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Aims. The clinical diagnosis of Kawasaki disease (KD) is not easy because of many atypical manifestations. This study is aimed at
finding potential diagnostic markers and therapeutic targets for KD and analysing their correlation with immune cell infiltrations.
Methods. First, we downloaded the KD dataset from the Gene Expression Omnibus (GEO) database and used R software to
identify differentially expressed genes (DEGs) and perform functional correlation analysis. Then, CIBERSORT algorithm was
used to evaluate immune cell infiltrations in samples. Coexpression analysis between DEGs and infiltrating immune cells was
performed to screen the main infiltrating immune cells. Subsequently, the least absolute shrinkage and selection operator
(LASSO) logistic regression analysis was used to screen the core genes related to KD. Finally, correlation analysis between the
core genes and the main infiltrating immune cells was performed. Results. 327 DEGs were screened out in this study. Among
them, 72 shared genes were the category of genes most likely to be disease-causing for they did not change before and after
treatment. After analysis, it was found that expression level of IL2RB in KD tissues was significantly upregulated, the number
of resting CD4+ memory T cells was decreased, and the decrease was significantly negatively correlated with the upregulated
expression of IL2RB. Therefore, it was speculated that the upregulated expression of IL2RB disrupted Th1/Th2 cell
differentiation balance, which led to a decrease of resting CD4+ memory T cells and finally caused disorder of immune
microenvironment in patients with KD. Conclusions. Upregulated expression of IL2RB leads to disorder of immune
microenvironment in patients with KD and eventually causes the occurrence and development of KD. Therefore, IL2RB may
serve as a diagnostic marker and potential therapeutic target for KD.

1. Introduction

Kawasaki disease (KD) is a rare systemic inflammatory
disease that predominantly affects children less than 5 years
old [1]. The main pathological feature of KD is an acute
febrile rash accompanied by systemic vasculitis [2]. The
leading theory for KD pathogenesis is that unknown stim-
uli trigger an immune-mediated inflammatory cascade in
genetically susceptible children [3]. The most serious com-
plication of KD is the occurrence of coronary artery abnor-
malities, and patients with atypical KD are also at risk [3].
KD has become the most common cause of acquired heart
disease among children, in whom coronary artery abnormal-

ities can cause myocardial ischemia, infarction, and even
death [4].

In recent years, an increasing number of studies have
shown that immune-mediated systemic vasculitis plays an
important role in the occurrence and development of KD-
related vascular complications [5]. The increases in the
number of peripheral blood neutrophils, monocytes, and
activated T cells indicate that the innate immune response
is excessive in the acute phase of KD [6]. The recurrence
of KD is usually observed within the first 12 months after
the first attack [7], which indicates that the immune
response of KD may lack immune memory and supports
the hypothesis that the innate immune system participated
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in the pathogenesis of the disease [8]. The identification of
pathogen-associated molecular patterns (PAMPs) in the
serum of patients with KD provides new insights into the
mechanism of vascular inflammation [8]. The elevations of
S100 and HMGB1 protein levels in KD patients suggest the
activation of endothelial cells and neutrophils by PAMPs [9].

Abnormalities in the adaptive immune response were
also noted in patients with KD [10]. Microarray studies have
shown that B and T cell receptor signaling pathways are
downregulated [11]. Recent literatures have also documented
increases in the levels of proinflammatory cytokines and
chemokines during the acute phase of KD [12]. In addition,
autopsy studies have shown that lymphocytes and macro-
phages had infiltrated the coronary artery wall 10 days before
the onset of the disease [13]. Cytokines secreted by activated
macrophages, T lymphocytes, and myofibroblasts can cause
damage to the elastic layer and collagen fibres, leading to
the occurrence of coronary aneurysms (CAAs) [14].

A large number of literatures have proven the correlation
between KD and immunity, and some literatures have
pointed out that immune dysfunction was the culprit [10].
However, which genes’ mutation causes immune dysfunc-
tion, and which immune cells’ dysfunction causes the
disease? How does immune dysfunction lead to systemic
vasculitis? Are there valid diagnostic markers to reduce clin-
ical misdiagnosis? These issues remain to be elucidated. We
consulted many literatures to seek the answers. A surprising
discovery was made in the analysis upon the Gene Expres-
sion Omnibus (GEO) dataset GSE64486 [15]. Firstly, the
microarray dataset of KD from the GEO database was
downloaded and differentially expressed gene (DEG) analy-
sis and functional annotations were performed. Then,
CIBERSORT was used to evaluate the immune cell infiltra-
tions in 22 subtypes of immune cells. In addition, the coex-
pression analysis between DEGs and infiltrating immune
cells was conducted to screen the most important immune
cells and better understand the molecular immune mecha-
nism during the development of KD. Subsequently, the least
absolute shrinkage and selection operator (LASSO) logistic
regression analysis was used to further screen core genes
related to KD. Finally, we identified diagnostic markers by
correlation analysis between these core genes and the main
infiltrating immune cells. Surprisingly, it was found that
the decrease in the number of resting CD4+ memory T cells
was significantly negatively correlated with upregulated
expression of IL2RB in patients with KD. Therefore, it was
speculated that the mutation of IL2RB caused its upregula-
tion and disrupted Th1/Th2 cell differentiation balance,
which led to a decrease in the number of resting CD4+
memory T cells and eventually caused disorder of immune
microenvironment and KD occurrence. Therefore, IL2RB
may serve as a diagnostic marker and potential therapeutic
target for KD.

2. Materials and Methods

2.1. Data Introduction and Preprocessing. The workflow of
this study is shown in Figure 1(a). “Kawasaki disease
(KD)” was used as a keyword to retrieve and select the data-

set that met the requirements. The Gene Expression Omni-
bus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/)
was searched. The “GEOquery” package of R software (ver-
sion 4.0.4, http://r-project.org/) [16] was used to download
the KD dataset GSE64486. The data from childhood coro-
nary artery samples in the form of expression chip data were
collected. The expression profiles were converted and stan-
dardized by log2 to obtain a series matrix file. The microarray
data of GSE64486 were based on the GPL11154 platform
(Illumina HiSeq 2000 (Homo sapiens)). High-throughput
RNA sequencing (HTS) was performed on KD (n = 8) and
childhood control (n = 7) coronary artery tissues [15].
Coronary artery tissues of KD children were obtained from
biopsy or transplantation; control coronary artery tissues
were obtained from children who need biopsy or trans-
plantation due to other diseases. The clinical data of these
children mentioned in this study were shown in the Sup-
plementary Table 1. Among the 8 patients with KD, 4
were from children who had been treated, and the other
4 had not been treated. Coronary arteries from KD children
were individually embedded at autopsy/transplant, while
control epicardial coronary arteries were microdissected
from myocardial tissue blocks and reembedded prior to
sectioning [15].

2.2. Principal Component Analysis (PCA) and Differentially
Expressed Gene (DEG) Screening.We used the “affy” package
[17] to read the raw data of the GSE64886 dataset and
utilized the Robust Multiarray Average (RMA) algorithm
(https://www.bioconductor.org/) to correct background and
normalize data [18]. PCA is a multiple regression analysis
and was used to assess the quality of the data [19]. The
“factoextra” package in R was used for data processing,
analysis, and mapping. The effect of data correction was
demonstrated using a two-dimensional PCA cluster plot.
The differential expressions between the case and control
groups were observed using DEGs as variables. DEGs were
screened by the “limma” package [20]; heat map and vol-
cano maps of DEGs were drawn using the “ggplot2” package
to visualize the differential expression. DEGs with P < 0:05
and jlog 2 FCj > 1 were considered statistically significant.

2.3. Gene Functional Enrichment Analysis. “Metascape”
(https://metascape.org/) was used to perform Gene Ontol-
ogy (GO) enrichment analyses on DEGs. Protein-protein
interaction (PPI) network and Molecular Complex Detec-
tion (MCODE) algorithm analyses were performed using
“Cytoscape” software (version 3.7.2, https://cytoscape.org/).
The clueGO module in “Cytoscape” software was used to
perform the Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analysis for DEGs.

2.4. Evaluation of Immune Cell Infiltrations. As required by
code, the gene expression matrix data was uploaded to
CIBERSORT to obtain the immune score matrix, with fil-
tering out the samples with P < 0:05. Then, “ggplot2” pack-
age was used to draw a two-dimensional PCA clustering
map to visualize the result on immune cell score matrix
data. Then, we used the “corrplot” package [21] to draw a
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Figure 1: Continued.
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correlation heat map to visualize the correlations of 22 sub-
types of infiltrating immune cells and utilized the “ggplot2”
package to draw boxplot diagrams to show the differences
of immune cell infiltrations between case and control
groups.

2.5. Coexpression Analysis of DEGs and Immune Cell
Populations. Coexpression analysis of DEGs and immune
cell populations in the coronary artery tissues of KD and
control children was carried out. We calculated Pearson
correlation coefficients between DEGs and immune cell
infiltrations in the dataset. An absolute value of Pearson’s
coefficient greater than 0.6 and P < 0:05 were used as enrich-
ment criterions. Finally, combined with the differentially
expressed analysis of immune cell components, the immune
cell components most likely to be involved in the disease
were screened out for subsequent analysis.

2.6. Screening and Verification of Diagnostic Markers. We
used the least absolute shrinkage and selection operator
(LASSO) logistic regression [22] to perform feature selec-
tion to screen the core genes for KD. The LASSO algo-
rithm was applied by the “glmnet” package [23]. Finally,
the correlation analysis between the core genes and the
main immune cell components was further performed by
the “corrplot” package, and the “ggplot2” package was
used to draw a chord diagram for visualizing the results.
A two-sided P < 0:05 was considered to be statistically
significant.

3. Results

3.1. Principal Component Analysis (PCA) and Identification
of Differentially Expressed Genes (DEGs). The gene expres-
sion matrix of GSE64486 dataset was normalized and proc-
essed, and it is presented in a two-dimensional PCA cluster
plot (Figure 1(b)), which showed that the three groups of
samples were subclustered more obviously after normaliza-
tion, indicating that the data were reliable. After data pre-
processing, a total of 246 DEGs were defined as DEGs1,
which were extracted from the comparison between the
untreated case group and the control group (Supplementary
Table 2); another 153 DEGs were defined as DEGs2, which
were extracted from the comparison between the treated
case group and the control group (Supplementary
Table 3). All the DEGs were visualized by the heat map
(Figure 1(c)) and volcano maps (Figures 1(d) and 1(e)).

177 genes were upregulated and 69 genes were downreg-
ulated in DEGs1, while 144 genes were upregulated and 9
genes were downregulated in DEGs2 (Figure 1(f)). The top
15 remarkably expressed genes between the case groups
and control group are shown in Tables 1 and 2, respectively.
The overlapping Venn diagram of DEGs1 and DEGs2
showed that 72 genes’ expression levels did not change after
treatment, 174 genes’ expression differences disappeared
after treatment, and 81 genes showed their expression
differences only after treatment (Figure 1(g)). The three-
dimensional PCA result showed that these three types of
genes were obviously subclustered after normalization

174

DEGs1 DEGs2

72 81

DEGs1: KD_untreated vs Control

DEGs2: KD_treated vs Control

(g)

PC2

PC3

174
72
81

(h)

Figure 1: Data quality assessment, differentially expressed gene (DEG) extraction and subgroup analysis. (a) Workflow of this study.
(b) Principal component analysis (PCA) of Kawasaki disease (KD) case group vs. control samples based on normalized gene expression
level in the GSE64486 dataset. (c) The cluster heat map of the whole DEGs (including DEGs1 and DEGs2). DEGs1 were extracted from
the comparison between the untreated group and the control group, and DEGs2 were extracted from the comparison between the
treated group and the control group. (d, e) The volcano maps of DEGs1 and DEGs2. (f) The number of DEGs. The number of
upregulated and downregulated DEGs was showed in bar plot. (g) The Venn diagram showing the overlapping genes between
DEGs1 and DEGs2. (h) Three-dimensional PCA of these three subtypes of genes.

4 BioMed Research International



(Figure 1(h)). Among these three subgroups of genes, 72
genes’ expression levels did not change after treatment,
which were the category of genes most likely to be disease-
causing. Therefore, these genes were selected for further gene
functional annotations.

3.2. Functional Annotations for DEGs. Gene Ontology
(GO) enrichment analysis results showed that DEGs were
mainly related to lymphocyte activation, adaptive immune
system, pathogenesis of SARS-CoV-2 mediated by the
nsp9-nsp10 complex, and Th1 and Th2 cell differentiation

Table 1: The top 15 upregulated and downregulated genes between the untreated group and the control group.

Upregulated genes Downregulated genes
Gene names P value logFC Gene names P value logFC

IGHG1 7:96 × 10−3 6.68 LETM1 9:82 × 10−3 -1.80

CD74 7:96 × 10−3 3.24 NSFP1 1:34 × 10−2 -2.55

PLB1 7:96 × 10−3 1.85 HMGB1P24 1:58 × 10−2 -2.40

APOBEC3G 7:96 × 10−3 2.08 MIR1276 2:13 × 10−2 -1.77

IGHV3-11 7:96 × 10−3 3.22 HOOK2 2:13 × 10−2 -2.06

EPSTI1 7:96 × 10−3 2.80 SLC27A5 2:13 × 10−2 -2.60

OAS1 7:96 × 10−3 3.17 TOMM40 2:13 × 10−2 -1.97

TRAC 7:96 × 10−3 3.26 MLX 2:42 × 10−2 -1.24

MX1 7:96 × 10−3 3.31 GGN 2:42 × 10−2 -2.57

IGHV3-33 9:82 × 10−3 2.62 KCNG2 2:42 × 10−2 -2.02

IGKV1-5 9:82 × 10−3 4.27 MCAT 2:42 × 10−2 -1.42

IGLC7 9:82 × 10−3 2.71 TRMT61A 2:42 × 10−2 -1.81

IL2RB 9:82 × 10−3 2.60 C3orf27 2:42 × 10−2 -2.62

AOAH 9:82 × 10−3 2.62 RPS26P56 2:42 × 10−2 -1.77

IFIT2 1:07 × 10−2 2.52 IL20RB 2:51 × 10−2 -2.21

Note: logFC, log2 (fold change).

Table 2: The top 15 upregulated and 9 downregulated genes between the treated group and the control group.

Upregulated genes Downregulated genes
Gene names P value logFC Gene names P value logFC

ADAMDEC1 1:01 × 10−2 5.59 MIR1276 2:25 × 10−2 -1.75

TRAC 1:01 × 10−2 3.74 S1PR2 2:63 × 10−2 -1.54

SORL1 1:01 × 10−2 3.46 PKDCC 3:75 × 10−2 -1.45

CD8A 1:01 × 10−2 3.41 RSPO4 3:86 × 10−2 -2.76

MNDA 1:01 × 10−2 3.22 CDC42EP4 3:90 × 10−2 -1.84

IL2RB 1:01 × 10−2 2.75 LETM1 4:25 × 10−2 -1.30

PLB1 1:01 × 10−2 1.82 OSGIN1 4:25 × 10−2 -1.62

TRBC2 1:38 × 10−2 3.96 SERPINA3 4:32 × 10−2 -3.32

SELL 1:44 × 10−2 4.71 CACFD1 4:56 × 10−2 -1.19

CD3G 1:44 × 10−2 4.57

CD2 1:44 × 10−2 3.89

CD8B 1:44 × 10−2 3.77

IL2RG 1:44 × 10−2 3.53

LOC101060038 1:44 × 10−2 3.53

CCR2 1:44 × 10−2 3.35

Note: logFC, log2 (fold change).
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(Figure 2(a)). The results displayed in Figure 2(b) showed
the network of protein-protein interactions (PPIs) and the
main Molecular Complex Detection (MCODE). The genes
participating in the most important MCODE (with a score
of 6.3) are IL2RB, IL2RG, CD3E, CD3G, CD8A, CD8B,
and LCP2. IL2RB also participates in the signaling trans-
duction process of two main signaling pathways associated
with KD—Th1/Th2 cell differentiation and Th17 cell dif-

ferentiation—and acts as a “bridge” to communicate these
two signaling transduction pathways (Figure 2(c)). Most of
the genes mentioned above are related to immunity, indi-
cating that immune response plays an important role in
KD.

3.3. Analysis of Immune Cell Populations. We analysed the
differences in the number of immune cell infiltrations

BP: lymphocyte activation

Wikipathway: Pathogenesis of SARS-CoV-2 mediated
by nsp9-nsp10 complex
KEGG: Th1 and Th2 cell differentiation
BP: regulation of cytokine production
BP: production of molecular mediator of immune
response
RGS: Cell surface interactions at the vascular wall
BP: leukocyte homeostasis
BP: interleukin-1 beta production
Wikipathway: T-cell antigen receptor (TCR) pathway
during Staphylococcus aureus infection
RGS: RHO GTPase cycle
BP: negative regulation of protein binding
BP: T cell mediated immunity
KEGG: Natural killer cell mediated cytotoxicity
BP: response to interferon-gamma
BP: B cell differentiation

BP: Adaptive Immune System

GO of DEGs

(a)

PPI and MCODE of DEGs

MCODE1 (6.3)
MCODE2 (3.0)
MCODE3 (3.0)

(b)

KEGG of DEGs

(c)

Figure 2: Functional annotations of differentially expressed genes (DEGs). (a) Top 16 most enriched Gene Ontology (GO) terms of DEGs.
(b) Major genes and important functional modules were shown in protein-protein interaction (PPI) network. (c) Kyoto Encyclopedia of
Genes and Genomes (KEGG) analysis revealed the KEGG signaling pathways and key genes.
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in childhood coronary artery tissues of KD patients vs. con-
trols. The fractions of the various cell types were estimated
by CIBERSORT algorithm (Figure 3(a); Supplementary
Table 4), and the immune score data quality were assessed
by two-dimensional PCA. There was an obvious difference
of immune cell infiltrations between KD and control tissues
as shown in PCA cluster analysis plot (Figure 3(b)). A
correlation heat map of the 22 subtypes of immune cells
revealed that naive CD4+ T cells had a significantly positive
correlation with monocytes, and activated natural killer
(NK) cells also had a positive correlation with resting NK
cells. Naive B cells and plasma cells, CD8+ T cells and
follicular helper T cells, plasma cells and resting mast cells,
memory B cells and activated dendritic cells, naive CD4+ T
cells and activated CD4+ memory T cells, and follicular
helper T cells and resting mast cells had significantly
negative correlations (Figure 3(c)). Box plots of differences
in the number of immune cell infiltrations showed that
fewer resting CD4+ memory T cells and NK cells infiltrated
in the untreated and treated KD tissues than that in control
tissues (Figures 3(d) and 3(e); P < 0:05).

3.4. Coexpression Analysis of DEGs and Immune Cell
Populations. Through the above analysis, it was found that
there were significant differences in the infiltrating numbers
of resting CD4+ memory T cells and NK cells between the
case groups and the control group. A coexpression analysis
of DEGs and immune cell populations was conducted to fur-
ther clarify the immune cell subtypes that play a major role
in the pathogenesis of KD and their correlation with DEGs.
Figure 4(a) and Supplementary Table 5 show the immune
cell populations and the coexpressed DEGs. The results
showed that CD4+ memory T cells were enriched with the
largest number of DEGs, indicating that CD4+ memory T
cells may be protagonists in the occurrence of KD and that
the change in the number of CD4+ memory T cells may
reflect the pathogenesis of KD. Therefore, we selected
CD4+ memory T cells for further analysis.

3.5. Screening and Verification of Diagnostic Markers. We
used the LASSO logistic regression model to identify 15 core
genes from DEGs as diagnostic markers for KD (Figures 4(b)
and 4(c)); then, the correlations between the 15 core genes
and CD4+ memory T cells were further analysed. The result
of correlation analysis showed that IL2RB, PLB1, TRAC, and
IGHV5-51 were both significantly correlated with resting
CD4+ memory T cells and activated CD4+ memory T cells
(Figure 4(d); Supplementary Table 6). Among these genes,
IL2RB attracted our attention. IL2RB is one of the core
members in the most important functional modules
corresponding to DEGs and is also a core member of the
main DEG-enriched KEGG signaling pathways. IL2RB
expression levels in the treated and untreated case groups
of KD were both significantly higher than those in the
control group (Figure 4(e); P = 0:005). IL2RB’s high
expression level was significantly negatively correlated with
the decrease in the number of resting CD4+ memory T
cells (Figure 4(f), R = −0:72, P = 0:0027).

4. Discussion

Kawasaki disease (KD) is a systemic vascular inflammatory
disease that was first reported by Dr. Tomisaku Kawasaki
in 1967 [24]. It was once called mucocutaneous lymph node
syndrome (MCLS) [25]. The epidemiology of KD varies
greatly by geographic location and seasonality [3]. The high-
est incidence rates were observed in children of Japanese
ancestry, followed by those of South Korean ancestry, also
among children under five years with a male predominance
[3]. A significant ethnic variation was observed, with the
highest rates among Asian/Pacific Islanders [3].

Systemic vasculitis is the disease’s basic pathological
process, which mainly impairs the large and medium blood
vessels [26]. Coronary artery diseases are serious complica-
tions that can lead to ischemia, myocardial infarction, and
sudden death, among which coronary artery aneurysms
(CAAs) and coronary artery stenosis are the most serious
[27]. KD has replaced rheumatic fever as the primary cause
of childhood-acquired cardiovascular diseases [28]. This
disease has attracted people’s attention because of its serious
complications, and its incidence in untreated children has
reached 20–25% [28]. The exact cause of KD remains
unknown, but it is thought to be contagious and subse-
quently activate the immune system in genetically susceptible
individuals [27]. It is debatable whether KD is postinfectious
hyperinflammation, autoinflammatory, or autoimmune dis-
orders [29]. After years of research, KD is considered an
immune-mediated vasculitis [30]. Studies have found that T
cells are mainly involved in KD’s immune pathogenesis,
including increased T cell activation and cytokine produc-
tion, the proinflammatory (Th cells) and anti-inflammatory
cells (Treg cells) imbalance [31, 32]. In addition, matrix
metalloproteinase 9 (MMP9) is activated by TNF-α, which
leads to the destruction of elastin and aneurysms formation
in the blood vessel wall [33], and increased NO concentra-
tion, which leads to the blood vessel wall’s expansion and
damage [34].

In recent years, many KD-related genes have been dis-
covered, including inositol 1,4,5-triphosphate 3-kinase
(ITPKC), caspase 3 (CASP3), B lymphocyte kinase (BLK),
CD40, and human leukocyte antigen (HLA) [35–37]. The
polymorphism of ITPKC may lead to increased T cell activa-
tion and therefore increase interleukin 2 (IL-2) release. This
may cause long-term expression of T cells in KD’s acute
phase and cause vascular endothelial cell damage, subse-
quently increasing the risk of severe coronary artery disease
in KD [35]. CASP3 gene mutations can inhibit T cell apo-
ptosis and prolong the activation time of immune cells,
thereby increasing the sensitivity of the immune system to
KD [36].

Although KD is closely related to immunity, its exact
causes and mechanisms remain unclear. The diagnosis of
KD is mainly based on a constellation of clinical findings
that appear in typical KD due to the lack of reliable confir-
matory laboratory tests [38]. However, some children may
have incomplete or atypical forms of KD, and diagnosis
can often be difficult, especially in infants and young
children [39]. Therefore, in order to clarify the possible
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Figure 3: Immune cell infiltration analysis of Kawasaki disease (KD) vs. control group tissues. (a) Fractions of cell type estimated by
CIBERSORT algorithm in each sample. (b) Principal component analysis (PCA) of immune score data based on different subgroups.
(c) Correlation heat map of the 22 subtypes of immune cells. (d, e) The boxplot showed the difference in the number of infiltrating
immune cells between case and control groups. Immune cells with statistically significant differences in the number of infiltrations
were highlighted in red. ∗∗ represents P < 0:01, and ∗ represents P < 0:05.
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Figure 4: Screening and verification of diagnostic markers for patients with Kawasaki disease (KD). (a) Coexpression analysis of DEGs
and immune cell populations. (b) CV (coefficient of variation) statistical graph showed the optimal lambda (λ, dotted line on the left).
(c) Regression model built by the optimal λ screened 15 core genes related to KD. (d) The chord diagram showed the correlation and
their statistical significances between these 15 core genes and the two most important immune cell components. (e) The box plot
showed the differences of IL2RB expression between the case groups and the control group. Kruskal–Wallis tests was used to analyse
the significance. (f) Correlation analysis between IL2RB expression and the number of resting CD4+ memory T cells. ∗∗∗ represents
P < 0:001, ∗∗ represents P < 0:01, ∗ represents P < 0:05, and ns represents P > 0:05.
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pathogenesis of KD and seek possible diagnostic markers and
potential therapeutic targets to assist clinical diagnosis and
treatment, we consulted a large number of literatures and
made a surprising discovery upon analysing the GSE64486
dataset using bioinformatics analysis. It was found that
IL2RB expression level in KD tissues was significantly upreg-
ulated, the number of resting CD4+ memory T cells was
decreased, and the decrease was significantly negatively cor-
related with the upregulated expression of IL2RB. Changes
in IL2RB expression or its affinity to IL2 could affect Th1/
Th2 cell differentiation balance [40]. Therefore, it was specu-
lated that the mutation of IL2RB caused its upregulation and
disrupted Th1/Th2 cell differentiation balance, which led to a
decrease in the number of resting CD4+ memory T cells and
caused the disorder of the immune microenvironment and
KD occurrence. IL2RB may serve as a diagnostic marker
and potential therapeutic target for KD.

Dataset GSE64486 from the Gene Expression Omnibus
(GEO) database was downloaded and processed using R soft-
ware. After normalization and deduplication, 327 differen-
tially expressed genes (DEGs) were identified. Among
them, there were 246 DEGs between the untreated case and
control groups and 153 between the treated case and control
groups. 72 shared DEGs were observed between the case
(including the untreated and treated case groups) and control
groups, which did not change after treatment and were also
the category of genes most likely to be disease-causing. After
preliminary processing, gene functional annotations were
performed for these 72 shared DEGs. The result showed that
these genes predominantly relate to lymphocyte activation,
adaptive immune system, SARS-COV-2 pathogenesis medi-
ated by the nsp9-nsp10 complex, and Th1 and Th2 cell
differentiation. Subsequently, a protein-protein interaction
(PPI) network was constructed, and their main functional
modules were IL2RB, IL2RG, CD3E, CD3G, CD8A, CD8B,
and LCP2. Previous studies have shown that these genes are
closely correlated with immunity [41–45]. This indicates that
the KD is closely correlated with immunity.

The results of gene functional annotations and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analysis
showed that the DEGs participated in the occurrence and
development of KD mainly through Th1 and Th2 cell
differentiation signaling pathways. In this signaling pathway,
naive CD4+ T cells differentiate into Th0 cells after antigen
stimulation [46]. As precursors of Th1 and Th2 cells, Th0
cells secrete Th1- and Th2-like cytokines [46]. Differentia-
tion of precursor Th0 cells into Th1 or Th2 cells requires
repeated stimulation by antigens, and their differentiation
is affected by factors such as the microenvironment and
antigen-presenting cells (APCs) [47]. Cytokines play an
important regulatory role in differentiation. The cytokines
IL-4 and IL-13 mainly regulate Th2 cell differentiation, while
IL2, IFN-α, IL-12, and IFN-γ can regulate Th1 cell differen-
tiation [48]. In addition, the affinity of the major histocom-
patibility complex (MHC) antigen peptide T cell receptor
(TCR) is also an important factor affecting the differentia-
tion of Th1/Th2 cells [49]. The higher the affinity between
the antigen peptide and MHC, the better the Th1 cell differ-
entiation; and the lower the affinity, the better the Th2 cell

differentiation. The higher the affinity between the antigen
peptide-MHC complex and TCR, the better the Th1 cell dif-
ferentiation, and vice versa [50]. The differentiation balance
of Th1/Th2 cells has an important impact on the body’s
physiological functions [51]. Disruption of Th1/Th2 cell
differentiation balance will lead to disease occurrence [51].
In the immune infiltration analysis of this study, resting
CD4+ memory T cells and NK cells were significantly
reduced among the 22 subtypes of immune cells in the case
groups compared to the control group, which may be the
main reason for immune dysfunction in KD. CD4+ T cells
play an “auxiliary” role in the immune system [50]. In most
cases, they cannot directly neutralize infection but guide and
trigger the body’s immune response to the infection, similar
to “sentinels” of the immune system [52]. Therefore, CD4+
T cells are also called helper T (Th) cells. CD4+ T cells can
be divided into naive CD4+, CD4+ effector, and CD4+
memory T cells according to their activation stage [53],
and they can also be divided into Th1, Th2, Th17, Th22,
Treg, and T follicular helper cell (Tfh) subtypes according
to differences in secreted cytokines [53]. In this study, the
Th1/Th2 cell differentiation imbalance led to a decrease in
the number of resting CD4+ memory T cells, which eventu-
ally caused a disorder in the immune microenvironment of
patients with KD.

Coexpression analysis of infiltrating immune cells and
DEGs was performed to understand the correlation between
decreased infiltration of CD4+ memory T cells and these
DEGs. It was found that CD4+ memory T cells were
enriched with the largest number of DEGs, indicating that
these cells were the protagonists in KD’s immune response.
The least absolute shrinkage and selection operator (LASSO)
logistic regression model for screening 15 core genes was
used to identify the most critical DEGs. IGHV5-51, IL2RB,
TRAC, and PLB1 were significantly related to CD4+ mem-
ory T cells when the correlations between these 15 core
genes and CD4+ memory T cells were analysed. Among
them, IL2RB attracted our attention because it showed its
core position throughout the entire study analysis. More-
over, interleukin-2 (IL2) cytokines play an important role
in Th1/Th2 cell differentiation as a stimulator of IL2RB
[46]. In the case groups, the gene mutation significantly
upregulated IL2RB expression. Interestingly, upregulated
expression of IL2RB was significantly negatively correlated
with a decrease in the number of resting CD4+ memory T
cells. Therefore, upregulated expression of IL2RB is the
culprit of imbalanced Th1/Th2 cell differentiation, which
leads to a decrease in the number of resting CD4+ mem-
ory T cells.

IL2 is a glycoprotein with a molecular weight of 15kDa. It
is a type 1 quadruple alpha-helix bundle cytokine, mainly pro-
duced by CD4+ T cells after antigen stimulation, and exerts its
effects in an autocrine and paracrine manner [54]. IL2 plays a
critical role in regulating immune responses, primarily
through the IL2/IL2R complex axis, and triggering a series of
intracellular events, including the activation of JAK-STAT
transcription signaling transduction [55]. IL2R comprises
IL2Rα (CD25), IL2Rβ (CD122), and IL2Rγ (CD132) subunits
[56, 57]. The low-affinity form is a monomer of the α-subunit
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in terms of its ability to bind to IL2 and does not participate in
signaling transduction [58]. The medium-affinity form is
composed of α/β subunit heterodimers, whereas the high-
affinity form is composed of α/β/γ subunit heterotrimers
[58]. Both the medium- and high-affinity forms of the recep-
tor participated in receptor-mediated endocytosis and mitotic
signaling transductions from IL2 [58]. Previous studies have
shown that defects in the CD122 gene can cause inflammation
in multiple organs in mice and humans [59–61]. Knockout
mice of CD122 developed lethal autoimmune diseases due
to a lack of Treg cells [62]. Importantly, IL2RB mainly com-
bines with IL2 to play a key role in coronary heart disease
(CHD) development [63], which indicates that it also plays
a role in cardiovascular-related immune-inflammatory dis-
eases. Based on the interesting phenomena found in this
study, a possible mechanism by which upregulated expres-
sion of IL2RB cause KD’s occurrence was concluded, as
shown in Figure 5. After the upregulated expression of
IL2RB, IL2/IL2R-JAK-STAT5 transcription signaling trans-
duction is greatly activated and combines with the activation
of IL4/IL4R-JAK-STAT6 transcription signaling transduc-
tion, resulting in massive IL2 cytokine secretion. IL2 cyto-
kines induce target cells to increase the expression of
IL2RB and cyclically stimulate CD4+ T cell differentiation.
This process resulted in the conversion of resting CD4+
memory T cells into activated CD4+ memory T cells, which
significantly reduced the number of resting CD4+ memory T
cells and slightly increased the number of activated CD4+
memory T cells in KD tissues. Subsequently, activated CD4+
T cells further differentiate into other CD4+ T cells, such as
Th1 and Th2 cells. This cyclic process eventually disrupts
CD4+ T cell differentiation balance, which ultimately leads

to a disorder of the immune microenvironment and KD
occurrence. Therefore, combined with existing studies and
the findings of this study, we believe that IL2RB may be
responsible for the occurrence of KD and KD-related systemic
vasculitis.

This study had some limitations, although the discovery
was startling. The mechanism of KD occurrence after Th1/
Th2 cell differentiation imbalance and how IL2RB causes
systemic vasculitis has not been elucidated. Therefore, fur-
ther studies are required to verify our conclusions.

5. Conclusions

In summary, KD’s occurrence and development are signif-
icantly correlated with immune dysfunction—a decrease in
the number of resting CD4+ memory T cells, which was
caused mainly by the upregulated expression of IL2RB.
The upregulated expression of IL2RB disrupts the Th1/
Th2 cell differentiation balance, leading to the destruction
of the immune microenvironment, eventually leading to
KD’s occurrence and development. Therefore, IL2RB may
serve as a diagnostic marker and potential therapeutic tar-
get for KD, and disorders of the immune microenviron-
ment may play an important role in its occurrence and
development.
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