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Abstract

Background: The increasing number of daily published articles in the biomedical
domain has become too large for humans to handle on their own. As a result, bio-
text mining technologies have been developed to improve their workload by
automatically analysing the text and extracting important knowledge. Specific bio-
entities, bio-events between these and facts can now be recognised with sufficient
accuracy and are widely used by biomedical researchers. However, understanding
how the extracted facts are connected in text is an extremely difficult task, which
cannot be easily tackled by machinery.

Results: In this article, we describe our method to recognise causal triggers and their
arguments in biomedical scientific discourse. We introduce new features and show
that a self-learning approach improves the performance obtained by supervised
machine learners to 83.47% for causal triggers. Furthermore, the spans of causal
arguments can be recognised to a slightly higher level that by using supervised or
rule-based methods that have been employed before.

Conclusion: Exploiting the large amount of unlabelled data that is already available
can help improve the performance of recognising causal discourse relations in the
biomedical domain. This improvement will further benefit the development of
multiple tasks, such as hypothesis generation for experimental laboratories,
contradiction detection, and the creation of causal networks.

Background
With the advent of online publishing of scientific research came an avalanche of elec-

tronic resources and repositories containing knowledge encoded in some form or

another. In the domain of biomedical sciences, research is now being published at a

faster-than-ever pace, with several thousand articles per day. It is impossible for any

human being to process that amount of information in due time, let alone apply it to

their own needs. Thus appeared the necessity of being able to automatically retrieve

relevant documents and extract useful information from text. Significant advances have

been made towards biomedicine-specific tasks such as recognising named entities [1],

relations and events between them [2], but also towards NLP-oriented tasks such as

coreference resolution [3] and automatic summarisation [4,5]. With the help of text

mining, biomedical researchers can now easily query the vast databases for articles of
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interest and, moreover, obtain important information without searching manually. The

text can be processed easily and researchers have the freedom to customise the proces-

sing according to their specific requirements using workflow-building platforms, such

as U-Compare [6] and Argo [7]. Furthermore, the published information can be auto-

matically organised into meaningful structures, such as metabolic and signalling path-

ways [8].

Although it is now possible to distil essential factual knowledge from text, it is difficult to

interpret the connections between extracted facts. These connections, also known as dis-

course relations, make the text coherent and cohesive, and their automatic discovery can

lead to a better understanding of the conveyed knowledge. They can be either explicit or

implicit, depending on whether or not they are expressed in text using overt discourse

connectives (also known as triggers). One of the fundamental discourse relations is causality,

as it explains the functioning of ourselves, our environment and our interaction with it. But

causal relations pose two main difficulties when trying to recognise them, one regarding

causal triggers, and the other regarding their arguments.

First, causal triggers are both highly ambiguous and highly variable. Take, for

instance, the following example, where the token and expresses causality. However, in

most other contexts, the same token has a non-causal meaning. The conjunction and

occurs only once with a causal meaning in the BioCause corpus [9], which is much

less than the number of non-causal instances (2305).

(1) SsrB binds within SPI-2 and activates SPI-2 genes for transcription.

This is the usual case with most closed-class part-of-speech words, such as conjunc-

tions and adverbials. Other examples of trigger types more commonly used as causal

triggers and belonging to open-class parts-of-speech are suggesting (9 causal instances,

54 non-causal instances), indicating (8 causal instances, 41 non-causal instances) and

resulting in (6 causal instances, 14 non-causal instances). For instance, example (2)

contains two mentions of indicating, but neither of them implies discourse causality.

(2) Buffer treated control cells showed intense green staining with syto9 (indicating

viability) and a lack of PI staining (indicating no dead/dying cells or DNA release).

Furthermore, their variability results in numerous ways of expressing the same causal

trigger, due to the open-class properties of nouns and verbs. Take example (3), where

the trigger this result suggests that indicates a causal relation.

(3) The hilE mRNA level measured by real-time PCR also revealed that hilE

expression was increased in SR1304 by about 2-fold (Figure 3A). This result sug-

gests that Mlc can act as a negative regulator of hilE.

The same idea can be conveyed using synonyms of these words, such as observation,

experiment, indicate, show, prove etc. The high variability reflects in obtaining a low

recall, since there will be many false negatives (FNs).

With respect to the two arguments, they are more difficult to recognise than causal

triggers. First, the spans of text that make up the arguments are of arbitrary length,
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varying significantly from one case to another, as previously reported by Mihăilă et al.

[9]. Arguments can go up to 100 tokens in length in the case of Cause, and up to 70

in the case of Effect.

Second, the position of the two arguments around the trigger can change. Although

most of the relations follow a Cause-Trigger-Effect pattern, there is an important per-

centage of relations, 20%, which do not obey this rule. Furthermore, Mihăilă et al. [9]

show that almost half of all relations have one argument in a different sentence than

that of the trigger. Thus, the search space increases significantly and the difficulty of a

correct recognition increases too.

This leads to the third reason, which regards the distance between the trigger and

the arguments. Mihăilă et al. [9] illustrate the number of sentences between that of the

trigger and that of the independent argument, when it is located in a different sen-

tence. About half of the cases have the argument located in the previous sentence, but

the rest spread up to the tenth previous sentence.

In order to automate this process, human experts have developed manually anno-

tated corpora, such as the Penn Discourse Treebank (PDTB) [10], a corpus of lexi-

cally-grounded annotations of discourse relations in the general domain. Based on this

corpus, researchers have not only identified discourse connectives, but also developed

end-to-end discourse parsers [11,12]. However, biomedical discourse has been shown

to exhibit different traits when compared to general language, at multiple levels. Be it

lexical, syntactic, semantic or discourse-level, biomedical researchers use a different

language to convey information [13,14]. As an effect, automatic systems trained on

general language might not work as well when applied to biomedical text. Yet, com-

paratively little work has been carried out on causal discourse relations in the biomedi-

cal domain, although causal associations between biological entities, events and

processes are central to most claims of interest [15].

The equivalent of the PDTB for the biomedical domain is the BioDRB corpus [16],

containing 16 types of discourse relations, e.g., temporal, causal and conditional. The

number of purely causal relations annotated in this corpus is 542. A slightly larger cor-

pus is BioCause [9], containing over 850 manually annotated causal discourse relations

in 19 full-text open-access journal articles from the infectious diseases domain. Out of

these, 800 relations are explicit, meaning that the trigger is overtly expressed in the text.

Using the BioDRB corpus as data, some researchers explored the identification of

discourse connectives [17,18]. However, they do not distinguish between the types of

various discourse relations. Ramesh et al. [17] obtain the best F-score of 75.7% using

conditional random fields (CRFs), whilst Ibn Faiz et al. [18] reach 82.36% F-score using

a maximum entropy (ME) classifier. These results were obtained by using only syntac-

tic features, as semantic features were shown to lower the performance. Also, Ramesh

et al. [17] prove that there exist differences in discourse triggers between the biomedi-

cal and general domains by training a model on the BioDRB and evaluating it against

PDTB and vice-versa.

Mihăilă et al. [19] focus on causal triggers only. With experiments on BioCause, trig-

gers are recognised with 79% F-score by employing CRFs. They use a wide array of

features, including lexical, syntactic and semantic information.

In this paper, we describe our attempt to overcome the issue of the little amount of

available gold standard annotations for causality in biomedical discourse. We do this
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by using both labelled and unlabelled data in a semi-supervised learning (SSL) frame-

work, where a classifier learns by itself from a large unlabelled dataset based on a

small labelled corpus, increasing the confidence of its decisions in the process. We

show that this method improves the performance obtained by existing approaches

based only on gold standard data. Moreover, we add novel structural features that

reduce the number of false negatives generated by the highly skewed corpora.

Methods
This section describes the data used for the experiments, as well as the feature set and

self-learning algorithm.

Data

The data for the experiments comes from the BioCause corpus, a collection of 19

open-access full-text journal articles pertaining to the biomedical subdomain of infec-

tious diseases, manually annotated with 850 causal relationships. Two types of spans of

text are marked in the text, namely causal triggers and causal arguments. Each causal

relation is composed of three text-bound annotations: a trigger, a cause argument and

an effect argument. Some causal relations have implicit triggers, but these are excluded

from the current research as their number is very small (more specifically, 50).

Figure 1 shows an example of discourse causality from BioCause, marking the causal

trigger and the two arguments with their respective relation. Named entities are also

marked in this example.

BioCause contains 381 unique explicit triggers, each being used, on average, only

2.10 times. The number decreases to 347 unique triggers when they are lemmatised,

corresponding to an average usage of 2.30 times per trigger. Both count settings

demonstrate the diversity of causality-triggering phrases that are used in the biomedi-

cal domain.

The unlabelled data consists of 50 full-text open-access journal articles also on infec-

tious diseases of similar age as those in BioCause. These conditions have been imposed

with the knowledge that biomedical subdomains differ in terms of the semantic types

they include [14]. However, unlike BioCause, they do not contain any type of gold

standard annotations. All features that are used in the experiments, described in what

follows, are derived from fully automatic parses.

Pipeline

The pseudocode for the causality recognition pipeline is shown in Figure 2. Similar to

the annotation mechanism used by the experts who produced the BioCause corpus, we

have split the recognition of causality into three major steps. First, the annotators were

given just the raw text T , which was then analysed to find causal triggers. We modelled

Figure 1 Causal relation in BioCause. Causal relation as annotated in the BioCause corpus, with marked
trigger and its two arguments, as well as named entities.
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trigger span detection (TS) both as a classification task, using Support Vector Machines

(LibSVM [20]) and Random Forests (Weka [21]), and as a sequence labelling task, using

CRF [22] (CRFSuite). Second, when a causal trigger was found, the annotators decided

on the argument position (AP), i.e. whether its two arguments are in the same sentence

(SS) or different sentences (DS). In the former case, the clause syntactically depending

on the trigger becomes the dependent argument (DepArg), whilst the rest of the sen-

tence represents the independent argument (IndArg). In the latter case, the sentence

containing the trigger becomes the dependent argument, whilst the independent argu-

ment is identified as one of the sentences around the trigger. We used different machine

learners to distinguish between intra- and inter-sentential relations and to detect the

argument spans (AS) for each case. Finally, in the third step, after both arguments are

located, the annotator classifies the direction of the relation, that is which argument

plays which of the semantic roles of cause and effect (AR). We trained several models to

assign roles to the previously detected arguments.

Features

Feature engineering and selection is a vital part of any machine learning system. Var-

ious types of features have previously been used for the task of detecting causal trig-

gers and their arguments, including lexical, syntactic, semantic and statistical (bag of

words) features. However, most past work has concentrated around lexical and syntac-

tic features, whilst the semantic aspects of causality (like named entities and events)

have been ignored or deemed detrimental to the task in the few cases in which they

were considered [17]. In addition to these features, we introduce a new set of features

derived from command relationships and position in sentence.

Thus, based on our analysis of causal triggers, we engineered six types of features for

the development of this causality model, i.e., lexical, syntactic, dependency, command,

semantic and position in sentence. A more detailed description is given in subsequent

sections. For each feature, we specify in which of the four step of the pipeline it is

used (TS, AP, AS or AR).

Figure 2 Causal relation identification pseudocode. Pseudocode for identifying causal relations in the
BioCause.
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Lexical features

The lexical features are built from the actual tokens present in text, and are sum-

marised in Table 1. Their utility has been noticed by several researchers [23,12,18],

who state that both the surface level token and its neighbours help towards a correct

classification.

The tokenisation and lemmatisation steps are performed by employing the GENIA

tagger [24] trained on MEDLINE. The first two features represent the token’s surface

expression and its lemma. The inclusion of lemmata is justified by the need of general-

isation: some inflected lexemes may occur very rarely (if at all) in the limited amount

of training data, and, in a real-world deployment, a learner may be perplexed when

encountering them.

On the other hand, there exists a need for specialisation due to the polysemy and

homonymy of words. The context can affect the meaning of a token and therefore it is

necessary to include surrounding tokens in order to allow a learner to differentiate

between, for instance, and as a causal trigger or enumerating conjunction. Thus, we

included the five tokens immediately to the left and the ones immediately to the right

of the current token. In the case of causal triggers, this decision is based on two obser-

vations. First, in the case of tokens to the left, most triggers are found either at the

beginning of the sentence (311 instances) or are preceded by a comma (238 instances).

These two left contexts represent 69% of all triggers. Second, for the tokens to the

right, almost 45% of triggers are followed by a determiner, such as the, a or an (281

instances), or a comma (71 instances).

In the case of arguments, when the trigger is the token Thus (i.e., thus with a capital first

letter), it is highly probable that the current sentence is an effect of a previous sentence.

Furthermore, a useful feature is a flag saying whether the trigger starts with a capital letter

or not, L5. This again helps in the decision for the position of the trigger in the sentence.

Syntactic features

Syntax is the main provider of features in the literature. Almost all approaches use the

part-of-speech and syntactic category of the token and its neighbours [11,23,17,18].

Pitler et al. [11] explores the parse tree horizontally, including the neighbours into the

equation. In contrast, Wellner [23] explores it vertically, deriving features from the

path from the root of the parse tree to the token.

The syntax, dependency and predicate argument structure are produced by the Enju

parser [25]. Figure 3 depicts a partial lexical parse tree of a sentence which starts with

a causal trigger, namely Our results suggest that. From the lexical parse trees, several

types of features have been generated, a list of which is included in Table 2.

The first two features represent the part-of-speech and syntactic category of a token.

For instance, the figure shows that the token that has the part-of-speech IN, whilst its

Table 1 Lexical features used in identifying causal relations

ID Short description T AP AS AR

L1 token ✓ ✓ ✓ ✓

L2 lemma(token) ✓ ✓ ✓ ✓

L3 neighbour (token,[left, right],[1..5]) ✓ ✓ ✓ ✓

L4 lemma(L3 ) ✓ ✓ ✓ ✓

L5 isCapitalised (trigger) ✓ ✓ ✓
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syntactic category is P. These features are included due to the fact that either many

triggers are lexicalised as an adverb or conjunction, or are part of a verb phrase.

For the same reason, the syntactical category path from the root of the lexical parse

tree to the token is also included as X5. Because in parse trees there are many cases

where constituents will repeat when moving vertically, we collapse X5 into a new fea-

ture (X6) by deleting consecutive repetitions of the same syntactic category. For

Figure 3 Partial lexical parse tree. Partial lexical parse tree of a sentence starting with a causal trigger.

Table 2 Syntactic features used in identifying causal relations

ID Short description T AP AS AR

X1 partOfSpeech(token) ✓ ✓

X2 syntCat(token) ✓ ✓

X3 partOfSpeech(L3) ✓ ✓

X4 syntCat(L3) ✓ ✓

X5 syntCatPathFromRoot(token) ✓

X6 syntCatCollapsedPathFromRoot(token) ✓

X7 syntCatPositionPathFromRoot(token) ✓

X8 ancestor (token,[1..3]) ✓

X9 lowestCommonAncestor (token,neighbourOf (token,left,1)) ✓

X10 distanceBetween(token, X9) ✓

X11 posString (trigger) ✓ ✓

X12 syntCatString (trigger) ✓ ✓

X13 posStringDupl (trigger) ✓ ✓

X14 syntCatStringDupl (sent) ✓ ✓

X15 containsMainVerb(trigger) ✓ ✓

X16 mainVerb(sent) ✓

X17 voiceOfVerb(trigger) ✓
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instance, in a path such as S/VP/VP/V, the adjacent identical tags VP/VP are combined

into VP, thus creating a collapsed path of S/VP/V.

Also based on X5, the path encodes in feature X7, for each parent constituent, the

position of the token in its subtree, i.e., beginning (B ), inside (I ) or end (E ); if the

token is the only leaf node of the constituent, this is marked differently, using a C.

Thus, the path of that, highlighted in the figure, is I-S/I-VP/B-CP/C-CX. Feature X7

has been used before by Ghosh et al. [26], whilst Wellner et al. [27] used X5, both in

their task of extracting the arguments of discourse triggers in general.

Furthermore, the ancestors of each token to the third degree are instantiated as

three different features. This has been found by Ibn Faiz et al. [18] to better general-

ise the syntactic context of the token than X5, although they restrict it to only the

first parent. In the case that such ancestors do not exist (i.e., the root of the lexical

parse tree is less than three nodes away), a “none” value is given. For instance, the

token that in Figure 3 has as its first three ancestors the constituents marked with

CX, CP and VP.

Finally, the lowest common ancestor in the lexical parse tree between the current

token and its left neighbour has been included. The lowest common ancestor of two

nodes A and B in a dependency tree is a node L, and there exists no other node N

such that L is an ancestor of N. In the previous tree example in Figure 3, the lowest

common ancestor for that and suggest is VP.

The following two feature types have been produced on the observation that the low-

est common ancestor for all tokens in a causal trigger is S or VP in over 70% of

instances. Furthermore, the percentage of cases of triggers with V or ADV as lowest

common ancestor is almost 9% in each case. Also, the average distance to the lowest

common ancestor is 3.

We include PoS and syntactic category strings representations of the causal triggers

(X11 and X12, respectively). For instance, a trigger such as These results show that is

represented as a PoS string DT-NN-V-DT. This adds a level of generalisation, where

(usually) nouns and verbs can be replaced by their numerous synonyms.

These two features are then extended by creating other strings which do not contain

duplicate consecutive PoS or syntactic category values, marked as X13 and X14. In

other words, DT-NN-V-V-DT is reduced to DT-NN-V-DT. This simplifies the string

representation and reduces the data sparsity. A sequence of adjectives or compound

verb tenses should not affect the causal relation.

We also add a feature, X15, indicating whether the trigger contains the sentence’s

main verb. If it does, this is a good indicator that the arguments are located in dif-

ferent sentences. Furthermore, feature X16 contains the main verb of the sentence.

We are also interested in the voice of the verb, which is included as feature X17.

This is helpful in determining the direction of the relation: which predicate affects

which?

Dependency features

These features are constructed based on the dependency relations found by Enju in the

sentence. Table 3 includes all dependency features employed in this study.

First, for each token, we extracted the predicate-argument structures and included

the arguments as surface expression forms. We also included the parts-of-speech of

these arguments, as well as the distance from the token.
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Constituency features

Command features are constructed from command relations found in the constitu-

ency parse tree of the sentence. The concept of command relation was initially intro-

duced by Langacker et al. [28], who defined it as “a node X commands a node Y if

neither X nor Y dominates the other and the S (sentence) node most immediately

dominating X also dominates Y”. A more general definition has been provided by

Reinhart [29], who defined a constituent command (c-command ) by eliminating the

restriction of having the node dominating both X and Y being a sentence. Barker

et al. [30] relaxed this definition even further, by removing the non-co-dominance

condition between X and Y.

Based on command relations as defined by Barker et al. and exemplified in Figure 4,

we developed several features, which, to the best of our knowledge, have not been pre-

viously used for identifying discourse causal triggers and arguments. These are

included in Table 4.

Features C1-C3 indicate whether the current token c-commands a SBAR, VP or NP

constituent, respectively. Features C4-C6 are similar, with the exception that the domi-

nant node must be an S (sentence). In the case of features C7-C9, the dominant node

must be a VP.

All mentioned features rely on the observation that a trigger c-commands at least

one of its arguments (more specifically, the dependent argument). In most cases, trig-

ger tokens S-command or VP-command argument tokens, whose superparent is

usually an SBAR, VP, or NP.

Table 3 Dependency features used in identifying causal relations

ID Short description T AP AS AR

D1 pas(token) ✓ ✓

D1 pas-role(token) ✓ ✓

D2 pos(D1) ✓ ✓

D3 distanceBetween(token,D1) ✓ ✓

Figure 4 c-command syntax tree. c-command syntax tree: A c-commands B, B c-commands A, C c-
commands D, D c-commands C etc.

Mihăilă and Ananiadou BioMedical Engineering OnLine 2014, 13(Suppl 2):S1
http://www.biomedical-engineering-online.com/content/13/S2/S1

Page 9 of 24



Semantic features

Although the role of semantic features has been previously explored, the results are

contradictory. In one study in the biomedical domain, adding a semantic layer lowers

the performance of recognising discourse triggers [17], whilst in the general domain

rich compositional semantic information (i.e. VerbNet and CoreLex) manages to pro-

duce a statistically significant increase in F-score [31]. Ramesh et al. [17] use the BAN-

NER gene tagger and LINNAEUS species tagger to obtain named entity information

about genes and species, as well as Metamap to map text elements to UMLS.

We have exploited several semantic knowledge sources to identify causal triggers and

arguments more accurately, as a mapping to concepts, named entities and events acts

as a back-off smoothing, thus increasing performance. This happens due to the fact

that causal triggers do not encode biomedical knowledge, thus tokens recognised as

named entities or events should not be recognised as causal triggers, whilst arguments

should contain biomedical semantics. A list of all semantic features in included in

Table 5.

One semantic knowledge source is the BioCause corpus itself. All documents anno-

tated for causality in BioCause had been previously manually annotated with biomedi-

cal named entity and event information. This was performed in the context of various

shared tasks, such as the BioNLP 2011 Shared Task on Infectious Diseases [32]. We

therefore leverage this existing information to add another semantic layer to the

model. Moreover, another advantage of having a gold standard annotation is the fact

that it is now possible to separate the task of automatic causal trigger recognition from

automatic named entity recognition and event extraction. The named entity and event

annotation in the BioCause corpus is used to extract information about whether a

Table 4 Constituency features used in identifying causal relations

ID Short description T AP AS AR

C1 c-commands(token, SBAR) ✓ ✓

C2 c-commands(token, VP) ✓ ✓

C3 c-commands(token, NP) ✓ ✓

C4 S-commands(token, SBAR) ✓ ✓

C5 S-commands(token, VP) ✓ ✓

C6 S-commands(token, NP) ✓ ✓

C7 VP-commands(token, SBAR) ✓ ✓

C8 VP-commands(token, VP) ✓ ✓

C9 VP-commands(token, NP) ✓ ✓

Table 5 Semantic features used in identifying causal relations

ID Short description T AP AS AR

S1 isNamedEntity (token) ✓ ✓

S2 namedEntityType(token) ✓ ✓

S3 isEvent(token) ✓ ✓

S4 eventType(token) ✓ ✓

S5 wordnetHypernym(token) ✓ ✓

S6 isUMLSEntity (token) ✓ ✓

S7 UMLSEntityType(token) ✓ ✓

S8 isTrigger (token) ✓

S9 isDA(token) ✓
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token is part of a named entity or event trigger. Furthermore, the type of the named

entity or event is included as a separate feature. Whilst named entities have been

employed before [17], to the best of our knowledge, event information has not.

The second semantic knowledge source is WordNet [33]. Using this resource, the

hypernym of every token in the text has been included as a feature. This is needed for

those tokens which are not specific to biomedicine. Only the first sense of every token

has been considered, as no sense disambiguation technique has been employed. Finally,

tokens have been linked to the UMLS [34] semantic types. Thus, we included a feature

to say whether a token is part of a UMLS type (S6) and another for its semantic type

if S6 is true.

The other two features, S8 and S9, record the decisions made by the systems in pre-

vious steps. For instance, feature S8 is used in the second and third step of our argu-

ment detection pipeline, and shows whether or not a token has been marked as a

trigger. Similarly, S9 is used only in the last step and shows whether or not a token

has been marked as being part of the dependent argument.

Positional features

Position features have also been engineered and included in Table 6. First, the location

of the token in the sentence is important, as most of the triggers occur in the beginning

or middle of the sentence. On the other hand, the position of the trigger in the sentence

is also of great importance. An initial trigger suggests that the arguments are located in

different sentences, whilst a trigger in mid-sentence tends to have both arguments

around it in the same sentence. This feature takes integer values, representing the index

in the sentence. However, due to the various sentence lengths in which causality occurs,

this may result in data sparseness. Thus, we add a feature which shows the token’s index

in the sentence percentage-wise. That is, we divide the value of feature P1 by the length

of the sentence. To be more discrete, we also add a feature which takes only three

values: “Beginning”, “Middle”, and “End”. Furthermore, the sentence length has been

included, as this is correlated with the position: the shorter the sentence, the smaller the

chances that a token is part of a trigger in the middle of the sentence.

Semi-supervised learning

In a semi-supervised learning setting, we modelled the problem as a self-training task.

The main reason for including this method is the limited amount of existing gold stan-

dard data. Self-training has been previously used in NLP applications, such as word

sense disambiguation [35], identification of subjective nouns [36] and emotions in dia-

logues [37]. Nevertheless, to the best of our knowledge, it has not been applied in dis-

course (causal) relation recognition.

The entire learning process is depicted visually in Figure 5. We have started the

learning process with a small amount of labelled data, Λ, for classifier training. This

results in the creation of a classification model, µ. Then, the unlabelled data, Υ, is

Table 6 Positional features used in identifying causal relations.

ID Short description T AP AS AR

P1 indexInSent(token) ✓ ✓ ✓ ✓

P2 percentageInSent(token) ✓ ✓ ✓ ✓

P3 positionInSent(token) ✓ ✓ ✓ ✓

P4 length(sentence(token)) ✓ ✓ ✓ ✓
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classified using µ. From these newly obtained classifications, only those instances that

have a classification confidence higher than a pre-set threshold τ are considered gold

and are added to the labelled data as classified by µ. The rest are kept as unlabelled. If

there are no instances that are classified with a confidence greater than τ , the model

would come to a blocked state. Thus, we apply some simple heuristics to select several

instances to be added to the labelled data. The process is repeated until all instances

are classified.

In this case, the gold standard data is represented by BioCause. We have split Bio-

Cause into two equally sized sets of 400 causal relations each. One set is used for the

seed set, whilst the other is used for the final model evaluation. The experiment is

then repeated with swapped sets, and the results are averaged. Although the seed and

test sets are not very large in size, we believe that they can be used to prove the valid-

ity of the method. Of course, evaluation and validation on larger corpora is necessary,

but these datasets still need to be created.

Results
We trained models with different sizes for the seed labelled sets Λ. There are eight

models, varying in the percentage of positive instances from 12.5% to 100%, in steps of

12.5%, extracted from the self-training part of the corpus. On the other hand, we chan-

ged the ratio of positive to negative instances in each labelled set. The ratios are 1:1,

1:2, 1:5, and the actual ratio in BioCause, approximately 1:50. In creating these subsets,

we use all positive instances available, and then randomly choose the corresponding

number of negative instances.

Trigger detection

For the supervised classification part of SSL, we have employed CRFs, RFs and SVMs,

as they have performed best in the experiments described in previous research [38]. As

for the heuristics used in case no instance is classified with a confidence greater than τ

, we have used several rule-based routines. We consider for marking as labelled

instances only those which have the confidence in the top 5% of all confidences. We

then filter these instances and select only those which have several feature values that

were deemed important by automatic attribute evaluators, i.e. InfoGain and ChiSquare.

Figure 5 Self training approach. The process of self training.
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These include the lemma of the token (L2), the predicate-argument structure links of

the token and ancestor constituents (D1, D2), its c-command and VP-command values

(C1-C3, C7-C9), and named entity information (S1, S5, S6). The lemma has to be part

of a lexicon of lemmas contained in causal triggers that is pre-compiled. At least one

of the ancestor constituents must be either a VP, NP or S. The token must c-com-

mand or VP-command a VP or NP. Furthermore, the token must not bear any biome-

dical meaning. These rules are given equal weights, and each token must comply with

at least two of the rules in order to be considered as labelled correctly.

The results are summarised in Table 7 together with the top performance reported

by Mihăilă et al. [38]. Figure 6 shows the performance of the three classifiers when

varying τ from 0.6 to 0.9 confidence and the seed size from 12.5% to 100%, whilst

keeping the natural ratio of positive:negative instances. As can be noticed, all models

have a generally increasing trend, showing that the amount of gold standard training

data is essential to this task. Furthermore, the learning curve does not turn into a pla-

teau when a high percentage of data is available for training. This suggests that the

performance could be improved if more data were available. The top results, when the

seed size is 100%, are slightly higher than those obtained by employing supervised

algorithms.

As can be observed, the threshold τ does not affect very much the resulting perfor-

mance. Although it is to be expected to have fewer confident classifications as τ

increases, this does not happen. This can be explained by the low frequency and high

variability of causal triggers. Classifications are made with similar levels of confidence,

regardless of the amount of training data. However, the more training data is given,

the more correct classifications are made.

Furthermore, the learning time for each loop increases considerably due to the larger

amount of data that needs to be processed into a model. The number of learning

loops increases significantly in the case where the seed size is very small. Only few

instances are classified with a higher-than-τ confidence in each loop, thus resulting in

a large number of loops. At the other end, when a large amount of data is available as

seed, the training time decreases considerably. As the seed size increases, the classifier

becomes more and more confident, and thus more and more instances are added to

the labelled group at each step.

The best F-scores are obtained when the ratio is the natural ratio. Actually, the clo-

ser the ratio is to the natural one, the better the performance. Training a model on an

artificially created corpus, that does not reflect the natural balance, will affect its per-

formance in a real-world situation. The model becomes less strict the more balanced

the data is, and will thus produce more false positives. In the case of 1:1 ratio, the

recall of the model is very high, reaching values of more than 90%. The precision, how-

ever, is extremely low, varying between 10% and 20%. As the seed ratio is shifted

Table 7 Performance of various semi-supervised classifiers in identifying trigger spans

Classifier P R F1

Mihăilă et al. [38] 89.00% 74.00% 79.00%

CRF 86.34% 80.56% 83.35%

SVM 82.45% 66.21% 73.44%

Random Forest 83.98% 66.10% 73.97%
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towards the natural ratio, the precision and the recall become more balanced: precision

increases and recall decreases, but with an overall increased F-score. Unfortunately,

space restrictions do not allow for the inclusion of these graphs.

Argument detection

The process of identifying the two arguments of the causal trigger is divided into three

steps. In the first step, a classifier is built in order to determine whether the two argu-

ments are positioned in the same sentence or not, based on the trigger. In the second

step, two spans representing the arguments are located around the trigger, either in

the same sentence or neighbouring sentences, based on the result of the previous step.

The last step deals with giving a sense to the newly found causal relation by assigning

roles to the two arguments: cause and effect.

Argument position identification

For the purpose of feature extraction, the causal triggers in the unlabelled data set are

automatically annotated using the best performing model created in the previous

Figure 6 Trigger detection results and loops needed. Self-training results (left) and number of self-
training loops (right) when varying τ for the natural ratio in trigger detection.
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section, which is semi-supervised CRFs. Thus, the errors arising from automatic causal

trigger recognition are propagated in the present step.

In case the system gets into the blocked state, we use feature P1 that was previously

described: a trigger at the beginning of a sentence signals DS arguments, otherwise SS

arguments. The rule is applied on the top 5% confident classifications.

Table 8 shows the best performance achieved by each of the six classifiers used. As

can be observed, some F-scores achieved are slightly lower than those obtained in the

supervised classification reported in [38]. This happens for the JRip, Random Forest

and Vote classifiers and is due to two main reasons. First, the noisy data occurring in

the unlabelled set confuses classifiers in their decisions. For instance, one erroneously

identified causal trigger is the word DNA in sentence (4) below.

(4) The Cre-mediated inverted band ( 6.5 kb) is evident in thymus DNA

(thymoma).

Another reason is the low recall in recognising triggers. Whilst the precision is high,

only a limited set of causal triggers are identified, due to data sparseness.

However, the Naïve Bayes, SVM, and J48 classifiers manage to improve both their

precision and recall, which leads to an increased F-score for each of them. In fact, the

recall of Naïve Bayes increases considerably, by almost 5%, whilst the precision is

almost 2% higher. In the case of SVM, the increase is more moderate, of just 1% in the

case of precision and 2% in the case of recall. The improvement of J48 is slightly less

than that, with just under 1% for precision and 0.2% for recall.

We have experimented with various values for the τ parameter and the size of the

seed data. As before, the τ parameter takes values from 0.6 to 0.9, in increments of 0.1,

whilst the size of the seed data can vary between 12.5% and 100% in steps of 12.5%.

The ratio between positive and negative instances in the seed data has not been

included as a parameter, as the data set is roughly balanced. Since the seed data is

selected randomly from the labelled set, we repeat each experiment ten times. The

average of the obtained results are given for each of the six classifiers in Figure 7.

As can be noticed, the performance of the Naïve Bayes classifier remains relatively

insensitive to the variance of both τ and seed size. The amplitude of its F-score is just

1.50%, which is not seen in any of the other classifiers. This is partly due to the fact

that this specific classifier offers probabilities for each of the two classes that are sev-

eral orders of magnitude apart. When normalising them, this results in having a binary

output, with 0 and 1 as the final probabilities.

Table 8 Performance of various semi-supervised algorithms in classifying triggers as SS
or DS

Classifier P R F1

Mihăilă et al. [38] 94.75% 94.60% 94.65%

Naïve Bayes 93.56% 96.42% 94.97%

SVM 93.50% 94.44% 93.97%

JRip 91.99% 91.57% 91.78%

J48 93.94% 93.00% 93.47%

RandFor 92.65% 90.04% 91.32%

Vote 93.97% 93.97% 93.97%
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The SVM, RF and Vote classifiers suffer significantly when the size of the seed data

is 12.50%. All three start at very low values, 61% in the case of RF and 72% in the case

of SVM and Vote. The performance quickly increases to over 80% once more data

joins the labelled set.

A similar trend is observed on JRip and J48, but to a much lesser degree. In fact, J48

behaves strangely at the other end of the seed size as well. The graph shows a decrease

in F-score when 100% of the seed data is available for initial training, which is due to a

decrease in precision, whilst the recall remains constant. This happens because of the

high variability of low frequency triggers occurring many times non-causally, which

allows for the production of many false positives.

The value of the τ parameter again does not seem to influence the performance of

the classification, especially when more labelled data is available. The only classifier

with a visibly separate line for the 60% confidence value for τ is Vote. In this case, the

performance of the model at 60% confidence threshold is 1-2% lower than the other

confidence levels throughout all seed sizes.

Figure 7 Argument location results. Self-training results for the argument location when varying τ and
the seed size.
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Argument span identification

The automatic annotations of triggers over the learning data are enhanced with new

information regarding the location of the two arguments, obtained from the best per-

forming classifier detailed in the previous section.

Table 9 shows the results that were obtained with the same classifiers as in the case

of trigger detection. As can be noticed, CRF leads the performance table, with almost

82% of the arguments identified correctly. SVM and RF are situated at around 5%

lower than CRF, whilst NB manages to obtain just 65% F-score.

We have identified several errors arising from the automatic annotation of the unla-

belled data by using the models from previous steps. There are several cases in which

a same-sentence trigger is erroneously classified as different-sentence, such as the one

in example (5). This type of errors is due to the order of the causal constituents, T-E-

C in this case. Since the trigger is the first token in the sentence, the algorithm decides

that the arguments are located in distinct sentences.

(5) Since [Brucella is an intracellular facultative pathogen]DA, [the bacteria could

use these denitrification reactions to grow under low-oxygen condition by respira-

tion of nitrate]IA.

The reverse occurs as well: there are several cases where different-sentence triggers are

classified as being same-sentence, as shown in example (6). This happens when the trigger

is located mid-sentence and the majority of its occurrences are in fact same-sentence.

(6) [The fact that PmrB is likely to sense changes in pH directly]DA is supported by

multiple findings. First, [the mild acid pH-dependent activation of the PmrA-regu-

lated gene pbgP was dramatically reduced in a strain lacking pmrB]IA.

Figure 8 depicts the change in the obtained F-score when varying the seed size and

confidence threshold for each of the four classifiers. As noticed before, the Naïve Bayes

classifier has a very small amplitude in the F-score curve, of just over 2%. In contrast,

the other three algorithms increase their performance by approximately 5% when

changing the size of the seed data from 12.5% to 100%. All classifiers are, however,

insensitive to the modification of the confidence threshold, especially when higher

amounts of seed data are available.

Argument role identification

The final step in the causality recognition pipeline is to detect which argument plays

which semantic role. Each of the previously identified arguments must be assigned one

of the two possible roles, Cause and Effect. For this task, we have explored different

Table 9 Performance of various semi-supervised classifiers in identifying dependent
(DA) and independent (IA) argument spans

Classifier P R F1

Mihăilă et al. [38] 74.18% 88.98% 80.91%

CRF 84.52% 79.58% 81.98%

SVM 75.85% 77.95% 76.89%

Random Forest 76.95% 76.50% 76.72%

Naïve Bayes 63.30% 67.35% 65.26%
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possibilities to detect whether a causal relation is of the form C-T-E or E-T-C. The

other three possibilities existing in BioCause have been excluded from the classifica-

tion, as their number is insufficient for training purposes. One aspect that has to be

taken into consideration is the skewed data, which has a ratio E-T-C to C-T-E of

1:7.54. In addition, the argument spans are automatically detected using the best per-

forming classifier described in the previous step.

Table 10 lists the results obtained by the six classifiers used as learning algorithms.

The Vote meta-classifier has obtained the best performance, an F-score of 83.79%.

However, it is slightly lower than that obtained in a supervised setting by Mihăilă et al.

[38]. This is due to the propagation of errors from the previous two steps.

Besides the errors regarding the classification of the trigger into SS or DS, exempli-

fied in the previous section, the current step inherited inaccurate spans for the argu-

ments. Most common is the case of selecting the wrong span for the arguments

located in a different sentence by choosing a completely wrong sentence. Another pos-

sibility is only the partial match for an argument, where the classifier also selects false

positives and leaves out false negatives.

Figure 9 shows the variation in F-score when changing the seed size and confidence

threshold. As can be noticed, most classifiers have a generally increasing trend, with a

high slope for small amounts of seed data. As this size increases, the slope of the F-

score curve decreases and almost plateaus towards 100% of the seed data. Naïve Bayes

is, in contrast to all other classifiers, fairly constant throughout different seed sizes.

However, its performance is the worst, at almost 10% distance from Vote.

The confidence threshold τ does not generally influence the performance of the algo-

rithms. Notable cases are the value of 60% confidence, which obtains a low F-score for

the Vote classifier at seed size 12.5% and for SVM at high seed sizes.

Figure 8 Argument span results. Self-training results for the argument span identification when varying τ
and the seed size.
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Discussion
There are two major factors to be considered when automatically recognising triggers

and their arguments: the chosen algorithm and the selection of features. They are all

discussed in the following sections.

Table 10 Performance of various semi-supervised classifiers in identifying argument
roles

Classifier P R F1

Mihăilă et al. [38] 85.25% 83.55% 84.35%

Naïve Bayes 70.45% 80.05% 74.94%

SVM 82.50% 80.05% 81.25%

JRip 84.65% 80.90% 82.73%

J48 83.10% 79.20% 81.10%

RandFor 79.85% 74.20% 76.92%

Vote 84.55% 83.05% 83.79%

Figure 9 Argument role results. Self-training results for the argument role identification when varying τ
and the seed size.
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Trigger detection

The experiments performed and discussed in the previous sections show that a semi-

supervised approach yields a better F-score. More specifically, employing a supervised

CRFs reaches an F-score of 79.00%, whilst RFs and SVM perform worse by around 8%.

On the other hand, a semi-supervised approach produces higher results. If the learning

is performed on unlabelled data, the performance increases to 83.35% in the case of

CRFs, and to almost 74% in the case of RFs and SVMs.

These results are much lower than those that are obtained in the open domain. Pitler

et al. [11], for instance, achieve results as high as 91% F-score using Naïve Bayes on

automatic parses when identifying discourse triggers in general, whilst Lin et al. [12]

obtain 93.62% F-score. Ibn Faiz et al. [18] further improve the results to 96.22% F-score.

However, assigning senses to the relations seems to be more difficult. The F-score of Lin

et al. [12] reaches only 80%, whilst Pitler et al. [11] perform a level 1 type sense assign-

ment and obtain 94% F-score. In the level 1 type classification, Causality is part of the

Contingency class, together with Pragmatic Cause, Condition and Pragmatic Condition.

Thus, if we consider these two steps as leading to the same goal as our task, then by

multiplying the two results (93.62% and 80%) we get a performance of around 75%, less

than the one described in this chapter. Nevertheless, when applying a model trained on

BioDRB on the PDTB corpus, similar results are obtained [17]. This shows that in-

domain classifiers outperform cross-domain classifiers and that biomedical scientific dis-

course is truly different and more difficult to capture automatically.

Both CRFs and SVMs have been used before in detecting biomedical discourse trig-

gers, although they have not been trained on causality specifically. Ramesh et al. [17]

experimented with these two algorithms on BioDRB, and concluded that the CRF

model outperformed the SVM model by 10%, producing a final F-score of 75.70%.

More recently, the same corpus has been used by Ibn Faiz et al. [18], who applied

their extended feature set with ME classifiers and achieved a performance of 82.36% F-

score. Again, they make no distinction between the various discourse relations and

treat them as a whole.

However, the RF algorithm has not been used before for this task.

In what regards semi-supervised approaches, the literature is not very vast, and does

not contain any work on biomedical data. Our self-training method is, to the best of

our knowledge, the first semi-supervised approach of this type applied to discourse

connective recognition. A different approach is that of Hernault et al. [39], who prove

that feature vector extension is a promising method to improve classification accuracy

for infrequent discourse relation types. Evaluating it on PDTB, the method increases

the baseline F-score by more than three times in some cases for discourse causality, to

18.7%. However, as the authors themselves admit, this method cannot be used by itself

in discourse analysis due to its low performance.

Do et al. [40] develop a minimally supervised event causality identification methodol-

ogy, which employs a measure of cause-effect association between two given events

and their arguments. They obtain an F-score of 38.60% on PDTB, but this increases to

41.70% when joint inference is performed with discourse relation predictions from

inductive logic programming.

In what concerns features, we noticed through our experiments that the best perfor-

mance is obtained when using all types of features. This includes domain independent
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features, such as syntactic, dependency and command features, but also domain speci-

fic features, such as biomedical semantics. In fact, semantics plays a very significant

role in the task of recognising causal triggers. They improve the classification in most

feature combinations, and increase the performance by 2.13% on average.

On biomedical text, Ramesh et al. [17] employs mostly orthographic features and just

a few syntactic features. They also include named entity information obtained from

UMLS and ABNER, but conclude that it damages the overall performance. More speci-

fically, the F-score drops with between 1% and 7.5%, depending on the semantic fea-

ture source. In their case, recall is most affected, with variations of even 10%, whilst

precision is relatively constant, but still falling with up to 3%. Ibn Faiz et al. [18] sug-

gest that the reason behind semantics damaging the performance of Ramesh et al. [17]

is the fact that ABNER already uses orthographic features, which thus get duplicated

in the feature vector.

As Ibn Faiz et al. [18] also suggest in their error analysis, there are cases of discourse

triggers which cannot be captured by using only surface level and syntactic features,

and instead need some sort of semantic understanding of the context. By checking the

children of the dominant SBAR of the trigger for temporal senses, they manage to

slightly increase the performance with 0.18%. Our richer semantic features add much

more than that.

In conclusion, all feature types are needed and complement each other. Whilst lexi-

cal features are the most indicative of causal triggers, syntax and semantics permit gen-

eralisation over the grammatical flexibility and sense variability of language.

Having compared our results to the current state-of-the-art, we consider our super-

vised and semi-supervised CRFs to improve on it in biomedical discourse causal trigger

recognition. The main result of this experiment is the fact that more data is needed for

such specialised domains.

Argument detection

Our experiments have shown that causal arguments are best detected in a supervised

setting. This is due to the fact that the errors occurring in previous steps are propa-

gated and affect the performance of semi-supervised systems. Nevertheless, the perfor-

mance between the supervised and semi-supervised in comparable, even with error

propagation.

For the first and third steps, we employed six different classifiers, one of them mak-

ing its decisions based on the result of the other five. The wide spectrum of algo-

rithms, ranging from Naïve Bayes to decision rules, decision trees and SVMs, provide

complementary results which lead the Vote meta-classifier to outperform them by up

to 2% for the first step and 3% for the third step.

For the second step, we modelled the task as a sequence labelling task using CRFs,

and as a classification task using SVMs, RFs and NB. CRF performed best in this case,

surpassing SVM and RF by approximately 5%, and NB by 16%.

The literature is very restricted from this point of view: most research is either based

on CRFs, when researchers perform a token-level identification [41,42], or on ME clas-

sifiers when they wish to obtain syntactic constituents that span the arguments [12,43].

With respect to features, in all the experiments that we described, using features

from all types produced the best results. This includes both domain-independent
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features, such as lexical, syntactic and positional features, and features specific to the

biomedical domain, such as biomedical semantics. Semantics has proven to play a

major role especially in the argument span and role recognition, where they improve

the F-score by 3% on average.

The task of detecting the arguments of causal relations, and, more generally, dis-

course relations, has not been as studied as recognising triggers. Thus, the variety of

features that have been employed until now is fairly limited. Do et al. [40] use a com-

plex semantic feature measuring the similarity between two predicates, including their

arguments, in the general domain, for the task of deciding whether or not the pair of

predicates are in a causal relation. Their method takes into consideration just co-

occurrence and various distances between the two predicates, but it manages to

improve the F-score by 15% over that obtained by classical point-wise mutual informa-

tion, to 38%. It is recall that is increased significantly in this case, from 26% to 62%,

when tested on PDTB.

Other methods restrict themselves to lexical and syntactic features. Ghosh et al. [26],

Lin et al. [12] and Xu et al. [43] engineer a similar feature set to each other in their

own approaches. Whilst Ghosh et al. [26] uses a features set composed of lexical fea-

tures (surface expression and lemmata of tokens) and morpho-syntactic features (PoS,

inflection, main verb of sentence, path from root to token in parse tree), Lin et al. [12]

extends it by adding information about the neighbouring tokens. Xu et al. [43] enriches

the set even more, considering the position of the token relative to the trigger (left or

right), and its position in the sentence as a binary class (before the middle or after the

middle of the sentence). Thus, they manage to reach 46% F-score in recognising both

arguments when they employ automatic parses for feature extraction.

On biomedical text, the relevant literature is extremely limited. To the best of our

knowledge, Ibn Faiz et al. [18] describe the only method that identifies argument head

words in the style of Wellner et al. [27]. However, no decision is made on argument

spans. To note is the fact that their system has been built having the general domain

in mind, and just applied on biomedical data. Thus, the framework does not use bio-

medical-specific processing or features specific to the biomedical domain.

In conclusion, all feature types are needed for a better performance in discourse

argument identification, as they complement each other. Whilst lexical and positional

features increase precision, semantic and syntactic information boost recall.

Conclusions
This article has described our three-step approach to automatically recognise causal

relations in biomedical scientific discourse in a semi-supervised learning setting. We

augment the BioCause corpus, containing gold standard causal relation annotations,

with existing unlabelled data. Furthermore, we add new structural features, regarding

c-command relations in parse trees, and positional features, which can reduce the

number of false positives and negatives.

Having access to more data, semi-supervised machine learners improve their perfor-

mance over supervised in the first three steps, even when the errors propagate through

the pipeline. Trigger spans are recognised with a 4.35%-increased F-score. The position

of arguments and their spans also benefit from unlabelled data, with increases in

F-score of 0.32% and 1.07%, respectively. In the last step, which assigns roles to
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arguments, the top F-score is 0.56% lower than that reported in a supervised setting by

Mihăilă et al. [38].

Feature-wise, the performance of this step might be improved by the addition of a

causality measure that can capture the uni-directionality of this type of discourse rela-

tion. Data-wise, we emphasise the acute need of more gold-standard annotations in

order to better capture and represent the variety and ambiguity of language, both in

the seed and test datasets.
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