abandoned.

BCG Artifact Removal Using ccICA Method
Figure 4 shows the eight channel signals (Fz, Fp2, Fp1, O1, Oz,
O2, T3, P2, the electrode location was placed according to the
EGI system, similar with 10/10 system, only some electrodes
with different name) obtained from an MRI scanner while the
subjects were requested to keep a resting state with their eyes
closed. Figure 4A is the signal before applying the ccICAmethod,
Figure 4B is the corresponding ECG signal marked with red line,
and Figure 4C is the signal after BCG artifact removal. A part
of the locations of the R-peak are tabbed by the vertical dashed
lines. It can be seen that BCG artifacts appear after the recent R-
peak from Figures 4A,B (about 210ms according to Allen et al.,
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2000). But in Figure 4C, BCG artifacts are absent according to
visual observation.

The spectral power is also an important index to evaluate
the efficiency of the BCG artifacts removal method. The spectral
power in EEG harmonic frequencies was calculated for each
electrode and each subject before and after BCG artifacts removal
using ccICA. Nineteen electrodes signals were examined on 10
subjects and the average spectral power for first 20 harmonic
frequencies of the 10 subjects were computed. Figure 5 shows
the results of the average power spectral before and after
the ccICA method employed. The histograms indicate that
the BCG fundamental (∼1Hz) and harmonic powers decrease
significantly. In other words, the contamination of BCG artifacts
has been effectively suppressed in a large part.

Comparisons between ccICA, cICA, OBS, and AAS

Methods
Figure 6 illustrates the same signals handled by other methods.
In Figure 6A, the raw signals are not treated with BCG
artifacts removal algorithm, and regular artifacts are noticeable.
Figures 6B,C show the signals after OBS and AAS method,
residual BCG artifacts and some parts are marked with the red
arrows. Combining the results of the simulated signal, we can
draw a conclusion that the AAS and OBS method do not live
up to the ideal result. The cICA method can remove most BCG
artifacts, but persevere some residual artifacts, which are marked
with red arrows.

We also extract the event-related-potential (ERP) “N170”
from the EEG signal after being corrected by AAS, OBS and
cICA methods. The results are shown in Figure 7. Figure 7A
shows the comparison between raw signals and signals corrected
by the ccICA method. The signal is significantly contaminated
by the artifacts. In Figure 7B, “N170” extracted by the AAS
method is blurry, an analogous negative wave appears in 250ms.
Therefore, the result may be ambiguous. In Figure 7C, the OBS
method can also extract “N170.” However, “N170” appears later.
The “N170” extracted by cICA method is shown in Figure 7D,
however, a large sine wave appears before 150ms, which may
be influenced by artifacts. Moreover, we computed the signal-
to-noise ratio (SNR) (Shams et al., 2015) of “N170,” and the
results are shown in Table 3. From the results described above,
we can conclude that the ccICA method can reduce large BCG
artifacts and preserve more EEG signals. However, due to the
complex environment in MRI scanner, our method seems unable
to completely remove the artifacts, and we can also see the
oscillation near “N170.” So, the results may be different from the
conditions in the conventional environment (Sadeh and Yovel,
2010).

In the frequency domain, the signal power has a significant
attenuation after being applied with every method (Figure 8).
Figure 8A shows the P8 electrode signal’s spectral power before
and after using all methods and Figure 8B shows the average
spectral power of all channels. From Figure 8, ccICA (red line)
and cICA (green line) methods remove more power in all
frequency bands than OBS (blue line) and AAS (black line)
methods. Moreover, ccICA removal efficiency is better than cCIA
in α and β frequency band.

FIGURE 8 | Power spectrum of the signals before and after using all methods.

(A) Electrode P8. (B) Average all channels.

For computing the INPS, we choose the N as 5 because in
literature N is usually chosen between 4 and 6 (Srivastava et al.,
2005; Briselli et al., 2006; Nakamura et al., 2006). Figure 9 shows
the result of INPS. All these are statistically significant (p <

0.005). Figures 9A,B show the mean INPS for the four methods
across four electrodes signals and all electrodes of all subjects
from 8 to 12Hz, indicating that the ccICA method rejects more
power than other methods (expect cICA in Fp2), especially
in Occipital region. From Figure 9B, power attenuation in
low frequency region (∼from 1 to 2Hz) after applying ccICA
is lower than cICA or OBS but higher than AAS (OBS non
selectively suppresses a large amount of power around 1Hz,
suggesting cICA method may perform much better in low
frequency band). As shown in Figure 9, the ccICA method
corrected signals are significantly different from the raw signals
in every frequency region and every tested electrode. Also, we
compute the RRMSE value by using simulated data. From the
result of Figure 10, the averaged RRMSE value obtained by
ccICA is less than 10%, it indicates that the method is excellent.
Also, we could conclude that ccICA performs better than other
methods. Another index can clearly compare the efficiency of
different methods. Figure 11 summarizes the residual BCG
artifacts power ratio from the four methods in six subjects (Niazy
et al., 2005). The result shows that the residual BCG artifacts
after applying the ccICA method is obviously lower than other
methods. It indicates that ccCIA method remove more BCG
artifacts. It is desirable to study the method which performs
better in the frequency band than other methods in future.
For more evaluation index, please refer to (Shams et al., 2015;
Krishnaswamy et al., 2016) and related articles.
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FIGURE 9 | Mean INPS over the 10 subjects. (A) Mean INPS over the 10 subjects of different electrodes from 8 to 12Hz. (B) Mean INPS over the 10 subjects of all

electrodes from 8 to 12Hz. (C) Mean INPS over the 10 subjects of all electrodes from 1 to 5Hz.

FIGURE 10 | RRMSE value in each channel.

To further verify the impact of the clusters number and kind
of clustering algorithm on our result, we compute the Er value
use different number of clusters and kind of clustering algorithm,
the result is shown in Table 4. The result show that three clusters
is suitable for our data and k-means algorithm seemsmore robust
for classifying BCG artifacts.

DISCUSSION

Simultaneous EEG and fMRI is a powerful technique in
functional neuroimaging. It is widely used in examining brain
activity and numerous studies. Due to the benefits of this
technique, a series of challenges have arisen. In particular,
practical implementations of methods for the removal of the
main obstacles GA artifacts and BCG artifacts are highly
worthwhile. However, the current removal algorithm AAS and
OBS have many defects. AAS may remove useful signals and
preservemany residual artifacts.Moreover, OBSmethod depends
on subjective selection, which also affects the EEG signal quality.

In this paper, considering the huge variations of BCG artifacts,
we propose a novel method based on constraint ICA. Although
ccICA is based on the classic ICA machinery, the efficiency has
outperformed the ICA algorithm. The main advantages of ccICA
are: (1) take the BCG artifacts variability into consideration; (2)

component selection is not interfered by subjective factors, which
improve the extraction accuracy of artifact-related components;
(3) the method is more efficient and robust in BCG artifacts
removal and outperforms traditional methods in many aspects.
As mentioned in Leclercq et al. (2009), this method has one
disadvantage that when the EEG channel is less, the result will
be uncorrected.

R-Peak Detection
Robust R-peak detection algorithm is crucial in BCG artifacts
removal. In general, the R-peak detection algorithms can
be classified into three main categories: threshold algorithm
(Christov, 2004; Niazy et al., 2005), matching algorithm and
syntactical algorithm. Considering the variations of BCG
artifacts, the combined adaptive threshold algorithm (Christov,
2004) amended by Niazy et al. (2005) can determine the R-
peaks accurately. The algorithm can consider the variations in
the intervals between adjacent ECG peaks, while another two
methods are not applicable. Additionally, as shown in Table 2,
the Se and Sp of ECG R-peak detection we calculated in the real
data are more than 99% (expect damaged ECG data, i.e., Subject 8
in Table 2). In addition, the ECG segment based on the detected
R-peaks and accurate ECG segments can make the clustering
algorithm more efficient.
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FIGURE 11 | The residual BCG artifacts power ratio in each subject.

Compare with cICA, OBS and AAS
Performance comparisons between the ccICAmethod and cICA,
OBS, AAS (Allen et al., 2000; Niazy et al., 2005; Leclercq
et al., 2009) were based on same simulated data and real data,
guaranteeing effective comparability of the results shown in
section Results. According to the results, significant changes have
taken place in signals before and after BCG artifacts removal
when using ccICA method, and the results are much better. It
indicates that the EEG signal obtained in the MRI environment
after applying the ccICA method is much cleaner. Consistently,
comparing the results of ccICA and other methods in time
domain or frequency domain, we find that the ccICA method
can effectively suppress the BCG artifact-related components and
preserve the useful EEG neuro-related components, such as alpha
rhythm and beta rhythm.

In our novel BCG artifacts removal method, we catch the
variations of BCG artifacts and classify them into different
categories using clustering algorithm, which has been neglected
by other methods. Therefore, our method can provide more
accurate estimates of the BCG artifacts components and improve
the EEG signals quality after BCG artifacts removal, whereas the
fixed BCG artifact template used by other methods is insufficient
for estimating BCG artifact components.

Clustering algorithm is used to classify BCG artifacts, but
the number of the clusters to be chosen is worth considering.
Different numbers may lead to different results. Moreover, the
use of different clustering algorithm will lead to different BCG
artifacts classifications.

Therefore, it is necessary to find the optimal clustering
algorithm and the suitable number of clusters. Also, due to
the complex environment in the MR scanner, ccICA can’t
completely remove the artifacts. From Figure 7, we can see
the significant oscillation near “N170” caused by residual
artifacts, the residual artifacts’ amplitude and scale being very
similar to the EEG signal. This kind of components may be
artifacts or EEG signal when using ICA algorithm. If ccICA
identifies this kind of components as the artifacts, it will

TABLE 4 | The Er value of BCG artifacts removal using different clustering

methods and the number of clusters.
h

h
h

h
h

h
h

h
h

h
hh

Cluster number

Method
Hierarchical clustering k-means

2 61.41 55.75

3 28.68 40.67

4 73.65 75.41

5 92.38 52.61

6 72.21 60.54

remove some useful EEG signals. Hence, more details should be
considered.

For the blind source separation used to remove BCG artifacts,
many other strategies are proposed for artifacts removal. For
example, an optical motion-tracking system was used to measure
the BCG motion (LeVan et al., 2013) or a mark-based method
to correct BCG artifacts (Körbl et al., 2016). Also, a method
based on BCG reference layer (BRL) and standard EEG cap
was applied (Luo et al., 2014; Krishnaswamy et al., 2016).
Some real-time methods also performed well in BCG artifact
removal (Mayeli et al., 2016; Wu et al., 2016). It is worthwhile
to note that during the removal of artifacts, the physiological
signal preservation should be taken into account (Abreu et al.,
2016). Therefore, the way to suppress the generation of artifacts
by hardware is recommended. In our study, we improved
the efficiency of well-studied ICA based method. Our method
showed improvements of BCG artifact removal in simulated or
real data. In future studies, the demonstration of validity of our
method is worthwhile.

Limitations
The current study shows that our ccICA method can efficiently
remove BCG artifacts and does better than traditional methods.
However, it also has some potential limitations, such as the cluster
types, the type of clustering algorithm (only use hierarchical
clustering and k-means in this article) we should choose, and
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different choices may affect the results. In addition, different
reference of scalp EEG recordings, such as REST reference (Yao,
2001) and Cz reference, is also a factor that may be taken into
consideration. Meanwhile, sampling rate and R-peak detection
algorithm also result in a different addition. For our method,
a little distortion of corrected EEG data may happen when we
reconstruct the corrected EEG data. When extracting the ERP of
“N170,” we also met some problems so that the “N170” had a little
distortion. It may be caused by the low SNR of the EEG signal
or some useful EEG signals were removed. Meanwhile, the other
unknown artifacts also affect the quality of “N170.” Low sampling
rate is worth considering whether it affects the results. Therefore,
BCG artifacts removal is more challenging because many factors
should be taken into consideration.

CONCLUSIONS

In this paper, a novel ICA-based technique is introduced for
removing the BCG artifacts. The clustering algorithm is adopted,
making the BCG artifacts-related selections more effective. The
results demonstrate the effectiveness of ccICA in both the time
domain and the frequency domain. Comparisons between ccICA

and othermethods also suggest that ourmethod can remove BCG
artifacts more effectively and obtain a much cleaner EEG signal.
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