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A B S T R A C T   

The new development form of urban agglomeration has greatly promoted economic and social 
progress in recent years, but it is also facing severe environmental pollution problems. Under-
standing the status quo of environmental efficiency in urban agglomerations and its leading 
driving forces is an important prerequisite for formulating energy conservation and emission 
reduction policies. This research uses the Meta Epsilon Based Measure (Meta-EBM) model to 
measure the environmental emission efficiency of the Beijing-Tianjin-Hebei（BTH）, Yangtze 
River Delta (YRD) and Pearl River Delta (PRD) urban agglomerations in China from 2014 to 2018 
so as to improve on the inability of traditional Data Envelopment Analysis (DEA) to combine 
linear and non-linear characteristics, and employs Moran’s I index and spatial econometric 
methods to analyze their spatial dependence and main driving factors. The results demonstrate 
that the overall environmental efficiency of the three major urban agglomerations in the five 
years from 2014 to 2018 presents a wave-like development and then tends to be flat. The itemized 
efficiency of economic outputs has maintained a relatively high level with the environmental 
output index exhibiting the best efficiency for industrial wastewater, followed by industrial sulfur 
dioxide (SO2). The scores of the two indicators for inhalable fine particle emissions (PM2.5) and 
industrial smoke and dust in each urban agglomeration are not ideal, and there are obvious 
differences between regions. Among them, YRD and PRD are relatively inferior. From the 
perspective of spatial spillover effects, various indicators show diverse characteristics at different 
development stages of the regions. Population and Normalized Difference Vegetation Index 
(NDVI) have a positive effect on environmental efficiency, while both Gross Domestic Product 
(GDP) per capita and transportation tend to show greater negative effects on regional environ-
mental optimization. This study proposes countermeasures as follows. Each urban agglomeration 
should set up measures suitable to local conditions and give full play to their location advantages. 
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They can also use space radiation to promote sector economic development and optimize urban 
environmental benefits.   

1. Introduction 

China has made tremendous economic and social achievements in the past few decades [1,2], leapfrogging Japan to become the 
world’s second largest economy in 2010 [3], with China’s total GDP in 2019 reaching 272 times that of 1978. Urban agglomerations 
have become a powerful engine for achieving economic development due to the increasing economic interactions between countries, 
the rapid circulation and exchange of various resources, and the clustering and joint development of cities within countries. From 2006 
to 2015, the share of the 12 city clusters in the national GDP rose from 70.56% to 82.03%, with an average annual growth rate of more 
than 1% point. Among them, BTH, YRD and PRD have become highly representative world-class urban agglomerations, contributing 
more than 40% (40.85 trillion yuan) (2019), and becoming the focus of promoting the integrated development of major national 
regional strategies. 

These three major urban agglomerations play a pivotal role in China’s development, but their rapid expansion has led to a serious 
resource and environmental crisis in the three major urban agglomerations, as accelerated urbanization is closely linked to energy 
consumption. The three major urban agglomerations of BTH, YRD, and PRD have worrisome performance in terms of environmental 
quality such as water pollution and air pollution. In 2019, the south part of the Yangtze River and east area of the Yunnan-Guizhou 
Plateau became the main distribution regions of acid rain in China. Among the 165 water quality sections monitored in the Pearl 
River Basin, up to 3.0% are inferior at Grade V. The proportion of days for the average air quality exceeds the standard in the BTH 
region reached 46.9%, of which 4.9% were seriously polluted and 0.6% was severely polluted. The proportion of days for the average 
air quality exceeds the standard in the Yangtze region was 23.5%, accounting for 0.6% was severe pollution. Since the winter of 2012, 
extreme haze incidents in northern and eastern China, especially for BTH, YRD, PRD and other urban agglomerations have occurred 
one after another [4,5]. 

Considering the imbalance between economic development and the environment, this study aims to address the problems of 
tightening resource constraints, serious environmental pollution and ecosystem degradation, to continuously improve environmental 
efficiency, and to build a resource-saving and environment-friendly society in order to achieve sustainable urban development. 

This study first uses the Meta-EBM model to evaluate environmental efficiency. Then the spatial autocorrelation model is used to 
consider the time lag effect and spatial lag effect of pollution from the perspective of spatial spillover. Finally, the interplay between 
urban cluster environments is explored by examining the relationship between geographical distance and spatial spillover effects. The 
research framework is shown in Fig. 1 below. 

The contribution of this study is that by analyzing the spatial and temporal distribution patterns of environmental quality and 
efficiency assessment in China’s three major urban agglomerations from 2014 to 2018, as well as exploring their main driving factors, 
it will, to a certain extent, provide a basis for relevant administrative departments to formulate policies related to improving the 
environmental quality of urban agglomerations, ultimately achieving a harmonious development between the environment and 
human socio-economic development of urban agglomerations, and providing referenceable suggestions for other urban agglomera-
tions to improve their environmental conditions. 

Fig. 1. The research framework.  
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2. Literature review 

Under the dual challenges of the global climate crisis and the pressure of economic growth, the concepts of low-carbon devel-
opment and green energy transition are now widely recognized by the international community [6]. Therefore, it is crucial to explore 
methods to evaluate the advantages and disadvantages of environmental and energy indicators. 

Xia et al. [7] measured the environmental efficiency of China’s mining industry based on China’s inter-provincial data from 2007 to 
2016. Wang et al. [8] analyzed the determinants of carbon emissions in the G20 countries from 2010 to 2015 based on the DEA-based 
hybrid measure model and meta-frontier analysis approach. Kounetas and Zervopoulos [9] used the meta-frontier framework to assess 
cross-border environmental performance. Bel and Holst [10] analyzed the influencing factors of air pollution in Mexico. Sun et al. [11] 
evaluated the analysis of optimal energy allocation and environmental performance of China’s three major urban agglomerations. The 
empirical results demonstrate that China still has great potential in improving energy efficiency. Giannakitsidou et al. [12] used DEA to 
measure the environmental and circular economy performance of 26 EU countries, and the results showed poor performance by the old 
EU member states. Schlutow et al. [13] comprehensively assessed the integrity of Germany’s atmospheric heavy metal deposits and 
ecosystems. Batsaikhan et al. [14] applied hydrochemical, environmental isotopic, and statistical approaches to assess groundwater 
pollution in Ulaanbaatar, Mongolia. 

The inter-regional dependence and spatial spillover effects of different regions have a significant impact on China’s inter-provincial 
economic development [15]. Ying [16] and Ying [17] tried to prove the expected diffusion effect of China’s space economy from a 
core-periphery perspective. Brun et al. [18] divided China into coastal and non-coastal provinces to examine the interaction between 
coastal and inland provinces. Zhang and Felmingham [19] investigated the spatial spillover effects among the three major economic 
belts (East, Central, and West) based on the ideas of Brun, Combes, and Renard. Groenewold et al. [20]and Groenewold et al. [21] used 
the VAR model and found that the coastal and northwestern regions have a larger spillover effect on other regions. Chang [22] showed 
that spatial methods are effective for water quality management of non-point source pollution. Long et al. [23] focused on the spatial 
dependence and main driving factors of industrial carbon productivity. Ma et al. [24] analyzed the driving factors of haze in 152 cities 
of China by constructing a spatial economic weight matrix. Tang et al. [25] believed that China’s haze pollution has strong spatial 
agglomeration and spatial spillover effects. Feng et al. [26] used the SDM framework based on STIRPAT to identify the socio-economic 
driving factors of pollution spillover heterogeneity, and explored the spatial spillover effects of environmental regulations on PM2.5 
concentration. 

Combining the perspective of spatial measurement, Chuai et al. [27] believed that the level of economic development in the 
surrounding areas will lead to a certain regional correlation between energy consumption and carbon emissions. Elliott et al. [28] 
studied the relationship between the energy intensity of Chinese cities and the location of foreign companies. Rich [29] reported the 
link between air pollution and cardiopulmonary disease mortality and morbidity. Talbi [30] used a vector autoregressive model and 
found that the improvement of energy efficiency and fuel rate has a positive impact on the carbon emission reduction of the road 
transport sector in Tunisia. Lebreton et al. [31] quantified marine plastic pollution from both spatial and temporal aspects. Yan et al. 
[32] explored the spatial changes of PM2.5 in the Beijing-Tianjin-Hebei region through spatial autocorrelation analysis. 

The studies above have enriched our understanding of the emission efficiency of individual environmental pollutants, such as 
carbon emission efficiency, industrial wastewater emission efficiency, etc. While there are few studies evaluating efficiency by 
combining multiple pollution factors, a few scholars have evaluated environmental quality based on spatial measurement methods and 
analyzed its temporal and spatial distribution characteristics and influencing factors. Especially for the analysis of influencing factors, 
many studies have not considered the relationship of spatial interaction, and the relationship between related variables is based on the 
assumption of spatial autocorrelation. LeSage and Pace [33] pointed out that the characteristics of a local area will be affected to a 
certain extent by its neighboring areas. If one refers to Waldo Tobler’s First Law of Geography, then the influence of spatial interaction 
cannot be ignored; otherwise, the simple use of traditional estimation methods may lead to deviations in the regression results ob-
tained. Related studies have also shown that the significant spatial dependence of pollution emissions cannot be ignored [34]. 

In order to fill the above research gaps, this research shall evaluate the environmental quality and efficiency of the three major 
urban agglomerations in China from the perspective of spatial spillover effects and analyze their temporal and spatial distribution 
patterns of environmental quality and efficiency based on panel data from 2014 to 2018. This study is the first attempt to use spatial 
measurement methods to explore the environmental quality efficiency of the three major urban agglomerations in China and analyze 
its main driving factors. The goal is to provide a decision-making basis for the formulation of relevant policies that can improve the 
environmental quality of urban agglomerations to a certain extent. 

Compared with the existing literature, this study has three innovations. First, the Meta-EBM DEA model is selected to take into 
account the technical level differences between different groups, while also overcoming the defect of the traditional DEA model that 
does not combine linear and non-linear dual characteristics. Second, the selection of input-output indicators is more reasonable and 
comprehensive. The four environmental output indicators of SO2, industrial smoke and dust emissions, waste water discharged, and 
PM2.5 combine traditional pollutants with newer pollutants and are closer to the current environmental quality status of China’s three 
major urban agglomerations. Third, different from previous studies that ignore the spatial dependence of urban agglomeration 
environmental efficiency, this research adds Moran’s I index of spatial metrology and spatial spillover effect analysis in the second- 
stage empirical link to provide the space-time distribution pattern and driving factors that support the first-stage environmental ef-
ficiency. Therefore, this article will contribute to the innovative perspectives and achievements of environmental efficiency evaluation 
and spatial effect research of typical urban agglomerations in China. 
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3. Research methods 

3.1. Meta-EBM DEA model 

Traditional DEA models can be divided into radial DEA models (represented by A. Charnes & W. W. Cooper & E. Rhodes (CCR) and 
Banker & Charnes & Cooper (BCC)) and non-radial DEA models (represented by Slacks-Based Measure (SBM)). However, these models 
fail to consider the possibility of the simultaneous existence of radial and non-radial features. Therefore, Tone and Tsutsui [35] 
proposed the EBM model, which considers the combination of radial and non-radial features. 

The 60 cities in the three major urban agglomerations of China’s YRD, BTH, and PRD selected in this study have different social 
cultures, economic environments, production structures, etc., and it would be unfair to use traditional DEA methods with the same 
technical level when evaluating their efficiency. Portela and Thanassoulis [36] put forward the concept of convex meta-frontier, and 
pointed out in a certain period of time that the technology of all groups and the output level of production with advanced technology 
will be further improved through technical exchanges between groups, which then expand the production boundary outward to 
improve operating performance. O’Donnell et al. [37] formally proposed a Meta-frontier model that can accurately calculate group 
and common technical efficiency. This research also uses meta-frontier analysis (curve QQ’), which is an envelope curve (Fig. 2) that 
includes the production frontiers of all groups, so that the three major urban agglomerations (curves 11′, 22′, and 33′) can have their 
efficiency measured under a common benchmark. 

Based on the relevant analysis of the above EBM model and Meta-frontier model, this research proposes a Meta-EBM DEA model 
that combines the advantages of the two, and incorporates many characteristics such as radial, non-radial, and group differences into 
the model. The specific process of the Meta-EBM DEA model runs as follows. 

Due to differences in resources, regulations, and environment and management modes, it is assumed that all research objects (N) 
are composed of decision-making units of g groups (N––N1+N2+N3+NG), and xij and yrj respectively represent the i-th input（i = 1,
…m）of the j-th unit（j = 1, …N）and the final output of the r-th unit（r = 1, …s）. θ and η are linear inputs and linear outputs, 
respectively. w−

i and w+
i are the weight of i inputs and outputs, respectively. s−i and s+i are the gap slack and excess slack, respectively. ℇx 

and ℇy are Linear and nonlinear combination. λ is the weight of the input-output term. λjg represent the weight of decision-making units 
in all groups. λij represent the weight of i-th input（i = 1,…m）of the j-th unit. Under the common boundary, decision-making unit k 
can choose the most favorable final output weight to maximize its efficiency value. Therefore, in the undirected Meta-EBM DEA model, 
the efficiency of decision-making unit k is solved by the following linear programming formula (1): 

min
0,η,λ,s− ,s+

θ − ℇx
∑G

g=1
∑m

i=1

w−
i s−i
Xi0

η − ℇy
∑G

g=1
∑S

i=1

w+
i s+i
Yi0

(1) 

The constraint conditions are the following formula (2)-(7): 

Xio =
∑G

g=1

∑n

j=1
Xijgθjg + S−

i (i= 1,…m) (2)  

Yio =
∑G

g=1

∑n

j=1
Yijgηjg − S+

i (i= 1,…s) (3)  

∑G

g=1

∑n

j=1
λjg = 1 (4)  

Fig. 2. Meta-frontier curve.  

X.-g. Guan et al.                                                                                                                                                                                                       



Heliyon 9 (2023) e19028

5

θX0 − Xλ − S− = 0, ηY0 − Yλ + S+ = 0 (5)  

λ1 + λ2 + … + λn = 1 (6)  

λij ≥ 0, s−i ≥ 0, s+i ≥ 0 (7)  

Two indicators can be obtained according to the input distance function: ① Calculate the input distance function value of the Decision- 
Making Unit (DMU) in the group according to the efficiency frontier of the g-th group - namely, βg. ② Calculate the input distance 
function value of each DMU according to the common boundary – namely, βm. Therefore, two different technical efficiencies can be 
calculated for the two different boundaries: the technical efficiency of the common boundary under the common boundary is TEm =

Dm(y,x); and the group technical efficiency under the specific g group boundary is TEg = Dg(y,x), where Dm(y,x) ≥ Dg(y,x), which 
means that the g-th group is included in the common boundary, and so there is a common technology between the two. Therefore, the 
meta technical ratio (MTR) of each DMU in the g-th group is shown in formula (8): 

MTRg =
Dm(y, x)
Dg(y, x)

=
TEm

TEg =
1 − βm

1 − βg (8) 

The technology gap ratio (TGR) of the g-th group is shown in formula (9): 

TGRg =
TEm(x, y)
TEg(x, y)

(9)  

3.2. Spatial autocorrelation model 

The spatial panel model simultaneously captures the characteristic changes of the observation unit in space and time. An expla-
nation of the space lag, space error, and space Doberman model may be needed. Before setting a specific spatial measurement model 
for estimation, it is necessary to confirm the existence of spatial correlation, and Moran index statistics are generally constructed for 
verification. 

yit = ρW′
iyt +X′

itβ+ μi(optional)+ ξt (optional) + εit (10)  

yit =X′
it β + μi (optional) + ξt(optional) + φit (11)  

φit = λ
∑N

j=1
Wijφij + εij (12)  

yit = ρ
∑

Wij yij + X′
it β + ρ

∑
Wij Xijt + μi (optional) + ξt(optional) + εit (13)  

In formula (10) and (11), yit is the explained variable of the observation unit i at time t. ρ is the spatial autoregressive coefficient of 
dependent variable. W′

iyt is the spatial interaction term between yit and its neighboring unit. X’it is the i-th row of the explanatory 
variable. β is the i-th row of the regression coefficient vector. εit is the error term. 

In formula (12), λ is the autocorrelation coefficient of the spatial disturbance term. Wij is the preset non-zero N × N-order spatial 
matrix. εij is the error term. 

In formula (13), the spatial Durbin model can be used to test the hypotheses of: H0: θ = 0 and H1: θ + ρβ = 0. The first hypothesis H0 
examines whether the spatial Dubin model can be reduced to a spatial lag model, while the second hypothesis examines H1 whether it 
can be reduced to a spatial error model Elhorst [38]. μi and ξt correspond to space and time effects, respectively. If both hypotheses are 
rejected, then the spatial Dubin model can better describe the spatial spillover effects of environmental governance. 

3.3. Data sources and description 

For the measurement of environmental efficiency in regional economic growth, environmental indicators must be combined with 
other production factors so that they can be correlated. We select data from 2014 to 2018, covering a total of 60 cities in BTH, YRD and 
PRD. Referring to the input and output indicators of Cui et al. [39] and Du et al. [40], we choose labor, energy consumption and fixed 
assets as input variables, and GDP, SO2, PM2.5, industrial smoke and dust emissions and waste water discharged as output variables. 
Labor, energy consumption and fixed assets are important factors contributing to economic growth; GDP reflects the final outcome of 
production activities of all resident units in the city over a certain period of time, while the amount of pollutant emissions such as SO2, 
PM2.5, industrial smoke and dust emissions and waste water discharged indicate the extent to which the production and demand 
acquisition behavior of the region affects the surrounding water and air environment, and is a direct cause of ecological change. The 
description of the specific input-output variables in Table 1. 

3.3.1. Input variables 
Labor: Refers to planned total investment of 5 million yuan or more in construction projects and real estate development 
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investments by various registered enterprises, institutions, administrative units and urban self-employed, both in urban and rural 
areas, including the original standard of urban fixed asset investment plus the investment of rural enterprises and institutions, which 
have been in use since 2011. Unit: million people. 

Energy consumption: The energy consumption of industrial enterprises includes the energy used by industrial enterprises from 
fuel, power, raw materials and auxiliary materials in the production process, as well as process energy and non-production energy; for 
an energy processing and conversion enterprise, it also includes the input of energy processing and conversion. Unit: tons of standard 
coal. 

Fixed assets: Refers to planned total investment of 5 million yuan or more in construction projects and real estate development 
investments by various registered enterprises, institutions, administrative units and urban self-employed, both in urban and rural 
areas, including the original standard of urban fixed assets investment plus the investment of rural enterprises and institutions, which 
have been in use since 2011. Fixed assets in this paper refer to the amount of investment and are not a concept of capital stock. Unit: 
10,000 yuan. 

3.3.2. Output variables 
GDP: Refers to the final result of production activities of all resident units in a country (or region) in a certain period of time 

calculated according to the national market price, and is often recognized as the best indicator to measure a country’s economic 
situation. GDP is an important comprehensive statistical index in the accounting system and the core index in China’s new national 
economic accounting system. It reflects the economic strength and market size of a country (or region). Unit: 10,000 yuan. 

SO2: The amount of sulfur dioxide discharged into the atmosphere by enterprises during fuel combustion and production processes. 
Unit: ton. 

PM2.5: Fine particles refer to those with aerodynamic equivalent diameter less than or equal to 2.5 μm in ambient air. They can be 
suspended in the air for a long time. The higher their concentration in the air is, the more serious is the air pollution. Compared to 
coarser atmospheric particles, PM2.5 has a small particle size, large area, strong activity, easy attachment of toxic and harmful sub-
stances (e.g., heavy metals, microorganisms, etc.), long residence time in the atmosphere and long transportation distance, thus having 
greater impact on human health and atmospheric environmental quality. Unit: μg/㎥. 

Industrial smoke and dust emissions: Industrial smoke and dust emissions refer to the weight of particulate matter emitted by 
enterprises in the production process, such as refractory dust of iron and steel enterprises, dust of coke screening systems of coking 
enterprises, dust of sintering machines, dust of lime kilns, cement dust of building materials enterprises, etc. They do not include smoke 
and dust discharged into the atmosphere from power plants. Unit: ton. 

Waste water discharged: Waste water discharged includes production waste water, production waste water, and cooling water. It 
refers to waste water and waste liquid produced in the industrial production process, which contains industrial production materials, 
intermediate products, by-products, and pollutants produced in the production process. There are many kinds of waste water dis-
charged and their composition is complex. Unit: 10,000 tons. 

4. Results 

4.1. Statistical analysis 

Fig. 3(a–c) shows the overall status of the data for the three input indicators of employment population, total fixed assets and total 
energy consumption for the 60 cities from 2014 to 2018, as Fig. 3(a) shows the mean, maximum and minimum values as well as the 
standard deviation of the employment population values for each year for the 60 cities. The average number of employees decreased 
slightly in 2016 compared with the previous year, and there has been an overall growth trend over the past five years. In 2018, the 
annual average urban employment population increased by 25.17% compared with 2014. The average value of fixed assets in the five- 
year period showed a growth state, but then significantly declined in 2017, even lower than the 2014 average, but the index value then 
rose sharply in 2018, reaching 17.63% compared to the previous year. The total energy consumption of the three major urban ag-
glomerations from 2014 to 2017 basically has maintained the same level, and statistics such as the maximum, minimum, and mean in 
2018 al l dropped significantly, while overall investment in total energy consumption has also fallen. The above analysis shows that the 
total energy input, urban employment, and fixed assets of urban agglomerations have risen overall. Total energy consumption 
increased first and then decreased, showing an unstable trend. 

Fig. 4(a–e) show the statistics of total city’s five output indicators: GDP, industrial SO2 emissions, industrial wastewater, annual 

Table 1 
Input and output variables and data sources.  

Input variable Output variable Data source 

Labor 
Energy 
consumption 
Fixed assets 

GDP 
SO2 

PM2.5 

Industrial smoke and dust 
emissions 
Waste water discharged 

From 2014 to 2018 in China City Statistical Yearbook and the statistical yearbook of each city, the air 
pollutant data partly come from the reports of the environmental protection bureau of each province and 
city and the air quality monitoring website.  
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average concentration of PM2.5, and industrial smoke and dust emissions. In general, the average GDP output value has been increasing 
year by year, while industrial SO2 emissions, industrial wastewater, and annual average concentration of PM2.5 have shown a steady 
downward trend, of which the index value of PM2.5 has significantly decreased the most. However, the average emissions of industrial 
smoke and dust reach the peak in 2015 and decline significantly in the following year, followed by a gradual decline. This shows that 
urban agglomerations are paying attention to the unfavorable factors of environmental changes such as sewage and air pollution in the 
process of urban economic development, and have achieved obvious results in environmental governance and protection year by year. 
Industrial smoke and dust indicators increased significantly in 2015, rising 19, 391 tons compared to 2014, but fell sharply in 2016 by 
58.03%, and have showed a steady decline year by year from 2016 to 2018. 

4.2. Environmental quality assessment results 

4.2.1. Analysis of total efficiency 
Fig. 5 presents the chart of the trend change in the total efficiency score of each urban agglomeration from 2014 to 2018. Overall, 

the environmental quality efficiency of the three major urban agglomerations shows fluctuating development that is gradually 

Fig. 3. a. Statistical analysis of employed population for total cities. b. Statistical analysis of total fixed assets for total cities. c. Statistical analysis of 
total energy consumption for total cities. 
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converging. 
In the first three years, each urban agglomeration experienced significant changes. The environmental quality efficiency of the 

YRD, BTH, and PRD urban agglomerations experienced a decrease of 31.35%, 20.20%, and 49.12%, respectively, in 2015, returning to 
normal in 2016. It shows that the three major urban agglomerations neglected environmental governance and protection while 
developing their economy in the early stage, and environmental benefits fell significantly. In March 2015, China implemented the 
Opinions on Accelerating the Construction of Ecological Civilization, clarifying that the construction of an ecological civilization will inject 
a new impetus into energy conservation and emission reduction. The above results show that the improvement of these governance 
plans and measures has played an important role in the gradual adjustment of environment-ecologic efficiency and maintaining it at a 
relatively normal threshold. From 2014 to 2016, the environmental efficiency of the BTH was significantly better than that of the YRD 

Fig. 4. a. Statistical analysis of GDP for total cities. b. Statistical analysis of SO2 for total cities. 
c. Statistical analysis of waste-water discharged for total cities. d. Statistical analysis of PM2.5 for total cities. e. Statistical analysis of industrial 
smoke and dust emissions for total cities. 
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and PRD, but the trend line showed a slight decline. This is due to the symposium hosted by General Secretary Xi Jinping in Beijing in 
2014, which clearly identified the realization of the synergistic development of BTH as a major national strategy, and the adoption of 
the BTH Synergistic Development Plan Outline in 2015, which identifies the integration of transportation, ecological and environ-
mental protection, and the upgrading and transfer of industries in BTH as key areas. The PRD continued to be at a disadvantage during 
2014–2017, but it rose to be the best among the three major urban agglomerations in 2018. From 2016 to 2018, the environmental 
efficiency of the three urban agglomerations gradually tended to be the same. Except for the YRD that declined year by year since 2016, 
the BTH and YRD both increased in 2018 after declining, and their environmental efficiency values are almost unanimous. It shows 
that among the three urban agglomerations, the BTH has the best environmental governance effect, where the PRD’s environmental 
governance level is in a weak position, but by continuing to pay attention and actively improve in the following years, its environ-
mental governance effect has been significantly optimized. The YRD still lacks the proper attention paid to the environment. 

Table 2 shows the environmental efficiency of the three major urban agglomerations. In the three urban agglomerations, there is a 
total of 60 cities, of which Huangshan, Qinhuangdao, Tangshan, and Tongling have an average environmental quality of 1. It shows 
that their environmental efficiency value is relatively strong, their degree of urban energy utilization is high, and the management and 
protection of the ecological environment is being properly emphasized while the urban industry is developing. 

The two cities of Huangshan and Tongling belong to the YRD, accounting for 6.25% of the urban agglomeration area. Within the 
YRD, 22 cities, including Bengbu and Changzhou have scores of environmental efficiencies greater than 0.6, accounting for 68.75% of 
the area, and the overall environment is in good condition. The five-year evaluation scores of Shanghai are less than 0.3, of which the 
average environmental efficiency score of Shanghai is only 0.2300, and its minimum goes as low as 0.1837. Bengbu, Changzhou, 
Chizhou, Bozhou, Ma’anshan, and Shaoxing had low efficiency scores in the past few years, but their efficiency scores hit 1 later, 
indicating that these cities were weak in the efficiency of energy input and output in the early stage, but attention to and protection of 
ecological development and the environment were strengthened in the later stage. Hefei, Xuancheng, and Lu’an scored 1 in envi-
ronmental assessment efficiency in 2014, but their scores declined in 2015–2018. 

The two cities of Qinhuangdao and Tangshan belong to the BTH, accounting for approximately 15.38% of its area. In the region, 
there are 12 cities with an average score of environmental efficiency greater than 0.6, including Beijing and Cangzhou, accounting for 
92.31%, which is the best among the three urban agglomerations. In 2015, 8 cities including Beijing, Hengshui, and Qinhuangdao 
scored 1, and the number of cities with a score of 1 accounted for 61.54% of the total number of urban agglomerations, thus becoming 
the best of the three major urban agglomerations that year. 

There is no city in the PRD with an environmental efficiency score of 1, and its overall average is 0.6403. Among them, 9 cities, 
including Guangzhou and Jiangmen, have an efficiency score greater than 0.6, and the number of cities with a score greater than 0.6 
accounts for 60% of the total number of cities in the urban agglomeration, and Zhaoqing has an efficiency score of 0.9290, which is the 
best in the PRD. The lowest is Huizhou with an efficiency score of less than 0.3. Guangzhou and Yunfu’s scores fell 97.65% and 92.23%, 
respectively, in 2015, and they were the cities with the most obvious decline in the region. In 2014, Shenzhen’s environmental ef-
ficiency score was 0.0439, ranking last in the PRD. However, Shenzhen’s efficiency score hit 1 in 2015 for a growth rate of 2177.90%. 

Fig. 5. Comparison chart of trend change of the total efficiency score of each urban agglomeration from 2014 to 2018.  
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Table 2 
Environmental efficiency scores and changes in ranking for each city in BTH, YRD and PRD from 2014 to 2018.  

Region No. DMU 2014 2015 2016 2017 2018 Average 

Rank Score Rank Score Rank Score Rank Score Rank Score Rank Score 

BTH 1 Beijing 1 1.0000 1 1.0000 1 1.0000 1 1.0000 60↓ 0.0864 20 0.8173 
2 Tianjin 45 0.4990 1↑ 1.0000 31↓ 0.8419 53↓ 0.4034 1↑ 1.0000 26 0.7489 
3 Baoding 25 0.8248 54↓ 0.1067 43↑ 0.6354 39↑ 0.6258 36↑ 0.5630 46 0.5511 
4 Tangshan 1 1.0000 1 1.0000 1 1.0000 1 1.0000 1 1.0000 1 1.0000 
5 Langfang 23 0.8588 50↓ 0.1791 27↑ 0.8765 35↓ 0.6694 1↑ 1.0000 32 0.7168 
6 Shijiazhuang 21 0.8853 1↑ 1.0000 1 1.0000 43↓ 0.5825 1↑ 1.0000 14 0.8936 
7 Handan 1 1.0000 48↓ 0.1926 47↑ 0.5792 32↑ 0.7210 28↑ 0.7438 38 0.6473 
8 Qinhuangdao 1 1.0000 1 1.0000 1 1.0000 1 1.0000 1 1.0000 1 1.0000 
9 Zhangjiakou 36 0.6543 1↑ 1.0000 29↓ 0.8574 37↓ 0.6561 38↓ 0.5305 29 0.7397 
10 Chengde 1 1.0000 46↓ 0.2227 1↑ 1.0000 1 1.0000 1 1.0000 18 0.8445 
11 Cangzhou 37 0.6390 43 0.3656 50 0.5435 47 0.5079 1↑ 1.0000 42 0.6112 
12 Xingtai 1 1.0000 1 1.0000 1 1.0000 22↑ 0.9085 35↓ 0.5832 13 0.8983 
13 Hengshui 1 1.0000 1 1.0000 1 1.0000 40↓ 0.6066 45↓ 0.4391 22 0.8091 

YRD 1 Shanghai 59 0.1837 49↓ 0.1837 60↓ 0.2975 59↑ 0.2975 59 0.1876 60 0.2300 
2 Nanjing 52 0.4079 40↑ 0.4079 58↓ 0.3527 57↑ 0.3527 57 0.2834 57 0.3609 
3 Wuxi 47 0.4935 36↑ 0.4935 28↑ 0.8581 24↑ 0.8581 1↑ 1.0000 28 0.7406 
4 Changzhou 1 1.0000 60↓ 0.0236 1↑ 1.0000 1 1.0000 1 1.0000 24 0.8047 
5 Suzhou 58 0.3020 44↑ 0.3020 49↓ 0.5551 44↑ 0.5551 53 0.3009 55 0.4030 
6 Nantong 46 0.4971 35↑ 0.4971 44↓ 0.5902 41↑ 0.5902 52↓ 0.3307 50 0.5010 
7 Yancheng 40 0.5736 30↑ 0.5736 1↑ 1.0000 1 1.0000 37↓ 0.5585 27 0.7411 
8 Yangzhou 38 0.5999 29↑ 0.5999 40↓ 0.6853 34↑ 0.6853 33↑ 0.6232 39 0.6387 
9 Zhenjiang 42 0.5325 32↑ 0.5325 33↓ 0.7925 28↑ 0.7925 56↓ 0.2926 45 0.5885 
10 Taizhou，Jiangsu 48 0.4812 37↑ 0.4812 53↓ 0.4934 49 0.4934 46 0.4086 51 0.4716 
11 Hangzhou 54 0.3925 42↑ 0.3925 1↑ 1.0000 1 1.0000 42↓ 0.4836 37 0.6537 
12 Ningbo 53 0.3967 41↑ 0.3967 54↓ 0.4694 51↑ 0.4694 51 0.3464 53 0.4157 
13 Jiaxing 32 0.7213 26↑ 0.7213 1↑ 1.0000 1 1.0000 58↓ 0.2164 31 0.7318 
14 Huzhou 29 0.7658 24↑ 0.7658 26↓ 0.9077 23↑ 0.9077 27↓ 0.7505 19 0.8195 
15 Shaoxing 33 0.7028 27↓ 0.7028 1↓ 1.0000 1 1.0000 1 1.0000 15 0.8811 
16 Jinhua 41 0.5550 31↓ 0.5550 51↓ 0.5430 45↓ 0.5430 41↓ 0.4959 47 0.5384 
17 Zhoushan 44 0.5004 34↑ 0.5004 59↓ 0.3445 58↑ 0.3445 34↑ 0.5950 52 0.4570 
18 Taizhou，Zhejiang 48 0.4812 37↑ 0.4812 53↓ 0.4934 49↑ 0.4934 46↑ 0.4086 51 0.4716 
19 Hefei 1 1.0000 1 1.0000 45↓ 0.5870 42↑ 0.5870 47↓ 0.3885 33 0.7125 
20 Wuhu 1 1.0000 1 1.0000 1 1.0000 1 1.0000 24↓ 0.8865 5 0.9773 
21 Bengbu 30 0.7490 25↑ 0.7490 1↑ 1.0000 1 1.0000 1 1.0000 12 0.8996 
22 Maanshan 20 0.9097 21↓ 0.9097 1↑ 1.0000 1 1.0000 1 1.0000 6 0.9639 
23 Huaibei 43 0.5261 33↑ 0.5261 1↑ 1.0000 1 1.0000 31↓ 0.6446 30 0.7394 
24 Tongling 1 1.0000 1 1.0000 1 1.0000 1 1.0000 1 1.0000 1 1.0000 
25 Anqing 35 0.6578 28↑ 0.6578 36↓ 0.7550 30↑ 0.7550 39↓ 0.5104 36 0.6672 
26 Huangshan 1 1.0000 1 1.0000 1 1.0000 1 1.0000 1 1.0000 1 1.0000 
27 Chuzhou 1 1.0000 1 1.0000 30↓ 0.8500 25↑ 0.8500 1↑ 1.0000 7 0.9400 
28 Fuyang 49 0.4745 38↑ 0.4745 42↓ 0.6582 36↑ 0.6582 26↑ 0.7796 43 0.6090 
29 Lu’an 1 1.0000 1 1.0000 52↓ 0.5424 46↑ 0.5424 54↓ 0.2974 35 0.6765 
30 Bozhou 27 0.7912 23↓ 0.7912 1↑ 1.0000 1 1.0000 1 1.0000 10 0.9165 
31 Chizhou 24 0.8274 22↓ 0.8274 1↓ 1.0000 1 1.0000 1 1.0000 8 0.9309 
32 Xuancheng 1 1.0000 1 1.0000 32↓ 0.8068 27↑ 0.8068 30↓ 0.6894 17 0.8606 

PRD 1 Guangzhou 1 1.0000 60↓ 0.0236 1↑ 1.0000 1 1.0000 1 1.0000 24 0.8047 
2 Foshan 56 0.3846 56 0.0623 41↑ 0.6650 56↓ 0.3580 50↑ 0.3580 56 0.3656 
3 Zhaoqing 31 0.7274 1↑ 1.0000 25↓ 0.9176 1↑ 1.0000 1 1.0000 9 0.9290 

(continued on next page) 
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Table 2 (continued ) 

Region No. DMU 2014 2015 2016 2017 2018 Average 

Rank Score Rank Score Rank Score Rank Score Rank Score Rank Score 

4 Shaoguan 26 0.8017 52↓ 0.1333 1↑ 1.0000 1 1.0000 1 1.0000 25 0.7870 
5 Qingyuan 34 0.6617 45↓ 0.2257 35↑ 0.7736 50↓ 0.4810 43↑ 0.4810 48 0.5246 
6 Yunfu 1 1.0000 55↓ 0.0777 1↑ 1.0000 1 1.0000 1 1.0000 21 0.8155 
7 Shenzhen 60 0.0439 1↑ 1.0000 1 1.0000 1 1.0000 1 1.0000 23 0.8088 
8 Dongguan 55 0.3912 58↓ 0.0357 55↑ 0.4171 55 0.3689 49↑ 0.3689 58 0.3164 
9 Huizhou 57 0.3631 59↓ 0.0336 56↑ 0.3970 60↓ 0.2927 55↑ 0.2927 59 0.2758 
10 Shanwei 22 0.8735 1↑ 1.0000 57↓ 0.3932 54↑ 0.3884 48↑ 0.3884 44 0.6087 
11 Heyuan 1 1.0000 57↓ 0.0584 1↑ 1.0000 48↓ 0.5073 40↑ 0.5073 41 0.6146 
12 Zhuhai 39 0.5808 51↓ 0.1649 48↑ 0.5595 38↑ 0.6413 32↑ 0.6413 49 0.5176 
13 Zhongshan 51 0.4720 53↓ 0.1073 46↑ 0.5858 52↓ 0.4523 44↑ 0.4523 54 0.4139 
14 Jiangmen 1 1.0000 1 1.0000 38↓ 0.7163 26↑ 0.8286 25↑ 0.8286 16 0.8747 
15 Yangjiang 28 0.7898 47↓ 0.2021 39↑ 0.7034 33↑ 0.7071 29↑ 0.7071 40 0.6219 

Note: The ↑/↓ indicates that this city’s environmental efficiency score ranking is up/down compared to the previous year. 
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Fig. 6. a. Average environmental efficiency values for each city from 2014 to 2018. b. Distribution of environmental efficiency scores in 2014. c. 
Distribution of environmental efficiency scores in 2015. d. Distribution of environmental efficiency scores in 2016. e. Distribution of environmental 
efficiency scores in 2017. f. Distribution of environmental efficiency scores in 2018. 
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To better show the spatial pattern and temporal variation of environmental efficiency scores across cities, we plotted Fig. 6(a–f). 
Fig. 6(a) shows the average environmental efficiency score across cities from 2014 to 2018, and it is easy to see that a large proportion 
of cities have an average environmental efficiency above 0.6, showing a good level of environmental performance. Only five cities have 
an average environmental efficiency between 0.2 and 0.4. However, in terms of individual years, the environmental efficiency of cities 
varies considerably, as evidenced by the concentration of cities with high environmental efficiency and, correspondingly, low envi-
ronmental efficiency. In order to explore the reasons for this and the influencing factors, we conduct a spatial spillover analysis of 
environmental efficiency later in the paper. 

In terms of individual city clusters, (1) Within the BTH, the cities of Qinhuangdao and Tangshan have maintained high levels of 
environmental efficiency from 2014 to 2018. Over time, cities with high levels of environmental efficiency have gradually shifted from 
inland to coastal cities, such as Tianjin, Cangzhou and Langfang. (2) The level of environmental efficiency varies considerably among 
cities within the YRD. In 2014–2017, the YRD showed a more stable level of environmental efficiency, and there was an increase in the 
number of cities with environmental efficiency scores above 0.6 and a trend of shifting from inland to coastal cities. However, the YRD 
as a whole showed a marked decline of environmental efficiency in 2018, possibly due to high regional development intensity, high 
resource and energy consumption. (3) Within the PRD city cluster, cities with high levels of environmental efficiency are concentrated 
in the north and west, mainly including the prefecture-level cities of Shaoguan, Heyuan and Yunfu. This is due to the location of the 
eco-development zones in the northern and western regions. The main direction of development is to protect the ecological envi-
ronment and develop tertiary industries such as tourism. 

4.2.2. Sub-item efficiency analysis 
Fig. 7 shows the average sub-item efficiency scores of the three urban agglomerations from 2014 to 2018. Overall, the three urban 

agglomerations have relatively small differences in labor, fixed assets, and energy consumption across cities, and the five-year effi-
ciency scores of each urban agglomeration are high, with an average value greater than 0.9, except for the YRD urban agglomeration 
whose average efficiency score of total fixed assets is 0.8979. The YRD and PRD urban agglomerations lag slightly behind the BTH 
urban agglomeration in terms of the environmental efficiency scores of urban employment workers, with a difference of 0.0182 and 
0.0241 respectively, while the average environmental efficiency score of each city’s GDP in the three major urban agglomerations is 
close to 1. As for output, the three major urban agglomerations’ average GDP scores are all greater than 0.97 over the five years, with 
the highest score of 0.9849 for the PRD urban agglomeration. The BTH urban agglomeration is behind the other two urban 

Fig. 6. (continued). 
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agglomerations in terms of industrial wastewater, but the difference is relatively small. The BTH urban agglomeration also has the 
highest efficiency scores in the three indicators of industrial SO2 emissions, average annual concentration of PM2.5, and industrial 
smoke and dust emissions, and is significantly ahead of the YRD and PRD urban agglomerations. The efficiency scores of industrial SO2 
emissions in YRD and PRD are lower than that of BTH by 0.1116 and 0.1257, respectively. The gap in their average PM2.5 scores is 
small, but there is a significant difference with BTH, whose efficiency scores are 0.8379, 1.33 and 1.30 times higher than that of YRD’s 
and PRD’s efficiency scores, respectively. Additionally, the environmental efficiency scores for industrial fume and dust emissions vary 
greatly in the three major urban agglomerations. In conclusion, the BTH scores best in all four indicators, which is consistent with the 
results of the total efficiency analysis, which may be the main factor influencing the evaluation of urban environmental efficiency. 

Fig. 8(a–c) are radar plots of five input-output indicators, including GDP, industrial SO2 emissions, industrial wastewater, average 
annual concentration of PM2.5 and industrial smoke and dust emissions, for each of the three major urban agglomerations. 

Among the three major urban agglomerations, the GDP indicator score of each city is the most stable, particularly the YRD urban 
agglomeration having the best performance, with 50% of provinces and cities reaching a GDP efficiency score of 1. Industrial 
wastewater is the second most stable. The overall efficiency level of the YRD city cluster is high, with eight provinces and cities 
achieving an efficiency score of 1, and 87.5% of the provincial and municipal regions scoring above 0.85. However, there is a large gap 
in the efficiency levels between the two cities of Luan and Taizhou and other cities within the city cluster, with their environmental 
efficiency values below 0.6. The proportion of provinces and cities’ efficiency value reaching 1 in the BTH and PRD city clusters is 
15.4% and 20.0%, respectively, or lower than the 25% in YRD, but there are no cities with efficiency values below 0.6 in either city 
cluster. The compliance of the lower efficiency value segment is better than that in the YRD urban agglomerations. 

The overall situation of PM2.5, industrial SO2 emissions, and industrial smoke and dust emissions is less optimistic. 
Only 14 provinces and cities in YRD have an annual average concentration of 0.7, accounting for less than 50% of the region, and 

the efficiency values of Nanjing, Suzhou and Shanghai are lower than 0.1, with the lowest value of Shanghai being only 0.05. Nanjing 
scores the lowest in industrial SO2 emissions, while Shanghai scores only 0.33. Only the two cities of Tongling and Huangshan have an 
industrial smoke and dust emission efficiency value of 1, whereas the lowest value is 0.13 for Taizhou. Apart from this, Nanjing, 
Shanghai and Suzhou ranked 25, 26, and 27, respectively, and are all among the China’s Top 100 Industrial Counties (Cities) in 2018. 
The data show that some of the more economically developed cities have good scores for urban GDP indicators, but the environmental 
indicators are in poor condition. Therefore, it is of great importance to pay attention to environmental protection and governance 
while developing a city’s economy. 

Only four provinces and cities in the BTH city cluster have efficiency scores of concentrations lower than 0.8, but all provinces and 
cities’ data are greater than 0.5. Tangshan, Qinhuangdao, and Chengde have an industrial SO2 emission efficiency score of 1, and 
Baoding and Cangzhou have an efficiency score of only 0.5, which is a large gap versus other cities. The industrial soot indicators vary 
widely among provinces and cities, and the radar plot fluctuates significantly. The overall score situation of the BTH city group is more 
concentrated, and the number of cities with lower efficiency values for each data is less than that of the YRD and PRD city groups, 
which is one of the factors contributing to the higher overall efficiency of the BTH city group during the five years. 

The annual average concentration of PM2.5 and industrial smoke and dust emission efficiency indicators in PRD vary greatly be-
tween provinces and cities, and only Yunfu achieves an efficiency score of 1 for PM2.5, while the lowest efficiency score is less than 0.5 
in Huizhou. All provinces and cities have an efficiency score of less than 0.9 for industrial smoke and dust emissions, with only 26.7% 
of the provinces and cities reaching 0.8 and the lowest efficiency score being less than 0.14 in Huizhou. Among PRD, Huizhou has 
many extremely unsatisfactory environmental efficiency scores, and its environmental problems are more serious in comparison with 
other cities. There is a large gap between cities in the environmental efficiency scores for industrial smoke and dust emissions, with the 
highest value of 0.98 in Yunfu and the lowest value in Huizhou whose efficiency score is only 30% that of Yunfu. 

The analysis above shows that the gap in the urban agglomerations’ environmental efficiency score is mainly affected by industrial 
smoke and dust and PM2.5 emissions. Additionally, the average sub-efficiency scores of the three major urban agglomerations are not 

Fig. 7. Average scores of sub-item efficiency of the three city clusters in 2014–2018.  
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satisfactory and vary significantly among provinces and cities in the urban agglomerations. 
These urban agglomerations should take quality improvement as the core as well as optimize and improve the total control index 

system of major pollutants, and meanwhile, consider limiting the initial pollutants that lead to the output of key pollutants, for 
example, the inclusion of Volatile Organic Compounds (VOCs), which is also one of the important precursors of secondary pollutant 
PM2.5, in the total control index system will have an important role in controlling PM2.5. 

4.3. Analysis of the spatial spillover effects 

The spatial spillover effects generated by spatial agglomeration are difficult to be addressed by traditional econometric methods, 
and traditional regression results are prone to erroneous research conclusions. Therefore, a spatial panel Durbin model is introduced in 
this paper to analyze the issue of environmental quality on the spatial evolution of urban cluster development in China. Furthermore, 
spatial autocorrelation, human capital, urbanization rate, and innovation are incorporated to empirically test the effect of environ-
mental efficiency on this same spatial evolution. 

4.3.1. Variable selection 
Spatial and temporal differences in China’s environmental resource endowments are clearly evident. Differences in the level of 

regional economic development lead to divergences in the environmental efficiency of urban agglomerations. In addition, the use of 
spatial measures makes allowance for better analysis of the factors affecting environmental efficiency. 

All of the following have to be verified one by one: whether there is significant spatial correlation in environmental efficiency, 
whether there is a significant spatial spillover effect of environmental efficiency among neighboring provinces and cities, and whether 
GDP per capita, Foreign direct investment (FDI) agglomeration, etc. significantly affect the environmental efficiency of a region or 
even neighboring provinces and cities. The specific variables are selected as follows. 

Fig. 8. a. Output index of YRD. b. Output index of BTH. c. Output index of PRD.  
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① Environmental efficiency is the explained variable. Environmental efficiency is improved by considering both super-efficiency 
and slack variables.  

② A total of seven explanatory variables were selected. 

GDP per capita is calculated by comparing the GDP achieved by a country during the accounting period (usually one year) with the 
country’s resident population (or registered population) to obtain per capita GDP, which is one standard that measures the living levels 
of people in various countries. Unit: 10,000 yuan. 

Industrialization level (Indus) refers to the total industrial output value above a certain scale. This index calculates the total value 
of industrial final products and labor activities expressed in monetary form by industrial legal entities with annual main business 
income of 20 million yuan or above during the reporting period. Unit: 100 million yuan. 

FDI is a type of investment by an enterprise with a continuing interest operating in a country other than the invested country. This 
variable refers to the amount of capital invested in enterprises including Hong Kong, Macao, Taiwan and foreign investors. Unit: US$1 
million. 

Expenditures on Science and Technology (Tech) refers to one item of expenditure of the local governments, on science and 
technology, including science and technology management, basic research, applied research, technology research and development, 
science and technology condition and services, social science and technology popularization, technology exchanges and cooperation, 
etc. This variable is measured by the share of science expenditure within fiscal expenditure. Unit: RMB10 thousand. 

Population Density (Population) is the number of people per unit of land area, which is an important indicator of population 
distribution of a country or region. Unit: person/km2. 

Built-up Area (Area) refers to that part in an urban administrative area that has actually been developed and constructed in 
patches and is basically equipped with municipal public facilities and public facilities. The scope of the built-up area generally refers 
the range of the actual construction land of the city can reach. Unit: km2. 

Public Transportation (Transportation) refers to the number of actual public motor (tram) vehicles operating at the end of the 
year. Unit: number of vehicles. 

Normalized Difference Vegetation Index (NDVI), according to the spectral characteristics of the vegetation, combines the 
satellite visible light and near-infrared bands to form various vegetation indices. It is a simple, effective, and empirical measurement of 
the surface vegetation status. The data are obtained from the China Urban Statistics Yearbook and the Data Center for Resource and 
Environmental Sciences of the Chinese Academy of Sciences. Unit: dimensionless. 

4.3.2. Spatial autocorrelation test 
The spatial characteristics of the variables selected in this paper may lead to a certain degree of bias in the results measured by the 

fixed effects model of ordinary panel data. Therefore, in order to address bias in measurement results caused by spatial factors, this 
paper further constructs a spatial econometric model of panel data to test the selected samples. 

Spatial correlation between environmental efficiency and the explanatory variables needs to be tested to justify the necessity of 
using a spatial econometric model before its analysis can be carried. 

Moran’s I is an index that can show the spatial correlations between variables. When Moran’s I > 0, it indicates a positive spatial 
correlation, and the larger Moran’s I is, the more obvious the spatial correlation is. When Moran’s I < 0, it indicates a negative spatial 
correlation, and the smaller Moran’s I is, the greater the spatial difference is. In addition, when Moran’s I = 0, it shows the spatial 
correlation is random. The specific calculation is shown in equation (14), where n is the number of spatial samples, subscripts i and j 
indicate different areas, x is the average of the observed features of the spatial unit. In addition, Wij represents the element on the i-th 

row and j-th column of the n × n dimensional spatial weight matrix. In this paper, the geographical distance weight matrix constructed 
by latitude and longitude is used as Wij。 

Moran′s I=
n
∑n

i=1

∑n

j=1
wij(xi − x)

(
xj − x

)

∑n

i=1

∑n

j=1
wij(xi − x)2

(14) 

Table 3 shows Moran’s I for the environmental agglomeration measurement index in China from 2014 to 2018, from which the 

Table 3 
Moran’s I value of the variables from 2014 to 2018.  

Variables 2014 2015 2016 2017 2018 

Environmental Efficiency − 0.066* 0.002 − 0.051 − 0.059 0.051** 
GDP per capita − 0.015 − 0.058 − 0.050 − 0.073** − 0.054 
Indus − 0.002 − 0.005 − 0.006 0.001 0.008 
FDI − 0.038 − 0.019 − 0.023 − 0.025 − 0.016 
Tech − 0.016 − 0.013 − 0.044 − 0.033 − 0.044 
Population − 0.006 − 0.006 − 0.009 − 0.014 − 0.018 
Area − 0.015 − 0.013 − 0.018 − 0.019 − 0.017 
Transportation − 0.011 − 0.011 − 0.012 − 0.018 − 0.016 
NDVI − 0.045 − 0.042 − 0.040 − 0.047 − 0.053  
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agglomeration phenomenon of the country’s urban agglomerations has an obvious spatial correlation. In other words, the environ-
mental efficiency of the three city clusters in China is not completely randomly distributed. 

In 2014, Moran’s I is less than 0 for both environmental efficiency and each explanatory variable and shows a significantly negative 
correlation. Among them, the Moran indices of environmental efficiency, FDI, and NDVI oscillate at high levels, indicating that they all 
show high spatial autocorrelation, while Indus and Population oscillate at low levels, indicating that they show weak spatial auto-
correlation. Moreover, GDP per capita shows high spatial autocorrelation from 2014 to 2018, and there is a significantly negative 
correlation with environmental efficiency in 2017. Moran’s I for environmental efficiency shows a significantly positive correlation by 
2018, and Moran’s I for each of the remaining variables shows oscillations from 2014 to 2018. 

From this it can be seen that traditional OLS regression estimates cannot be used, but rather a spatial econometric model should be 
used for analysis. 

4.3.3. Measurement of spatial spillover effects 
To determine whether a fixed effects or random effects model was more applicable to the analysis of the panel data in this study, the 

Hausman test was used. Table 4 shows the results of the Hausman test, where the original hypothesis of using a random effects model 
was rejected at the 5% significance level with a p-value of 0.0155, making fixed effects applicable to the spatial panel model in this 
study. 

The LR test is further applied in order to determine whether to use area fixed, time fixed, or double fixed effects models. The results 
of the double fixed effect are not consistent with the comparison of area fixed and time fixed. As a result, the double fixed effect model 
is more appropriate. 

The spatial econometric models mainly include three types: Spatial Dubin Model (SDM), Spatial Autoregressive models (SAR), and 
Spatial Error Model (SEM). The selection of specific models is judged by Wald and Lratio tests. The original assumptions of both the 
Wald test and the Lratio test are that the SDM could be degraded to SEM or SAR; if it could be degraded, then the more specific 
degraded model is used, if not, then the more inclusive SDM is used. Table 5 shows that both the Wald test and the Lratio test reject the 
original hypothesis, indicating that the SDM cannot be degraded to SEM or SAR and therefore the more inclusive SDM is used. 

Table 6 is the result of environmental spillover effect under the SDM model in China from 2014 to 2018. (1) The direct effect of GDP 
per capita on environmental efficiency is positive (0.0340), while the spillover effect is significantly negative (− 0.7693) and has the 
largest inhibitory effect on environmental efficiency improvement among all explanatory variables, leading to a significant negative 

Table 4 
Results of the Hausmann test and LR test.  

Type of test Statistic P-value Conclusion 

Hausman test 17.32 0.0155** Reject 
LR test (Comparison of double fixation and area fixation) 18.32 0.2462 Accept 
LR test (Comparison of double fixation and time fixation) 177.27 0.0000*** Accept  

Table 5 
Results of the Wald and Lratio test.  

Type of test Statistic P-value Conclusion 

Wald test 17.00 0.0301** Reject 
Lratio test 17.46 0.0256** Reject  

Table 6 
Results of environmental spillover effects under the SDM model.  

Variable (1) Direct effect (2) Indirect effect (3) Total effect 

GDP per capita 0.0340 − 0.7693*** − 0.7352** 
(0.413) (-2.697) (-2.539) 

Indus − 0.1425 0.0975 − 0.0449 
(-1.147) (0.111) (-0.052) 

FDI − 0.0041 − 0.4827 − 0.4869 
(-0.101) (-1.539) (-1.484) 

Tech 0.5812 12.0140 12.5952 
(0.504) (1.140) (1.153) 

Population 0.0018*** 0.0093** 0.0112** 
(3.261) (2.068) (2.337) 

Area − 0.0001 0.0091 0.0090 
(-0.244) (1.528) (1.477) 

Transportation − 0.0001* − 0.0008** − 0.0009*** 
(-1.760) (-2.486) (-2.601) 

NDVI 0.6607 14.9201*** 15.5807*** 
(0.631) (3.035) (3.124) 

Note: *, **, and *** indicate statistically significant at the 1%, 5%, and 10% levels, respectively. 
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total effect (− 0.7352), indicating that the development of the economy in the surrounding region will have a poorer impact on the 
environment in the region. Inter-regional provinces and cities with good economic conditions do not necessarily have excellent 
environmental efficiency and there is no positive linear relationship between the two. For example, high levels of economic devel-
opment will lead to slow progress in environmental efficiency at a certain point. (2) The direct effect of the level of Indus is negative but 
not significant, with industrial production emitting more waste products and therefore having a negative effect on environmental 
efficiency. (3) Both the direct and indirect effects of FDI show a negative correlation and have a suppressive effect on improving 
regional environmental efficiency, but this suppressive effect is not significant, probably due to the fact that regions have lower 
environmental access thresholds for foreign investment, which is not conducive to the improvement of environmental efficiency. (4) 
Both the direct and indirect effects of Tech are positive, and the coefficient of effect of indirect effect is the second highest (12.0140) 
but not significant, indicating that the improvement of technology level can improve regional environmental efficiency, such as better 
environmental protection technology, high efficiency technology research and development, etc. At the same time the sharing of 
advanced technology between regions still needs to be strengthened. (5) The direct and indirect effects of population show a significant 
positive effect at different levels, indicating that this has a significant impact on the quality and evolution of regional development and 
the improvement and maintenance of regional environmental efficiency, given the close inter-regional links between the population of 
the region and neighboring areas. (6) Area reflects to some extent the level of urbanization of the region, and since some areas have 
increased their level of urbanization at the expense of the environment, a higher level of urbanization of the region will have a slight 
inhibiting effect on environmental efficiency. (7) Transport has a significant negative impact on environmental efficiency in terms of 
both direct effects and spatial spillover effects, which indicates that transport has a high mobility between regions and that noise 
pollution, air pollution, waste oil pollution and traffic congestion generated by the transport itself can cause serious pollution to the 
regional environment, thus leading to lower environmental efficiency. (8) The total indirect effect of NDVI shows a significant positive 
utility effect through the significance test. Therefore, vegetation has a substantial effect on the inter-regional ecological environment, 
mainly positively influencing the development quality and spatial evolution of neighboring regions. 

5. Conclusion and recommendation 

5.1. Discussion  

(1) We find that the environmental efficiency of cities varies considerably, as evidenced by the concentration of cities with high 
environmental efficiency and, correspondingly, low environmental efficiency. Feng et al. [26] argued that urban air pollution is 
affected not only by local environmental regulations, but also by regulations implemented in surrounding cities. In the process 
of studying the water quality of the Han River, Chang [22] proposed that there is an inevitable non-independence of tributary 
data, which is consistent with the research results of this present paper.  

(2) The results obtained from the Meta-frontier DEA model analysis in this paper found that regions with higher levels of economic 
development were instead less environmentally efficient, for example, Nanjing, Shanghai, Suzhou and other cities in the YRD 
had almost the bottom environmental efficiency scores within the urban agglomerations, despite their obvious advantages in 
terms of economic development within the urban agglomerations and even nationwide. For the total efficiency score, Shanghai 
is evaluated at less than 0.3, and the average environmental efficiency score for Shanghai is only 0.2300, with a minimum value 
of 0.1837. This is contrary to Zhong et al. [41] conclusion that economically developed regions have an advantage in terms of 
environmental efficiency. This is due to the fact that these regions have pursued economic benefits at the expense of the 
environment. In the short term the economic benefits are achieved, raising fiscal revenues and raising the income levels of the 
people. However, in the long term, the benefits do not outweigh the losses. Using environmental protection to promote eco-
nomic restructuring has become an inevitable trend in economic development. To protect the environment is to protect pro-
ductivity, and to improve the environment is to develop productivity. It is necessary to improve the environment by upgrading 
environmental technology.  

(3) Economic output and environmental pollution emissions are adopted as the main direction for indicator selection in this paper 
and the environmental indicators focus on water pollution and air pollution. We find that the gap in environmental efficiency 
scores for urban agglomerations is mainly influenced by industrial soot and PM2.5 emissions, which is consistent with Cui et al. 
[39]. Pollution factors can be considered more comprehensively in the evaluation of environmental efficiency - for example, 
consider limiting the initial pollutants that lead to the emission of key pollutants, such as VOCs, which are also one of the 
important precursors of the secondary pollutant PM2.5, which will play an important role in the total control target system. 

5.2. Conclusion 

The Meta-frontier DEA model is used in this study to conduct a quality assessment and spatial spillover effects analysis on the 
environmental efficiency of 60 cities in the BTH, YRD, and PRD city clusters in China from 2014 to 2018. We present the conclusion as 
follows.  

(1) In terms of the overall development trend of urban agglomerations, the environmental efficiency values of BTH, YRD, and PRD 
urban agglomerations exhibit a wave-like development before leveling off from 2014 to 2018. The trend declined first and then 
increased during 2014–2016, illustrating a V-shape. From 2016 to 2018, the environmental efficiency values of BTH and PRD 
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both decreased first and then increased, while YRD’s decreased year by year, and the overall efficiency of urban agglomerations 
declined year by year as well, mainly related to the decline in environmental efficiency of the YRD urban agglomeration.  

(2) From the total efficiency scores, BTH outperforms YRD, which is better than PRD from 2014 to 2016. In 2017, YRD slightly 
surpassed the BTH, and in 2018 YRD continued to fall in environmental efficiency, with PRD rebounding to take first place. 
Analysis of the sub-item efficiency shows that YRD’s PM2.5 and industrial smoke and dust scores vary greatly among cities, with 
some cities approaching 0.1, which may be the main factor contributing to YRD’s fall in environmental efficiency ranking.  

(3) From the perspective of the efficiency score of each index, industrial wastewater is the best in environmental output, followed 
by industrial SO2, while YRD, BTH and PRD all score poorly on PM2.5 and industrial smoke and dust, whose average scores of the 
five years are less than 0.85. Moreover, the scores of the three major urban agglomerations vary greatly.  

(4) In terms of spatial spillover effects, different indicators show various characteristics at different stages of development in the 
regions. Population and Transportation in a region and its neighboring regions have a significant impact on the quality and 
evolution of regional development. Population and NDVI have a positive effect on environmental efficiency, while GDP per 
capita and Transportation have a more negative effect on regional environmental optimization. The four indicators of Indus, 
FDI, Tech, and Area do not show significantly positive or negative effects on environmental efficiency. 

5.3. Recommendation 

The impact of the environmental quality of China’s three major urban agglomerations on the spatial evolution of regional 
development is influenced by the clustering effect. As a result, each urban agglomeration should adapt to local conditions, formulate 
and implement strategies and countermeasures that are in line with its regional characteristics and needs, take advantage of its location 
and use spatial radiation to promote economic development and optimize environmental benefits.  

(1) BTH urban agglomeration 

The regional governments should give full play to Beijing’s radiation leading role, promote the development of world-class city 
clusters with the country’s capital as their core, highlight coordinated regional development, and pay attention to the overall 
development of this region. For another thing, both the direct and indirect effects of technology are positive, indicating that an increase 
in the level of technology can improve regional environmental efficiency. It is possible to build a green technology innovation system, 
strengthen the research and development of core technologies such as clean production and resource recycling, increase efforts to 
tackle key common technologies for energy conservation and environmental protection, eliminate green technology barriers between 
regions caused by technological superiority, and give full play to the spatial spillover and radiation effects of technological innovation 
on environmental efficiency improvement.  

(2) YRD urban agglomeration 

The YRD is extensive, involving many provinces and municipalities, and has a strong urban radiation capacity, with relatively small 
differences in development between cities, but large differences in environmental efficiency levels between cities. The spillover effect 
of GDP per capita is significantly negative (− 0.7693) indicating that the development of the economy in the surrounding region will 
have a poorer impact on the environment in the region. Nanjing, Suzhou, and Shanghai, in particular, have high economic output in 
the data analysis, but score extremely poorly on some environmental indicators. Therefore, it is feasible to prioritize the development 
of key areas that will further radiate and drive other regions, and ultimately achieve overall environmental efficiency improvements in 
urban agglomerations through coordinated development between cities.  

(3) PRD urban agglomeration 

In the PRD urban agglomeration, the concentration of environmentally efficient cities in the north and west is due to the fact that 
the region is an ecological development area, where the main direction of development is to protect the ecological environment and 
develop tertiary industries such as tourism. Also, both the direct and indirect effects of NDVI are positive, to improve the environ-
mental efficiency scores of the cities in the southern and eastern PRD, the resource consumption and environmental constraints in the 
urbanization process need to be fully considered. The governments in the region need to give prominence to the construction of 
ecological civilization, follow the concept of ecological urbanization and green development, and make use of the PRD’s ecological 
advantages to restore it via the construction of forest parks, wetlands, and strong pollution control. 
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Appendix 

In accordance with GB 3838–2002, based on the environmental functions and protection objectives of surface water, the surface 
water in China is divided into five categories [42].   

Water quality 
classification 

Water quality Characterization of 
color 

Functions 

I-Type and II-Type 
water 

Superior Blue Grade I relate to source water and national nature reserves. Grade II includes primary 
protection areas for centralized drinking water sources, precious fish sanctuaries, fish and 
shrimp spawning grounds, etc. 

III-Type Good Green Grade III relates to secondary protection areas for centralized drinking water sources and 
general fish protection and swimming areas. 

IV-Type Mild pollution Yellow Grade IV applies to general industrial and recreational water areas where there is direct 
human contact. 

V-Type Moderate 
pollution 

Orange Grade V refers to agricultural water use areas and waters with general landscape 
requirements. 

Inferior 
V-Type 

Severe 
pollution 

Red Apart from adjusting to the local climate, the inferior V-Type is poorly functional.  
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