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The use of polymeric materials (PMs) and polymeric films (PMFs) has increased in medicine and den-
tistry. This increasing interest is attributed to not only the excellent surfaces of PMs and PMFs but also
their desired mechanical and biological properties, low production cost, and ease in processing, allowing
them to be tailored for a wide range of applications. Specifically, PMs and PMFs are used in dentistry for
their antimicrobial, drug delivery properties; in preventive, restorative and regenerative therapies; and
for corrosion and friction reduction. PMFs such as acrylic acid copolymers are used as a dental adhesive;
polylactic acids are used for dental pulp and dentin regeneration, and bioactive polymers are used as
advanced drug delivery systems. The objective of this article was to review the literatures on the latest
advancements in the use of PMs and PMFs in medicine and dentistry. Published literature (1990–
2017) on PMs and PMFs for use in medicine and dentistry was reviewed using MEDLINE/PubMed and
ScienceDirect resources. Furthermore, this review also explores the diversity of latest PMs and PMFs that
have been utilized in dental applications, and analyzes the benefits and limitations of PMs and PMFs.
Most of the PMs and PMFs have shown to improve the biomechanical properties of dental materials,
but in future, more clinical studies are needed to create better treatment guidelines for patients.
� 2018 Production and hosting by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Dental biomaterials have been extensively studied for many
decades. Current advances in biomaterial science have led to the
discovery of newmaterials for dental use and have broadened their
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use in preventive, restorative, and regenerative treatments [1,2]. A
wide variety of these materials ranging from dental cements,
resins, metals, and alloys to ceramic materials are used in den-
tistry. Metals and alloys commonly used in dentistry include tita-
nium (Ti) and their alloys such as nickel-titanium (NiTi), stainless
steel, cobalt-chrome alloys, nickel-chrome, gold-based alloys, or
dental amalgam [3]. Despite the wide availability of biomaterials,
no material has ideal physical, mechanical, biological, and surface
characteristics [4]. Therefore, selecting a biocompatible material
for dental use depends on numerous factors such as their corrosion
behavior, mechanical properties, cost, availability, and esthetics
[5].

The increased longevity of the population has raised the
demands for improved dental material function and esthetics.
Polymeric materials (PMs) are widely used in biomedical fields
[6], and their use has increased due to their improved properties
and wide applicability. Polymers play a major role in different
aspects of dentistry, such as preventive, restorative, and regenera-
tive therapies [7]. The use of PMs and polymeric films (PMFs)
rather than traditional materials (such as dental amalgam and
cements) used in dentistry is becoming more common due to their
physical and mechanical properties and biological properties.
Moreover, these materials can be used for dentin regeneration or
as advanced drug delivery systems.

Polymers are high-molecular-mass macromolecules consisting
of repeating structural units derived from their respective mono-
mers. Polymers commonly used in dentistry are polyethylene
(PE) [�(CH2�CH2)�], polymethyl methacrylate (PMMA) [�{CH2-
�C(CH3)�CO � OCH3}�], polycarbonate (PC) [�{O�(CO)�O}�],
polyethylene glycol (PEG) [�{CH3(O)�CH3(O)}�], polydimethyl-
siloxane [�{(CH3)2�Si�O}�], polyurethane (PUR) [�(NH–COO)�],
polylactic acid (PLLA) [�{O–CH(CH3)�O}�], poly(e-caprolactone)
(PCL) [�{CO(CH2)5�O}�], polypyrrole (PPy) [�{CH4H5�N}�], and
hexamethyldisilazane (HMDC) [�{C6H19�N5�Si2}�], N-
isopropylacrylamide [�{C6H11�NO)}�], N-tert-butylacrylamide
[�{C7H13�NO)}�], and hydrogel [�{C3H3�NaO2)}�] [6]. Although
the mechanical properties of these biomaterials are dictated by
their bulk properties, their tissue biomaterial interactions are gov-
erned by their surface properties which can be easily tailored to
specific requirements [8]. Thus, polymer coatings may be used to
increase the biocompatibility of a bulk material.

The increased use of engineering and nanotechnology in medi-
cine and dentistry has led to the development of improved PMs for
dental applications [9]. However, there exist no reports presenting
an overview of the latest advancements in PMFs for dental applica-
tions. This review presents a brief overview of the approaches for
using PMs for dental and medical applications. Here, we also pre-
sent an update on PMs for use in dentistry covering their antimi-
crobial properties, drug delivery, and tissue regeneration and for
reducing corrosion and friction. Available articles (from 1990 to
2017) on PMs and PMFs use in medicine and dentistry were
reviewed using MEDLINE/PubMed and ScienceDirect resources.
Classification of PMFs in dentistry

PMFs in dentistry can be classified according to their applica-
tions as detailed below:

Antimicrobial PMFs in dentistry

PMFs for preventing biofilm and dental caries development
PMFs for preventing tooth erosion
PMFs for drug delivery
PMFs in restorative dentistry
PMFs in prosthetic dentistry
PMFs in implantology
PMFs in periodontics

PMFs for reducing corrosion in dentistry
PMFs for reducing friction in dentistry

Antimicrobial PMFs in dentistry

Biofilms cause common dental diseases that involve microbes
adhering to teeth or restorative materials [10]. Microbial adhesion
is followed by bacterial growth and colonization, resulting in the
formation of a compact biofilm matrix [11]. This matrix protects
the underlying bacteria from the action of antibiotics and host
defense mechanisms. The biofilm formed on teeth, prostheses, or
implant-anchored restorations contains aciduric organisms such
as Streptococcus mutans (S. mutans) and lactobacilli that secrete acid
causing enamel and dentin demineralization Biofilm formation on
dental implants can result in serious infection leading to dental
implant failure. Adding different antibacterial agents such as, qua-
ternary ammonium compounds [12], inorganic nanoparticles (NPs)
[13,14], or fluoride varnish with natural products [15] into the den-
tal materials prevents biofilm formation and bacterial growth.
Dental varnishes containing fluoride with natural products includ-
ing miswak, propolis, and chitosan have been shown to be an effec-
tive approach for caries prevention [15]. Newer techniques include
the use of antibacterial polymer coatings for preventing bacterial
growth on artificial tooth surfaces in other dental materials and
dental composite kits increasing the restoration’s longevity [16].
Examples of such antibacterial coatings include copolymers of
acrylic acid, alkylmethacrylate and polydimethylsiloxane copoly-
mers [1], pectin coated liposomes [17], and carbopol [2,18].

PMFs for preventing biofilm and dental caries development
Preventing bacterial biofilm formation is a major challenge in

dentistry. Biofilms are collections of microbes that attach to hard
tissue. These microbes produce excessive extracellular polymeric
substances (EPS) that protect them from their environment and
antibiotics, thereby making them antibiotic resistant [19]. Nan-
otechnology and polymeric nanomaterials have been used to pre-
vent bacterial adhesion and biofilm formation [20,21]. The
combination of nanoparticles (NPs) and antibiotics enhances anti-
biofilm activity. Preventing microbial adhesion and proliferation
on dental material surfaces depends on interactions between syn-
thetic polymeric biomaterials and tooth structure (Fig. 1) [19].
Polymer NPs help deliver drugs to the target site in entrapped or
immobilized forms. In addition, NPs penetrate the biofilm struc-
ture, and release metal ions and antimicrobial compounds to
destroy the biofilm and inhibits microbial colonization.

Fornell et al. [1] evaluated the anti-adhesive properties of poly-
mers (acrylic acid, alkylmethacrylate, and polydimethylsiloxane
copolymer) on plaque accumulation and enamel demineralization
in low-caries adolescents. Their results showed that an anti-
adhesive polymeric enamel coating used in conjunction with
orthodontic appliances in adolescents with low caries cases had
no clinical effects. However, their findings may be useful in high-
risk caries cases, which should be investigated.

Bioadhesive nanosystems, such as liposomes, have been shown
to be advantageous because they can reach sites inaccessible to
other types of formulations, and can also be site-specifically tar-
geted [22]. Nguyen et al. [17] found that pectin coated liposomes
that formed naturally on tooth surfaces adsorbed the hydroxyap-
atite (HA) in vitro and acted as protective biofilms. The ability of
pectin-coated liposomes to remain on enamel suggests their possi-
ble use as a protective coating on the teeth. In fact, the use of
charged liposomes, either uncoated or coated using electrostatic
deposition with polysaccharides (alginate, chitosan and pectin),



Fig. 1. Prevention of biofilm formation by an antimicrobial polymeric film on the tooth surface. (Reproduced from Qayyuma and Khan [19] with permission from The Royal
Society of Chemistry).
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as bioadhesive systems for the oral cavity was investigated
through an in vitro study (Fig. 2) [23]. It was found that the lipo-
some surface charge was highly important for their stability in sal-
iva and for bioadhesion. The negatively charged liposomes were
the most stable in artificial saliva, and the stability of the positively
charged liposomes in the film was improved using a negatively
charged polysaccharide [23].

PMFs for preventing tooth erosion
Soft drinks with low pH causes tooth erosion and dental caries.

Erosive enamel demineralization results in surface softening and
roughening [24]. Various polymeric films have been tried for phys-
ically protecting the teeth against erosion by preventing the direct
contact of acidic environment in the oral cavity with the teeth
[24–27]. Beyer et al. [25] studied the ability of a polymer modified
citric acid solution of propylene glycol alginate to reduce tooth ero-
sion. They found a layer, consisting of two opposing gradients of
Fig. 2. Pectin-coated liposomes that formed on tooth surfaces used as bioadhesive syst
Elsevier).
hydroxyapatite (HA) particles and polymer molecules, helped to
reduce the erosion on dental enamel surfaces. The polymers
(propylene glycol alginate, highly esterified pectin and gum arabic)
adsorbed on the teeth forming a protective layer on the enamel
and dentin that reduced the erosive effects of acid [26].

Chitosan is a natural polymer derived from the deacetylation of
chitin. Carvalho and Lussii [24] studied the preventive effects of a
fluoride-, stannous- and chitosan-(F/Sn/chitosan-) containing
toothpaste on enamel erosion and abrasion. They found that the
toothpaste containing F/Sn/chitosan showed promising results in
reducing tooth surface loss from erosion and abrasion. Chitosan,
due to the presence of a cationic amino group, has a high positive
zeta-potential and readily adsorbs onto materials such as enamel
of strong negative zeta potential [28] through electrostatic forces
[29]. The preventive potential of chitosan against erosion and
enamel demineralization is attributed to its ability to form a pro-
tective multilayer on the tooth surface in the presence of mucin
ems in the oral cavity. (Reproduced from Pistone et al. [23] with permission from
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from saliva [30]. This layer-by-layer build-up on the dental enamel
is acid resistant, and it provides a better protection against erosive
attacks. In addition, tin (Sn) has a protective effect due to the for-
mation of amorphous deposits on the enamel surface, and the
incorporation of Sn into the eroded enamel and dentin [31].

Carbopol, a high-molecular-weight acrylic acid polymer, has
been used as a thickening agent in many formulations such as gels,
suspensions, and emulsions. It also prevents or controls the enamel
demineralization causing no deleterious effects on the tooth [18]. A
carbopol film combined with sodium fluoride has demonstrated an
improved protective effect against tooth demineralization [2].

Gracia et al. [27] studied the effect of pre-treating sound human
enamel with a water-soluble combination polymer system (TriHy-
draTM) on in vitro erosion by citric acid. This system comprised
0.20% carboxymethylcellulose (CMC), 0.010% xanthan gum, and
0.75% copovidone, alone or in combination with fluoride. They
found that the combination polymer system had an anti-erosion
effect. The polymer/F admixture significantly reduced surface
roughness; however, bulk tissue loss reduction was not signifi-
cantly different compared with either treatment alone. This was
because the combination polymer system employed as an admix-
ture with F conferred significantly greater suppression of enamel
surface etching (as shown from surface roughness) compared with
either treatment alone. There was no specific interaction between
the F ions because CMC and xanthan gum are anionic polysaccha-
rides and copovidone is a non-ionic copolymer. These polymers
transport F to the enamel surface.

Studies have been conducted on the efficacy of toothpastes and
topical creams containing casein phosphopeptide-amorphous cal-
cium phosphate (CPP-ACP) with fluoride in preventing erosive
tooth wear from acidic beverages or solutions [32–34]. A random-
ized controlled trial was conducted by Maden et al. [32] to investi-
gate the effect of acidulated phosphate F (APF) gel and CPP-ACP on
the dental erosion in primary teeth. They found that artificial sal-
iva, CPP-ACP, and 1.23% APF treatments reduced erosive enamel
loss produced by carbonated drinks in primary teeth. The 1.23%
APF gel showed the highest protective effect against erosive
enamel loss.

PMFs for drug delivery
Drug delivery via the oral mucosa can occur through keratinized

mucosa (gingival and hard palate), and nonkeratinized mucosa
(sublingual and buccal) [35]. The bioadhesive formulations protect
fragile drugs and improve the retention time of active substances
ranging from days to months improving the efficacy of the treat-
ments resulting in patient comfort and compliance [35]. There
have been advances in drug formulations and drug delivery strate-
gies using various polymers and NPs to prevent biofilm formation
[17,36–40].

Drug-loaded polymeric nanocapsules prepared with different
biodegradable polymers, such as chitosan, alginate, gelatin, and
methacrylic acid have exhibited potential use as drug delivery sys-
tems [36]. The use of nanocapsules as carriers allows for targeted
drug delivery, controlled/sustained release drug delivery systems,
transdermal drug delivery systems, and improved drug stability
and bioavailability. Furthermore, Lococo et al. [40] investigated
the use of submicron size (<250 nm) argan oil-based nanoemul-
sions as drug carriers that demonstrated, negative zeta potential
(between �40 and �50 mV) and drug-encapsulation efficiency
(higher than 85%), indicating good physical stability and good per-
formance as drug carriers. The polymer microsphere-based sys-
tems used for delivery included molecules ranging from smaller
molecules to peptides; and macromolecular drugs such as proteins,
oligonucleotides and DNA [41]. The mucus or cell-specific bioadhe-
sive polymers that allow for cytoadhesion and bioinvasion provide
unprecedented opportunities for targeting drugs to specific cells or
intracellular compartments. Similarly, the use of multi-walled car-
bon nanotube-coated Ti alloy for drug delivery significantly inhib-
ited biofilm formation for up to 5 days [37]. Hence, this coated
alloy may be effective against the pathogenic biofilm on endopros-
theses, such as the knee joint, hip, and teeth. The NPs incorporated
with polyethylene glycol (PEG), or subjected to ‘PEGylation’
improved the efficiency of drug and gene delivery to target cells
and tissues [38]. Such NPs-PEGs protect the NPs surface from
aggregation, opsonization, and phagocytosis prolonging systemic
circulation time. In addition, Carbopol can be used as an adjuvant
for bioadhesive drug delivery systems [2].

For dental drug delivery, different pectin (LM-, HM- and AM-
pectin)-coated liposomes were effective because they adsorb on
HA and the dental enamel [17]. Their ability to be retained on
enamel surfaces suggests using these pectin molecules as a protec-
tive coating for teeth. In addition, polymers such as polycarbonate
micelles have also been investigated for controlled drug release
applications [39].

Polycarbonate, a naturally transparent amorphous thermoplas-
tic that has good heat resistance, high toughness and impact
strength, can be combined with polyethylene glycol (PEG) and
antimicrobial agents for controlled drug release applications.
Amphotericin B (AmB) [9], an antifungal agent can be mixed with
polymer micelle in films (Ambicelles) for controlled AmB release
and minimize systemic toxicity [39,42–44]. Wang et al. [39]
assembled phenylboronic acid-functionalized polycarbonate
(PBC)/PEG and urea functionalized polycarbonate (PUC)/PEG
diblock copolymers incorporated with AmB. They found that these
polymer micelle films were promising AmB carriers with compara-
ble antifungal activity, however, disadvantages of AmB include
poor water solubility and nephrotoxicity at high concentrations
[44]. Chen et al. [44] developed a novel self-assembling mixed
polymeric micelle delivery system based on lecithin and combined
with amphiphilic polymers, d-alpha tocopheryl PEG succinate, and
1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-methoxy(po
ly(ethylene glycol)-2000 (DSPE-PEG2K) (Fig. 3). These polymers
demonstrated increased bioavailability and a synergistic anti-
cancer effect. The disadvantage of Ambicelles is that they are
unstable when they are stored for a long period.

PMFs in restorative dentistry
Because of the high complexity of the tooth organic substrate,

collagen and dentin proteins, it is difficult to achieve the optimal
interaction between polymers and dentin [45]. Thus, the disadvan-
tages of composite restorations include polymerization shrinkage,
secondary caries, and restorative material fracture [46,47]. In addi-
tion, many restorative materials, including resins and composites
accumulate more biofilm than other restorative materials, such
as amalgam and dental restorative cements [48,49].

Resin composite restorations are technique sensitive, and
achieving good isolation is very important [50]. Saliva contamina-
tion during restoration curing disrupts the bonding of the compos-
ite restoration with the tooth structure [51,52]. In addition,
composites may degrade in the oral cavity. Biofilm formation con-
tributes to the formation of an environment that is more prone to
composite degradation, reducing the composite restoration lifes-
pan. Cariogenic bacteria can degrade composites, thereby increas-
ing the surface roughness. Increased roughness and subsequent
increased bacterial accumulation may facilitate the development
of secondary caries around composites, which is the most common
reason for composite restoration failure [53]. Lee et al. [54] inves-
tigated using a dopamine-methacrylate, 2-methoxyetheyl acrylate
as a dental adhesive. They found that the catechol-functionalized
methacrylate random copolymer containing Fe3+ improved the
bond strength of dental adhesives to an artificial saliva contami-
nated dentin surface. The catechol groups undergo polymerization,



Fig. 3. Polymeric micelles mixed with amphotericin B. DSPE-PEG2K: 1,2-disteroyl-sn-glycerol-3-phosphoethanolamine-N-methoxy(poly(ethylene glycol)-2000; API: Active
Pharmaceutical Ingredients. (Reproduced from Chen et al. [44] under the creative commons attribution - noncommercial (unported, v3.0) license from Dove Medical Press
Ltd.)
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which immobilize proteins on substrate surfaces. The catechol-
functionalized polymer can function as a dental adhesive for wet
dentin surfaces, potentially eliminating the complications associ-
ated with saliva contamination. The authors suggested that this
polymeric film may reduce dental restoration failure due to saliva
contamination [54]. In addition, the polymer adhesives could be
used for dental implant coatings, where good biocompatibility
and good cell adhesion are required.

It has been shown that some dental cements are antibacterial
[55–57]. Târcă et al. [55] evaluated the surface antibacterial prop-
erties of glass ionomer cements (GIC) and compomers. The materi-
als with bioactive features inhibited the growth of S. mutans in the
bacterial biofilm on coronal restoration surfaces. Yengopal and
Mickenautsch [56] studied the caries-preventive effect of resin-
modified GIC (RM-GIC) compared with resin composites. Their
results showed either no difference between the materials or indi-
cated that RM-GIC had a superior caries preventive effect.

Feroz et al. [57] found that ZOE and zinc polycarboxylate (ZPC)
cement showed antibacterial activity against S. mutans and Lacto-
bacilli as determined by the agar diffusion test. However, each
cement showed some antibacterial activity in a direct-contact test.
Hence, the antibacterial activity varied according to the methods
used. Long-term clinical trials using specific methods and tech-
niques are necessary to determine the antimicrobial effects of den-
tal materials.

Various anti-bacterial polymeric coatings such as acrylic acid,
alkylmethacrylate, and polydimethylsiloxane copolymer [1], Car-
bopol [2], N-halaminebased polymer additive [58], and Ti oxide-
chitosan/ heparin multilayers [59] have been used to prevent bio-
film formation and to increase restoration longevity (25).

PMFs in prosthetic dentistry
Polymethyl methacrylate (PMMA) is widely used as biomed-

ical material to make various types of prostheses in medicine
and dentistry [60]. PMMA is a strong, tough, lightweight
material with good impact strength compared with glass and
polystyrene, and its environmental stability is superior to most
other plastics such as PE and polystyrene [61]. However, PMMA
has certain disadvantages; it swells and dissolves in many
organic solvents and chemicals due to its easily hydrolyzable
esters groups [62].

Reducing biofilm formation on dental materials, such as den-
ture base, is a key to oral health. Various additives such as zirco-
nium oxide nanoparticles (ZrO2-NPs) [63], Yamani henna power
[64], silver nanoparticles (Ag-NPs) [65] or platinum nanoparticles
(Pt-NPs) [66] have been incorporated into PMMA to reduce bacte-
rial or fungal colonization. The addition of ZrO2-NPs to cold-cured
PMMA reduced C. albicans adhesion to denture bases and
cold-cured removable prosthesis [63]. Li et al. [65] found that C.
albicans biofilm bioactivity dose-dependently decreased with
increasing Ag-NP concentration and exhibited anti-adhesion activ-
ity at a high concentration (5%). The antibacterial activity after
adding Pt-NPs to PMMA was investigated by Nam [66] who
reported that the Pt-NPs-modified PMMA showed a significant
anti-adherent effect rather than a bactericidal effect above 50
mg/L Pt-NPs compared with control.

Various polymeric films have been used as antimicrobials on
prostheses to prevent biofilm development. Shibata et al. [67]
investigated the effect of a phospholipid polymer, poly(2-
methacryloyloxyethyl phosphorylcholine-co-n-butyl methacry-
late) (PMB), on PMMA in preventing biofilm formation. The PMB
polymeric film inhibited sucrose-dependent S. mutans biofilm for-
mation on PMMA denture base, indicating that this biocompatible
PMB polymer film may reduce biofilm formation on PMMA
surfaces.

Polymers have been used to fabricate nanosilver nanocompos-
ites with better properties and enhanced antibacterial activity
[68]. Travan et al. [69] developed an antimicrobial nanocomposite
using lactose-modified chitosan incorporated with Ag-NPs for the
heat polymerized PMMA that is used in dentistry. Their in vitro
results showed that the nanocomposite effectively killed both
gram+ and gram� strains, but was not cytotoxic to osteoblast-
like cell-lines, primary human fibroblasts or adipose-derived stem
cells.

The polymer graphene, which has been described as the ‘‘thin-
nest material in the universe”, has attracted attention in various
fields, including dentistry, because it has dramatically improved
mechanical properties [70]. Graphene, discovered in 2004 [71],
is an allotrope of carbon with a one-atom-thick planar sheet of
sp2 bonded carbon atoms that are densely packed in a honey-
comb crystal lattice [9,72]. Methods of fabricating graphene
sheets with improved properties have been explored [73].
Graphene oxide (GO) materials are widely studied for fabricating
various nanocomposites of different polymer matrixes for
different applications [9,74]. Graphene can be reduced and func-
tionalized with other polymers to produce antimicrobial
nanocomposites. Nam et al. [75] evaluated an antimicrobial
nanocomposite composed of reduced graphene oxide using
antimicrobial agents and catechol derivative conjugated to PEG-
grafted poly (dimethylaminoethyl methacrylate). In addition,
Ag-NPs deposited onto functionalized hybrid graphene demon-
strated increased antimicrobial activity against Staphylococcus
aureus and Escherichia coli compared with that against control.
Biocompatible antimicrobial graphene and Ag-NP polymer may
have good potential to produce an antimicrobial surface on dental
biomaterials such as a dental prosthesis.
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PMFs in implantology
The osseointegration of cpTi/Ti alloy implants used for dental,

craniofacial and orthopedic purposes is related to their composi-
tion and surface roughness. Rough surfaced implants increase
osseointegration and biomechanical stability [76]. Implant surface
treatment methods include Ti plasma-spraying, grit-blasting, acid-
etching, anodization and calcium phosphate coatings [77]. A favor-
able environment is necessary for implant osseointegration. The
reduced oxygen concentration from the poor vasculature at the
implant surface interface promotes a buildup of host-cell-related
electrons as free radicals and proton acid that can encourage infec-
tion and inflammation causing implant failure [78,79]. To provide a
favorable environment for osseointegration and overcoming the
problems associated with Ti implants, surface modifications can
be performed using high-strength fiber-reinforced and complex fil-
lers/additives including hydroxyapatite or antimicrobial incorpora-
tion via thermoset polymers, which cure at low temperatures [78].
The polymer/carbon-fiber-reinforced composite produced success-
ful osseointegration. Thermoset polymer matrix and carbon fibers
generate covalent bonds providing strong bone structure support
with excellent osseointegration [80].

Researchers are also focusing on developing bioactive coatings
on dental implants to enhance osseointegration by interactions
between proteins, cells and tissues, and implant surfaces [76].
The local release of bone stimulating or resorptive drugs in the
peri-implant region may result in long-term dental implant suc-
cess. Biomimetic coated Ti surfaces with nano-hydroxyapatite (n-
HA) and poly(lactic-co-glycolic acid) (PLGA)/collagen nanofibers
have been studied for dental and bone implant surfaces to enhance
osseointegration [81]. This coating enhanced initial cell adhesion,
cell proliferation, differentiation and mineralization on the implant
surface.

The use of antibiotic-containing nanofiber-based polymeric
films on dental implants has been investigated to minimize
implant loss, especially in periodontally compromised patients.
Bioactive polymers such as hydrogels, hydroxypropyl methylcellu-
lose (HPMC), poly(lactic/glycolic acid) and poly(e-caprolactone),
have been used for the sustained release of antimicrobial drugs
such as metronidazole, ciprofloxacin, and minocycline [82–85].
Polylactic acid (PLLA), a popular low-cost biodegradable polymer
has excellent biocompatibility and good mechanical properties
(particularly tensile Young’s modulus, tensile strength, and flexural
strength) compared with polyethylene and polysulfide [86,87].
PLLA has wide applications in medical sciences and is used in a
range of devices, including degradable sutures, drug releasing
micro-particles, nano-particles, and porous scaffolds for cellular
applications [88]. Shahi et al. [89] used a tetracycline hydrochlo-
ride PLLA, poly(e-caprolactone), and gelatin polymer solution to
synthesize tetracycline-containing fibers. These fibers inhibited
the growth and biofilm formation of peri-implantitis associated
pathogen such as Fusobacterium nucleatum, Porphyromonas gingi-
valis, Prevotella intermedia (42,43) and Aggregatibacter actino-
mycetemcomitans [85]. They suggested that tetracycline-
containing fibers have potential to use as an antibacterial film on
dental implants. However, the elongation at break and impact
strength of PLLA are lower than that of polyethylene, polyethylene
terephthalate and polyamide (PA), and PLLAS’s poor toughness
limits its use in applications requiring plastic deformation at
higher stress levels; this requirement has stimulated investigation
on toughening PLLA [90,91].

PMFs in periodontics
Inhibiting biofilm formation on tooth enamel is an important

technique for preventing dental and periodontal diseases. The
2-methacryloyloxyethyl phosphorylcholine (MPC) is a polymer that
is water-soluble, biocompatible and has good hemocompatibility.
MPC reduced the retention of human pathogenic microorganisms
[92]. Kang et al. [93] immobilized MPC on the tooth surface to pre-
vent oral bacterial adhesion. The synthesized MPC-ran-2-
methacryloyloxyethyl phosphate (PMP) copolymer with zwitteri-
onic and Ca2+ binding moieties formed a highly effective biofilm
inhibiting surface on the HA of the tooth surface. It showed that
HA surfaces coated with a copolymer containing 50% MPC
(PMP50) reduced protein adsorption and subsequent cell adhesion
and S. mutans adhesion compared with other polymer combina-
tions. Thus, highly stable anti-adsorptive and anti-bacterial PMP
films can be used in dentistry and medicine. However, a disadvan-
tage of MPC is its complicated synthesis resulting in high produc-
tion cost, which limits their wide applicability [94].
PMFs for reducing corrosion in dentistry

Corrosion is a diffusion interfacial electron-transfer process that
occurs on the surface of metals, and metal corrosion is an impor-
tant factor in biocompatibility. The Ni released from NiTi and stain-
less steel orthodontic wires is a known allergen. The oral signs and
symptoms resulting from Ni released from orthodontic appliances
include gingival hyperplasia, stomatitis, angular cheilitis, perioral
rash, erythema multiforme, burning sensation, and loss of taste
[95,96]. Another common metal used in dentistry is Ti and its
alloys. Although, uncommon, it was found that Ti could generate
dark staining of the tissues around the implant [97]. Soft tissue
inflammation with black extracellular deposits and Ti particles
within histocytes and foreign body giant cells resulting from the
rough surfaces of Ti alloy medical prostheses or those that have
loosened have been observed. This has led to concerns about the
long-term metabolic, oncogenic, and immunological effects of Ti
particles [97,98]. It was found that after placing single threaded
screw implants into sheep mandibles, the Ti levels were below
400 ppb [99]. In addition, despite the tendency of Ti alloy mini-
implants to release Ti ions, the amounts of Ti ions detected were
significantly lower than the average intake of Ti through food
and drink, and the levels did not reach toxic concentrations
[100]. These findings suggest that although Ti can be released,
the levels are not biologically meaningful. It is known that Ti ions
are responsible for monocyte infiltration in the oral cavity by ele-
vating the sensitivity of gingival epithelial cells to microorganisms
[101]. Although, Ti at levels of 5–9 ppm may be involved in cyto-
toxicity, inflammation, and necrosis at >13 ppm at the interfaces
of dental implants and gingival tissue [101], currently there are
no clinical reports about Ti toxicity.

Biocompatible modified polymeric films have been coated on
NiTi alloy wires to increase corrosion resistance and improve
mechanical properties [102–104]. Polymeric films that can be used
as coatings over NiTi, stainless steel wire and other materials to
prevent corrosion are Pyy/HA nanocomposite [103], PUR [105],
polyamide [106], polyetheretherketone [107], polytetrafluo-
roethylene [108], graphene oxide/HA [109], hexamethyldisilazane
[110], and fullerene like-tungsten disulfide nanoparticles [111].
Another advantage of these films as a coating is that processing
defects in non-coated rectangular wires can be eliminated after
coating them with polymer. However, a disadvantage of these
polymer coatings is that after a long-term use, the coatings may
become rough or detach from the metal wire (Fig. 4) [112]. Hence,
the polymer coating on metal should be evaluated for long-term
use, and the polymer should be strong and stable.

The effect of graphene on preventing corrosion has been inves-
tigated [113–115]. Graphene coatings protected metal surfaces,
especially of Ni materials, from corrosive environments [114].
These investigators observed that graphene provided effective
resistance against water corrosion. Moreover, a conductive



Fig. 4. SEM images of stainless steel orthodontic arch wire: (a) uncoated wire, (b) polymer coated wire, and (c) Coated wire showing rough surface and lost coating layer after
use [112]. (Reproduced with permission from The E. H. Angle Education and Research Foundation).
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biocompatible polymer 3,4-ethylenedioxythiphene and GO com-
posite coating effectively reduced the corrosion of Mg-based med-
ical implants [115]. Singh et al. [116] demonstrated that a
graphene reinforced composite coating highly reduced copper cor-
rosion. The corrosion inhibiting effect of graphene suggests that it
could be coated on arch wires used in orthodontics, metal files and
reamers used in endodontics, or metal prostheses [113,114,117].

PMFs for reducing friction in dentistry

Frictional force is an important consideration in dentistry, espe-
cially in orthodontic treatment because it results in the loss of
applied force. Orthodontic arch wires that can deliver light forces
over time would be useful to clinicians during the initial alignment
phase of fixed appliance treatment [118]. Bravo et al. [119] com-
pared the coefficient of friction of polyamide (PA) coated and
uncoated NiTi wires. They found that the wear rates and the
dynamic friction coefficients of PA wires were lower than those
of uncoated wires. The PA coating seals the NiTi surface preventing
corrosion and nickel ion release. The average decrease in Ni ion
release due to this coating is approximately 85%.

Graphene film coatings have been used for lubrication and
reducing friction. The tribiologic properties of GO were investi-
gated by adding GO monolayer sheets to water-based lubricants
that were applied to a sintered tungsten carbide ball and stainless
steel flat plate [120]. Adding GO particles in water improved lubri-
cation and provided a very low friction coefficient of approxi-
mately 0.05 with no obvious surface wear after 60,000 cycles of
friction testing. Similar results were found by Berman et al. [121]
who used a graphene coating, and Lin et al. [122] who used a gra-
phene platelet coating to reduce friction. Thus, graphene could be
used to reduce the friction of dental biomaterials such the metal-
based prostheses used in dentistry [120].

Hydrogels comprise a group of PMs, the hydrophilic structure of
which renders them capable of holding large amounts of water in
their 3D networks [123]. Their properties include biodegradation,
and chemical and biological response to stimuli [124]. However,
hydrogels have disadvantages such as higher water absorption
capacity and high stability, which is not favorable when degrada-
tion is desired. In addition, single component hydrogels have low
mechanical strength, and recent studies have used composite or
hybrid hydrogel membranes to increase the hydrogel strength
[125]. Hydrogels have also been used in biomedical technology, tis-
sue engineering, NiTi implants, and orthodontics because these
polymers are viscoelastic and permeable, and their mechanical
properties mimic those of many natural tissues [126–132]. Osa-
heni et al. [126] blended poly-vinyl alcohol with various amounts
of zwitterionic polymer film, poly([2-(methacryloyloxy)ethyl]
dimethyl-(3-sulfopropyl) ammonium hydroxide), demonstrating
that biocompatible zwitterionic polymers reduced friction up to
80%. This material is useful in dentistry for reducing the friction
and wear of dental biomaterials [133]. However, hydrogels must
be used carefully because the resulting network cannot be
reshaped and/or resized. The polymer is no longer soluble in sol-
vents and melting degrades the polymer once crosslinking occurs
[134].

Conclusions and future perspectives

The mechanical properties of biomaterials are dictated by their
bulk properties, whereas, tissue-biomaterial interactions are gov-
erned by their surface properties. The surface modification of bio-
materials can be achieved by polymer coating. Despite the
availability of numerous biomaterials with suitable bulk proper-
ties, it is rare to find an ideal biomaterial that possesses excellent
surface characteristics and is biocompatible for clinical applica-
tions. Based on the principles and knowledge of materials science,
the benefits and limitations of these dental materials should be
analyzed before deciding to use them clinically. The increased
investigation into the use of PMFs has provided a novel set of ther-
apeutic strategies for dental applications. Although most of the
PMFs are not regularly used clinically, their use has shown to
improve the biomechanical properties of dental materials that
may translate into new treatment alternatives for patients in the
future.
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