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Abstract: Chlorinated aliphatic hydrocarbons (CAHs) are widely used in agriculture and indus-
tries and have become one of the most common groundwater contaminations. With the excellent
performance of the deep learning method in predicting, LSTM and XGBoost were used to forecast
dichloroethene (DCE) concentrations in a pesticide-contaminated site undergoing natural attenuation.
The input variables included BTEX, vinyl chloride (VC), and five water quality indicators. In this
study, the predictive performances of long short-term memory (LSTM) and extreme gradient boosting
(XGBoost) were compared, and the influences of variables on models’ performances were evaluated.
The results indicated XGBoost was more likely to capture DCE variation and was robust in high
values, while the LSTM model presented better accuracy for all wells. The well with higher DCE
concentrations would lower the model’s accuracy, and its influence was more evident in XGBoost
than LSTM. The explanation of the SHapley Additive exPlanations (SHAP) value of each variable
indicated high consistency with the rules of biodegradation in the real environment. LSTM and
XGBoost could predict DCE concentrations through only using water quality variables, and LSTM
performed better than XGBoost.

Keywords: contaminated site; groundwater; dichloroethene; natural attenuation; machine learning;
LSTM; XGBoost; SHapley Additive exPlanations

1. Introduction

In 2015, the United Nations proposed the Sustainable Development Goals (SDGs)
which aim to end poverty, protect the planet, and ensure that by 2030 all people enjoy peace
and prosperity. Improving water quality by reducing pollution was one target of SDG goal
6. Protecting water resources has been an eternal goal for humans, while many pollutants
coming from agriculture and industries are damaging to water quality. As an important
chemical raw material and organic solvent, chlorinated aliphatic hydrocarbons (CAHs) are
widely used in agriculture and industries [1]. Due to improper storage and disposal, CAHs
could enter the groundwater through volatilization, leakage, and discharge, and have been
investigated in many studies [2–5].

The prevalence of CAHs in groundwater and the hazardous nature of these com-
pounds to human health have led to numerous studies about the degradation pathways
and natural attenuation in subsurface environments [1,2,5–7]. The most prevalent biodegra-
dation of CAHs is reductive dechlorination, in which perchloroethene (PCE) converts to
trichloroethene (TCE) to dichloroethene (DCE) to vinyl chloride (VC) to ethene. Under
aerobic and some anaerobic conditions, DCE and VC can facilitate microorganisms by
serving as primary substrates and be degraded [8,9]. Some research also indicated that
the degradation of TCE, DCE, and VC are susceptible to co-metabolism [10]. With the
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biodegradation of PCE and TCE, the daughter products DCE and VC may accumulate
and result in severe health problems since VC is more toxic [7–9,11]. Much research was
centered on the degradation of highly chlorinated hydrocarbons [7–9,11] and, to provide
more knowledge about the natural degradation of DCE in groundwater, this study focused
on the natural degradation of DCE in a pesticide-contaminated site.

The first-order kinetics can be used to model natural attenuation, and it is common
to assume that this is appropriate at many sites [8,9]. However, the first-order kinetics
do not account for the limitation of contaminant degradation rates by the presence of
some compounds other than the contaminant [8]. Recently, advances in high-performance
computing and developments in computer sciences have caused a growing interest in using
deep learning methods for prediction [12,13]. Deep learning methods have proven to be
a powerful tool for forecasting, due to the capacity of the methods to learn shared uncer-
tainties and learn from long-term patterns for both linear and non-linear problems [12,13].
Considering that in the natural environment, complex kinetics take place and there are
various underlying interactions between different compounds, the deep learning method
has been used to forecast the degradation of DCE in this study.

In this paper, long short-term memory (LSTM) and extreme gradient boosting (XG-
Boost) were adopted to forecast the degradation of DCE in the contaminated site. LSTM
showed excellent performance in predicting long-term hydrological or hydrometeorological
time-series and water quality in lakes [14–17]. XGBoost, as an ensemble model, makes esti-
mations using the average of a large number of simple models and is capable of capturing
complex information of data. It has been widely used in water quality predictions [18–20].
However, few studies about these two deep learning methods focused on predicting the
natural degradation of DCE in groundwater. To learn about how the variables influenced
prediction results, SHapley Additive exPlanations (SHAP) analysis was conducted in this
study. SHAP are capable of yielding feature impacts of every single instance and bringing
the guaranteed explanations of them [21,22]. To the best of the authors’ knowledge, this
is the first case where the deep learning methods and SHAP analysis have been used in
predicting the natural degradation of DCE.

In this work, a former pesticide manufacturing plant co-contaminated with CAHs
and BTEX was selected for the extended monitoring of natural degradation for 5 years.
The most crucial biodegradation process for CAHs is reductive dechlorination, and the
changes in some indicators are closely related to the process, such as oxygen (DO), pH, and
oxidation–reduction potential (ORP) [8]. In this regard, these indicators were used to train
the model. The objectives of this work are to (i) use, for the first time in natural attenuation
forecasting, deep learning models to forecast DCE concentration; (ii) compare forecasting
performance between two deep learning methods; (iii) evaluate the influence of environ-
mental characteristics on a model’s predictive performance using SHAP analysis. This
study aims to provide a scientific basis for effectively forecasting the natural attenuation of
DCE in contamination sites using the deep learning methods and connecting environment
variables with DCE prediction by the aid of SHAP analysis.

2. Materials and Methods
2.1. Study Site

This work was carried out in a closed pesticide plant in China which had a production
history from 1958 to 2006. The main products were pesticides and other chemical materials.
The soil between 0 and 6 m underground was treated with ex situ thermal desorption
remediation before the monitoring began, however, high levels of pollutants could still be
detected in the groundwater.

A total of 28 monitoring wells were installed for monitoring. In each well, samples
from the shallow and deep zone in groundwater were collected (around 8 m and 14 m below
the ground surface, respectively). Therefore, wells used to collect shallow groundwater
were coded as XX-8m, and wells to collect deep groundwater were coded as XX-14m. The
layout of groundwater monitoring wells in this site is shown in Figure 1.
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Figure 1. The layout of monitoring wells in the study site. (The gray points are monitoring wells and
the blue points are the wells with high levels of DCE concentrations).

This site was mainly polluted by CAHs and BTEX. According to the manufactur-
ing history in each region and their pollution similarities, this site was divided into
three main pollution areas. The main pollutants with high detection rates in Area I
were benzene, methylbenzene, ethylbenzene, m&p-xylene, o-xylene, chlorobenzene, 1,2-
dichloroethane, and cis-1,2-dichloroethene (cis-1,2-DCE), their maximum concentrations
were 55.9, 275, 46.4, 38.6, 129, 49.3, 586, and 3.78 mg/L, respectively. The main pollutants
in Area II were chlorobenzene, 1,4-dichlorobenzene, 1,2-dichlorobenzene, methylbenzene,
2-chlorophenol, and benzene, their maximum concentrations were 9.2, 1.81, 1.87, 36.5,
62.1, and 4.69 mg/L, respectively. The main pollutants in Area III were 1,1-dichloroethene
(1, 1-DCE), chloroethylene, 1,1-dichloroethane, trans-1,2-dichloroethene (trans-1,2-DCE),
1,2-dichloroethane, trichloroethylene, 1,1,2-trichloroethane, and cis-1,2-dichloroethene (cis-
1,2-DCE) and their maximum concentrations were 466, 214, 398, 136, 10.4, 388, 1250, and
33.4 mg/L, respectively.

2.2. Sampling Method

Low flow purging and sampling equipment (MP50, QED Environmental Systems,
Coventry, UK) was used to conduct the stratified sampling of groundwater. The flow
velocity of pumping water was stable and from 100 to 500 mL/min. During the pumping
process, temperature, pH, ORP, DO, and conductivity were measured until stable, and the
sampling process was finished. The volatile organic compound (VOC) analysis samples
were then collected in 40 mL brown glass bottles with hydrochloric acid (1 mol/L) to inhibit
the degradation. The sampling interval was every 2–3 months from 2016 to 2021.
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2.3. Laboratory Analysis

The temperature, pH, ORP, DO, and conductivity were measured by the water quality
multi-parameter flow cell 71,790 during the sampling process. The VOCs were analyzed by
SEP Analytical Technology (Shanghai) Co., Ltd. (Shanghai, China) following the standard
of Method 8260C: Volatile organic compounds by gas chromatography/mass spectrometry.
The VOC analysis was conducted using a purge and trap concentrator (Eclipse 4552&4660,
OI Analytical, College Station, TX, USA) coupled to a gas chromatography–mass spec-
trometry system (7890B/5977B, Agilent, Santa Clara, CA, USA) equipped with a capillary
column (J&W Scientific (Folsom, CA, USA) DB-624 60 m × 0.25 mm × 1.4 µm, Agilent).
The quantitation limits of the pollutants are provided in Supplementary Table S1.

2.4. Prediction Model
2.4.1. Variables’ Selection

In order to forecast the concentration of DCE, cis-1,2-DCE and 1,1-DCE were selected
as examples. According to the pollution characteristics, the main DCE in Area I was cis-1,2-
DCE (mean concentration: 316 µg/L), and in Area III it was 1,1-DCE (mean concentration:
9859.16 µg/L). The shallow and deep wells of JGW1, JGW5, and JGW 7 in Area I were
selected to forecast cis-1,2-DCE, and JC24, JC30, JC31, JC32, JC33, and JC34 in Area III were
selected to forecast 1,1-DCE. In Area II, DCE concentrations were not at a high level (mean
concentration of cis-1,2-DCE: 57.2 µg/L; mean concentration of 1,1-DCE: 109.27 µg/L). No
wells in this area were selected.

Geochemical parameters were used to characterize the biodegradation process in nat-
ural attenuation, including pH, DO, ORP, and temperature [8]. Some organic compounds
could provide carbon and energy sources for chloride reduction, including BTEX, TOC,
and other daughter products of PCE and TCE. In view of the practical sampling indicators
in the site, there were 11 variables selected as input variables, which were BTEX (ben-
zene, methylbenzene, ethylbenzene, m- and p-xylene, and o-xylene), vinyl chloride (VC),
and 5 water quantity indicators (pH, DO, temperature, ORP, and conductivity). Eleven
variables were sampled in each well, but some of them had concentrations below the
detection limits and therefore were not input into predictive models. Variables with low
concentration were considered weakly related to DCE and were not supposed to impact
the model’s predictive performance, and herein the number of input variables for each well
was different.

For JGW-X, the input variables were BTEX, VC, and 5 water quantity indicators. For
JC-X, the input variables were not the same, but they all had 5 water quality indicators at
least. In JC31, JC33, and JC30-8m, the input variables were only water quality indicators.
In JC24 and JC34, the input variables included some indicators of BTEX, VC, and water
quality indicators. Meanwhile, in JC32 and JC30-14m, the input variables included VC and
water quality indicators. Input variables of each well are listed in Supplementary Table S2.

2.4.2. Data Processing Method

A data processing method was performed for the dataset to handle missing values
and different sampling intervals. Since the sampling interval was around 2 or 3 months
and to make the time-series dataset evenly distributed, a resampling method with intervals
of 3 months and the linear interpolation were adopted. Moreover, in order to ensure that
the model could achieve the forecasting, the model was trained with sequential data which
means the data needed to be arranged in chronological order. Data were scaled by the
min–max scaler before being inputted into the model to make them converge fast [14]. The
data processes were handled in Python 3.7.

2.4.3. Model Description
Long Short-Term Memory (LSTM)

The long short-term memory neural networks were first proposed by Hochreiter and
Schmidhuberin [23] to overcome the limitations (gradient vanishing and the exploding
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gradient problem) of recurrent neural networks (RNNs) when predicting long-term sequen-
tial data. The main objective is to allow LSTM to learn long-term dependencies and save
information for prolonged periods. The LSTM has a self-connection mechanism controlled
by a multiplication gate that learns and decides when to clear the memory content by
another unit [24]. The structure of the LSTM neural network is shown in Figure 2, which
comprises different memory blocks called cells. The cell has three gates to learn and decide
when to forget: the input gate, the output gate, and the forget gate. The forget gate is the first
gate encountered by data, and it decides how much of the information should be discarded
and it forgets the previous dependence and focuses only on the newer dependence. The
second gate is the input gate which decides what and how much information to remember.
The output gate decides the output information in the current state. With the function of
the three gates, the LSTM model can update the cell unit at each time and learn the long
period trend. Detailed information about LSTM is presented in Supplementary Text S1.

Figure 2. Flow chart of a block in a long short-term memory (LSTM) neural network.

For LSTM analysis, we used lstm in tensorflow.keras 2.2.0 of Python 3.7.

Extreme Gradient Boosting (XGBoost)

XGBoost is an ensemble method with many weaker models, as opposed to being a
single, highly complex model (i.e., LSTM, RNN) [20]. Ensembles are constructed from
many decision tree models. Like a tree model, it splits data according to features. Trees
are added each time to fit the model in order to correct the prediction errors made by
prior models. Each leaf in a tree represents a numerical weight, and each sample is
assigned to a set of leaves based on the values of its input variables. The model’s estimated
output for that sample is obtained by adding the sum of the leaves assigned to that
sample for each regression tree [18]. Detailed information about XGBoost is presented in
Supplementary Text S2.

For XGBoost analysis, we used the Python package XGBoost 1.6.0.

SHapley Additive exPlanations (SHAP)

SHAP analysis was used to evaluate variables’ importance to models. SHAP analysis
is a locally accurate and consistent feature attribution method that provides more stable
rankings than previous importance measures [21,22]. SHAP values attribute the marginal
contribution from each predictor variable to each prediction (measured relative to the
average prediction).
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The formula for SHAP values is as in Equation (1) [21]:

ψi = ∑
S⊆F\{i}

|S|!(F− |S| − 1)!
|F|! ( f (S ∪ {i})− f (S)) (1)

where F is the total number of input features and S is subsets of F without feature i. ψi is
the additive feature attribution about the feature i which is also called the SHAP value.
f (S ∪ {i}) is a model trained with feature S and i, while f (S) is a model trained with feature
S. The effect of feature i is evaluated by the difference between f (S ∪ {i}) and f (S). The
larger the absolute SHAP value for feature i is, the more important this indicator is. The
positive SHAP values indicated that the feature had a positive impact on models’ output,
and negative values indicate a negative effect on models’ output. For SHAP analysis, we
used the Python package shap 0.40.0.

2.4.4. Model Training and Evaluation
Model Training

To acquire a good prediction, the parameters in LSTM were analyzed, and finally an
optimal parameter: a batch size of 15, epochs of 80 and nodes of 50, and activation function
of RELU were used for each well.

As for XGBoost, the optimal three hyperparameters (max_depth, learning_rate,
n_estimators) for each well were found by GridSearchCV (max_depth, 5, 10, 15, 20; learn-
ing_rate, 0.01, 0.05, 0.1, 0.15, 0,2, 0,3; n_estimators, 50, 100, 200, 300, 500, 800, 1000), and the
best three parameters are shown in Supplementary Table S3.

The training instance length was 3 months which means variables of the previous
3 months were used for training and forecasting the DCE concentrations. Since data were
resampled to a 3-month interval, the input variables in models were data of one sampling,
and the prediction was the prediction of the next sampling. The data were split into the
training period (1 July 2016 to 31 December 2019) and testing period (1 January 2020 to
31 July 2021, 6 sampling data), corresponding to a total of 67% and 33% data for training
and testing. Since the sampling data size of each well was slightly different, to make the
prediction data size equal, we fixed the same testing data size to be 6 for each well. Previous
data were used for training, but the training data size was also different for each well. This
could lead to data disparity and varying spatial coverage in different wells.

Model Evaluation

The predictive concentrations were evaluated against the concentration analyzed in
the laboratory. To assess the performance of the proposed method, three of the most widely
used evaluation metrics were adopted: the mean absolute error (MAE), mean absolute
percentage error (MAPE), and root mean squared error (RMSE).

MAE =
∑n

i=1
∣∣ŷi − yi|

n
(2)

MAPE =
1
n

n

∑
i=1

∣∣∣∣∣ ŷi − yi

yi

∣∣∣∣∣ (3)

RMSE =

√
∑n

i=1
(
ŷi − yi

)2

n
(4)

where ŷi and yi are the predictive and actual values of the observation i = 1, 2, 3 . . . n, and
n is the total number of observations.
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3. Results
3.1. Characteristics of Selected Wells

The characteristics and descending trend of selected wells are listed in Table 1, and
the concentration variation with time is shown in Figure 3. The detailed characteristics
of variables in each selected well are listed in Supplementary Table S4. Statistical trend
analyses of DCE were calculated by the Mann–Kendall test. The negative tau-values
represented a descending trend, while the positive value represented an increasing trend.
For the p-value, a value smaller than 0.05 meant a significant descending trend, and an
apparent descending trend showed the high possibility of natural attenuation happening
in the well.

Table 1. The characteristics of selected wells (µg/L).

Well Indicator Tau p-Value Std Mean Range

JGW7-14m cis-1,2-DCE −0.81 3.21 × 10−9 56.11 75.08 12.7–225
JGW7-8m cis-1,2-DCE −0.87 3.23 × 10−8 52.45 78.16 11.6–175

JGW5-14m cis-1,2-DCE −0.65 1.13 × 10−5 210.84 204.75 13.4–826
JGW5-8m cis-1,2-DCE −0.54 3.63 × 10−4 215.58 194.27 13.2–664

JGW1-14m cis-1,2-DCE −0.65 3.49 × 10−5 849.37 1185.95 127–2840
JGW1-8m cis-1,2-DCE −0.64 1.62 × 10−5 1125.59 1273.33 127–3780
JC24-14m 1,1-DCE −0.19 2.39 × 10−1 1021.69 662.29 5.6–3205
JC24-8m 1,1-DCE −0.10 5.71 × 10−1 1128.40 516.47 3–4470
JC30-14m 1,1-DCE −0.22 2.36 × 10−1 66.45 53.03 2–240
JC30-8m 1,1-DCE −0.28 1.29 × 10−1 58.51 48.30 1.7–211
JC31-14m 1,1-DCE −0.47 1.15 × 10−2 9.29 9.45 0.7–31.8
JC31-8m 1,1-DCE −0.63 3.36 × 10−4 6.47 6.13 0.8–26.2
JC32-14m 1,1-DCE −0.70 1.18 × 10−5 36,457.41 27,074.67 36.9–115,000
JC32-8m 1,1-DCE −0.66 4.59 × 10−5 30,503.07 20,623.70 27.4–105,000
JC33-14m 1,1-DCE −0.67 1.76 × 10−4 46.37 35.59 0.9–138.1
JC33-8m 1,1-DCE −0.57 9.01 × 10−4 60.41 43.19 2–169
JC34-14m 1,1-DCE −0.45 8.54 × 10−3 311.65 177.02 10.5–1390
JC34-8m 1,1-DCE −0.48 5.14 × 10−3 285.68 170.98 10.8–1250

Cis-1,2-DCE was mainly detected in JGW1, JGW5, and JGW7. In JGW1-8m, the concen-
tration of cis-1,2-DCE ranged from 127–3780 µg/L, with an average of 1273.33 µg/L, which
was the highest concentration among other wells (mean concentrations of cis-1,2-DCE in
JGW1-14, JGW5-8m, JGW5-14m, JGW7-8m, JGW7-14m were 1185.95 µg/L, 194.27 µg/L,
204.75 µg/L, 78.16 µg/L, 75.08 µg/L, respectively). A significant variation in cis-1,2-DCE
over time was also found in JGW1-8m. The concentration of cis-1,2-DCE in all wells had a
significant descending trend, with negative tau-values and p-values smaller than 0.05. The
concentration of cis-1,2-DCE in JGW7-8m had the most surprising descending trend with a
tau-value of −0.87.

1,1-DCE mainly existed in JC24, JC30, JC31, JC32, JC33, and JC34. The deep well of
JC32 had a concentration of 1,1-DCE ranging from 36.9–115,000 µg/L, with an average
of 27,074.67 µg/L, which was a highly polluted well (mean concentrations of 1,1-DCE in
JC24-14m, JC24-8m, JC30-14m, JC30-8m, JC31-14m, JC31-8m, JC32-8m, JC33-14m, JC33-8m,
JC34-14m, JC34-8m were 662.29 µg/L, 516.47 µg/L, 53.03 µg/L, 48.30 µg/L, 9.45 µg/L,
6.13 µg/L, 20,623.70 µg/L, 35.59 µg/L, 43.19 µg/L, 177.02 µg/L, 170.98 µg/L, respectively).
The variation in 1,1-DCE concentration over time in JC32-14m was obvious among other
wells. An evident descending trend was found in JC32-14m, with a tau-value of −0.7 and a
p-value of 1.18 × 10−5. Most wells had significant negative tau-values with p-values less
than 0.05, except for JC24 and JC30. In JC24 and JC30, the concentration of 1,1-DCE reached
a peak during the year 2017 and then decreased, while it had an increase during August
and November 2020, which was contrary to the descending trend. A sharp increase in
concentrations was also found by Rahim et al. [6], which is related to the rain intensity. The
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high rain intensity elevated the groundwater table, which would then bring 1,1-DCE back
to the groundwater from soil or sand [25–27].

Overall, the highest concentrations of 1,1-DCE were larger than that of cis-1,2-DCE,
while the descending trend of 1,1-DCE was not as significant as cis-1,2-DCE on the whole.

Figure 3. Concentration variation with time of cis-1,2-DCE and 1,1-DCE. ((a) Wells with cis-1,2-DCE,
(b) wells with 1,1-DCE. JC32 is not shown since the magnitude of its concentration was larger than
that of other wells).



Int. J. Environ. Res. Public Health 2022, 19, 9374 9 of 24

3.2. Prediction Results of XGBoost and LSTM

The predictive performances of XGBoost and LSTM for cis-1,2-DCE and 1,1-DCE were
evaluated in terms of RMSE, MAE, and MAPE, and the results are presented in Table 2.
Predictive results against lab measurements of two models are presented in Figure 4 and
Supplementary Figure S1.

Figure 4. Cont.
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Figure 4. Prediction results against the measurement of XGBoost and LSTM (mg/L) ((a) wells with a
small prediction error of XGBoost; (b) wells with a small prediction error of LSTM; (c) wells with a
relatively large prediction error of XGBoost; (d) wells with a relatively large prediction error of LSTM.
The prediction results of JC32-8,14m are shown in Supplementary Figure S1).



Int. J. Environ. Res. Public Health 2022, 19, 9374 11 of 24

Table 2. Evaluation of predictive result of XGBoost and LSTM (mg/L).

Well
XGBoost LSTM

RMSE MAE MAPE RMSE MAE MAPE

cis-1,2-DCE
JGW7-14m 0.08 0.076 4.30 0.052 0.050 2.80
JGW7-8m 0.081 0.078 4.80 0.071 0.069 4.20
JGW5-14m 0.29 0.25 8.60 0.11 0.096 3.80
JGW5-8m 0.25 0.25 9.50 0.18 0.14 5.00
JGW1-14m 1.10 1.10 5.30 0.76 0.67 3.60
JGW1-8m 2.30 2.30 9.30 0.53 0.44 2.20
Average 0.68 0.68 6.97 0.28 0.24 3.60

1,1-DCE
JC24-14m 1.17 1.0010 24.40 1.35 0.77 3.91
JC24-8m 1.75 1.548 59.76 1.40 0.82 0.82

JC30-14m 0.077 0.052 4.26 0.080 0.055 4.03
JC30-8m 0.073 0.063 8.75 0.068 0.042 2.24

JC31-14m 0.0044 0.0036 2.49 0.0049 0.0045 2.72
JC31-8m 0.0043 0.0040 2.83 0.0037 0.0032 2.26

JC32-14m 57.46 54.68 563.40 26.54 21.07 253.60
JC32-8m 35.16 34.45 415.80 7.90 7.31 103.70

JC33-14m 0.041 0.038 17.62 0.013 0.011 5.37
JC33-8m 0.039 0.032 9.02 0.0074 0.0067 1.74

JC34-14m 0.18 0.16 6.46 0.094 0.076 2.97
JC34-8m 0.16 0.15 3.30 0.050 0.044 1.19
Average 8.01 7.68 93.18 3.13 2.52 32.05

In general, the LSTM model showed a better performance in predicting cis-1,2-DCE
and 1,1-DCE. For cis-1,2-DCE, the average RMSE, MAE, and MAPE of LSTM were 0.28, 0.24,
and 3.6, respectively. The results of the LSTM model showed a reduction of 58.47%, 63.86%,
and 48.33% on average RMSE, MAE, and MAPE compared to XGBoost. For 1,1-DCE, the
average RMSE, MAE, and MAPE of LSTM were 3.13, 2.52, and 32.05, respectively. The
results of the LSTM model showed a reduction of 60.98%, 67.23%, and 65.61% on average
RMSE, MAE, and MAPE compared to XGBoost.

For individual wells, the RMSE value of the LSTM model was smaller than that of
XGBoost, except for the wells JC24-14m, JC30-14m, and JC31-14m. The difference in RMSE,
MAE, and MAPE between the two models in JC30-14m and JC31-14m was minor, while
the difference in JC24-14m was larger. In JC24-14m, the RMSE of LSTM was larger than
that of XGBoost, while the MAE and MAPE of LSTM were much smaller than XGBoost.
The reason is that testing instances with rather small errors would contribute to the low
MAE and MAPE values, while test instances with rather large errors would result in high
RMSE values. RMSE would amplify the large errors [28].

In Figure 4a,b, the evaluation metrics of XGBoost and LSTM models were small, while
they were relatively large in Figure 4c,d. XGBoost and LSTM models showed a similar
pattern of overestimating the measurement. However, the XGBoost had larger biases in
most wells than LSTM. For example, in JC24, the range of prediction results of XGBoost
(0 to 3 mg/L) was larger than that of LSTM (0 to 0.1 mg/L).

In the shallow and deep wells of JC30, the measurements of data in the testing period
were not steady, which increased first but then decreased, and this may be caused by
rain intensity, as mentioned before. XGBoost performed better than LSTM to capture this
unsteady trend (Figure 4a,b), and the evaluation metrics of XGBoost were smaller than
that of LSTM in JC30-14m. However, in JGW1, JC24, and JC34, the prediction results of
XGBoost were largely affected by its previous trend, which resulted in large biases than
measurement. By contrast, LSTM showed a steady prediction, but it was hard to predict
the maximum value. The same difference between LSTM and XGBoost was also found in
the research by Cerna et al. [29].
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It seems like XGBoost was more likely to capture the variation in DCE concentrations
and be robust in high values than LSTM. However, the LSTM model presented better
accuracies for all the wells, had a steady trend or peak trend of data in the testing period,
and its evaluation metrics surpassed those from XGBoost.

3.3. SHAP Analysis on XGBoost and LSTM

SHAP values were used to evaluate variable importance and behavior. To acquire
them, SHAP analysis was conducted on XGBoost and LSTM models. The mean absolute
SHAP value of each variable was scaled by the sum of them, and the results of each well
are shown in Supplementary Figures S2 and S3.

There were 11 variables in each well of JGWX. For XGBoost, a mean absolute SHAP
value larger than 0.5 was found in m- and p-xylene, DO, and ORP, and the less important
variables were methylbenzene, o-xylene, and pH with a mean absolute SHAP value larger
than 0.3. For LSTM, no variable had a mean absolute SHAP value larger than 0.5, and
each variable in one well had a relatively uniform mean absolute SHAP value compared
to XGBoost. The most important variables were ORP, ORP, methylbenzene, ethylbenzene,
methylbenzene, and benzene in JGW7-14m, JGW7-8m, JGW5-14m, JGW5-8m, JGW1-14m,
and JGW1-8m, respectively. In general, BTEX, DO, and ORP had significant influences on
the two models in predicting cis-1,2-DCE concentrations.

In JCX, wells had different input variables, but all of them had five water quality
indicators at least. In terms of XGBoost, conductivity, pH, and DO had large mean absolute
SHAP values in most wells, except for JC24-8m, which was dominated solely by benzene.
VC was also important to JC32 and JC34-14m. However, BTEX did not contribute a lot to
the model’s prediction of JCX compared to JGWX. As for LSTM, conductivity, temperature,
and DO were found to have large mean absolute SHAP values in many wells. Except
for water quality variables, VC was also important in some wells. Similar to the trend
in JGWX, variables in JCX had mean absolute SHAP values much larger than others in
XGBoost, while each variable showed a relatively small different mean absolute SHAP
value in LSTM.

In general, each variable had relatively equal importance in the LSTM model, while
the XGBoost had predominate variables which had large mean absolute SHAP values.
BTEX had large influences on models’ output in JGWX, while they had comparatively
small impacts on models’ output in JCX, which were largely affected by VC. Water quality
indicators such as ORP and conductivity played an essential role in prediction.

3.4. Prediction Results of Water Quality Indicators

With regard to the importance of water quality variables to models’ prediction and
the cost-effectiveness of acquiring them, five water quality variables were used to predict
the concentration of cis-1,2-DCE and 1,1-DCE by LSTM and XGBoost. The RMSE of the
prediction was compared with that using all variables (including BTEX and VC), and the
result is shown in Figure 5.

XGBoost performed poorly in JGW1-14m, JGW5-8m, and JC24-8m since the RMSE
of XGBoost with input water quality variables was larger than that of all variables. The
mean absolute SHAP values of water quality variables in them were nearly or equal to 0
(Figure 6a–c), therefore water quality variables could hardly provide enough information
for predicting, which then resulted in bad prediction. In JC32-8,14m and JC34-8,14m,
models with water quality variables performed better than models with all variables. The
mean absolute SHAP value of VC or benzene in JC32-8,14m and JC34-8,14m was found
to be larger than 0.4. However, DO also showed relatively high importance. Therefore,
after removing these organic variables, models could still perform well with water quality
variables. For other wells, the RMSE between the prediction result of XGBoost with water
quality indicators and all variables showed an insignificant difference since most wells had
water quality variables as the most important variables and therefore DCE was forecast
without organic variables.
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Figure 5. Comparison of RMSE between models ((a) XGBoost and (b) LSTM) with all variables and
water quality variables only (JC30-8m, JC31-8,14m, and JC33-8,14m were removed from all wells
since they did not have organic variables).

For the LSTM model, the prediction errors in JGW5-8m, JGW7-8,14m, and JC32-
14m of the model with water quality variables were more minor than those with all
variables. In JGW7-8,14m, ORP was the predominant variable, while the organic variable
showed relatively little importance to models (Figure 6d,e). Some research manifested
that unnecessary input variables may be deleterious to model performance [30]. Therefore,
eliminating these variables can improve model performance. In JGW5-8m and JC32-14m
(Figure 6f,g), although organic variables (BTEX, VC) shared similar importance as ORP or
conductivity, after removing them, models could also be improved since they could learn
from some variables which were highly correlated to the organic variables.

Figure 6. Cont.
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Figure 6. Mean absolute SHAP value of each variable in some wells. (a) JGW1-14m (XGBoost);
(b) JGW5-14m (XGBoost); (c) JC24-8m (XGBoost); (d) JGW7-14m (LSTM); (e) JGW7-8m (LSTM);
(f) JGW5-8m (LSTM); (g) JC32-14m (LSTM).
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In general, for wells with water quality variables of high SHAP value, removing
insignificant important organic variables could improve models’ performance. However,
if water quality variables had little importance, removing organic variables would result
in a bad prediction. The results indicated that LSTM and XGBoost could predict DCE
concentrations with only water quality variables, since for most wells, the differences
in RMSE between the models with water quality variables and with all variables were
relatively small. LSTM with water quality indicators performed better than XGBoost in
forecasting DCE concentrations.

4. Discussion
4.1. Influences on Models’ Prediction
4.1.1. Influences of DCE Concentrations

The RMSE of XGBoost and LSTM against the descending trend, and the standard
deviation, mean, maximum, and minimum of DCE (cis-1,2-DCE or 1,1-DCE) concentrations
are presented in Figure 7.

Figure 7. Cont.
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Figure 7. The RMSE of two models ((a,c,e,g,i) XGBoost and (b,d,f,h,j) LSTM) against tau-values
(descending trend calculated by Mann–Kendall), maximum, mean, and standard deviation of
DCE concentrations.
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The RMSE of XGBoost and LSTM decreased with the tau-values, but R2 values and
p-values of fitted lines indicated an insignificant trend. Therefore, the models’ predictive
performance had a weak correlation with the descending trend.

The standard deviation of DCE showed the variation in concentration, and the RMSE
values of the two models were positively correlated with it. The R2 values of fitted lines
were 0.98 and 0.82 in XGBoost and LSTM, respectively, and the p-values of them were
smaller than 0.01. The result showed RMSE values significantly positively correlated with
variation in DCE concentration. This indicated that wells with small DCE variations had a
low error and better predictive performance.

The RMSE values of the two models were positively correlated to the maximum and
mean concentration of DCE. The R2 values of XGBoost were 0.96 and 0.99, and the values
of LSTM were 0.79 and 0.86, respectively. The p-values of them were smaller than 0.01,
which showed RMSE values significantly positively correlated with maximum and mean
of DCE concentrations. The R2 value of RMSE against the minimum concentration of DCE
of the XGBoost and LSTM did not show the same significant positive correlation with R2

values of 0.02 and 0.01, respectively, which manifested that the influence of the minimum
concentration of DCE was hardly comparable to that of the maximum concentration of
DCE. The result indicated that wells with higher DCE concentrations would cause a higher
error in the model’s accuracy. The influences of DCE concentrations on XGBoost were more
significant than on LSTM because the slope of the fitted line of XGBoost was larger than
that of LSTM. This finding corresponded to the result of LSTM performing better than
XGBoost with small evaluation metrics.

4.1.2. Influences of Variables
Water Quality Indicators

The general impact of each variable was shown by the mean absolute SHAP value.
To know how the variables of each instance (data) impacted models’ prediction, detailed
SHAP values of each instance against corresponding variables’ values were analyzed. The
SHAP dependent plots of five water quality variables, benzene, and VC in LSTM are shown
in Figure 8. The positive SHAP values indicated that variables had positive impacts on
predictions, and negative values indicate negative impacts. The SHAP dependent plots of
DO, pH, conductivity, and benzene are colored by ORP values to show the influences of
ORP on them in Figure 9.

ORP measures the electron activity and the relative tendency for the solution to transfer
or accept electrons. Negative ORP values indicated the existence of anaerobic conditions
in the groundwater and the suitable condition for reductive dechlorination was when
ORP was less than 50 mV [8]. In Figure 8a, ORP values ranged from −400 mV to 100 mV,
and negative SHAP values increased with ORP values until ORP values were larger than
around 50 mV, and SHAP values became positive. The negative SHAP values of ORP
ranging from −400 V to 50 mV indicated the degradation of DCE in the optimal reductive
dechlorination condition. In contrast, the positive SHAP values of ORP with concentrations
larger than 50 mV indicated the positive impacts on the models’ output, caused by the bad
reductive dechlorination condition.
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Figure 8. The SHAP value dependent plots of water quality indicators, benzene (µg/L), and VC
(µg/L). (a) ORP, (b) DO, (c) temperature, (d) pH, (e) conductivity, (f) benzene and (g) vinyl chlo-ride.
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Figure 9. The SHAP value dependent plots of (a) DO, (b) low pH, (c) high pH, (d) conductivity,
(e) benzene (µg/L) and (f) vinyl chloride (µg/L) colored by ORP values.

DO is the most thermodynamically favored electron acceptor used by microbes for
the biodegradation of DCE under anaerobic conditions [8,31]. Anaerobic bacteria generally
cannot function at DO concentrations greater than about 0.5 mg/L, hence, reductive
dechlorination will not occur [8]. From Figure 8b, the concentration of DO ranged from
0–6 mg/L and was mainly in the range of 0–1 mg/L. The trend line of DO formed by
the scatter points had a dispersion along the vertical direction when DO ranged from
0–0.5 mg/L, which showed that most instances have positive influences on the models’
output. Although DO in the range of 0–0.5 mg/L benefited DCE degradation, the SHAP
values did not show the same result. In Figure 9a, ORP contents increased with DO contents.
ORP was negative when DO ranged from 0–0.5 mg/L, while in this optimal biodegradation
condition, the positive SHAP value of DO indicated the increase in DCE. One explanation
for this may be related to the existence of PCE and TCE, which were more likely than DCE
to undergo reductive reactions and form the accumulation of DCE. When DO was higher
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than 1 mg/L, instances had negative SHAP values indicating the degradation of DCE. In
this environment, DCE can be utilized as a primary substrate and oxidized under aerobic
conditions, therefore DCE would decrease [8].

Groundwater temperature directly affects microbial activity, which readily occurs at
13–26 degrees Celsius (◦C) [8]. Some research also confirmed that the degradation of cis-
1,1-DCE to VC reached high dechlorination rates at 15–30 ◦C [32]. The temperature range
of 15–26 ◦C indicated the environment was suitable for biodegradation, while the SHAP
values fluctuated up and down at 0. The suitable dechlorination temperature range did
not result in a negative SHAP value for all instances, which was related to the complicated
reaction that happened in this temperature range, and it indicated that temperature had a
relatively small correlation to dechlorination.

The pH of groundwater influences the presence and activity of microorganisms
in groundwater. pH values from 6 to 7.5 are optimal for reductive dechlorination of
DCE [33,34]. In Figure 8d, pH ranges from 6.5 to 9.5. In the optimal reductive range of
pH (6–7.5), most of the instances had negative SHAP values, which corresponded to the
degradation in the optimal reductive environment. The positive SHAP value of pH in
the range of 7.5–8.5 may be related to the bad conditions for the degradation of DCE.
Meanwhile, when pH ranged from 8.5 to 9.5, the SHAP value of each instance was negative
which indicated the degradation of DCE but in a bad reductive environment. The SHAP
values of pH colored by ORP in cis-1,2-DCE and 1,1-DCE are shown in Figure 9b,c. The
low pH would increase ORP, and it was shown that ORP in the low pH was higher than
that in high pH in cis-1,2-DCE and 1,1-DCE, respectively. When pH ranged from 7.5 to
8.5, most instances with negative SHAP values had corresponding ORP lower than 0, and
the optimal ORP environment may explain the degradation of DCE in the non-ideal pH
condition. Meanwhile, in this range, some instances had positive SHAP values with ORP
higher than 0. Although pH higher than 8.5 was bad for degradation, most instances had
corresponding low ORP (<−50 mV), which benefitted the degradation of DCE.

Conductivity is a measure of the ability of groundwater to conduct electricity. The
conductivity of groundwater increases as ion concentration increases [8]. The SHAP
values of conductivity were negative and increased with the increase in conductivity
until conductivity equaled around 2000 µs/cm, and SHAP values increased to around 0
(Figure 8e). The trend of SHAP values indicated that the negative influences on models
became limited when conductivity was higher than 2000 µs/cm. In Figure 9d, ORP
decreased with conductivity. ORP was higher than 0 when conductivity was lower than
2000 µs/cm, while ORP was lower than 0 when conductivity was higher than 2000 µs/cm.
It was speculated that with the reductive dechlorination process, conductivity continued to
increase while ORP would be decreased. During the degradation process, some bacteria
may respire using NO3

−, SO4, Fe3+, or a variety of metals (such as arsenic or uranium)
as the oxidant [8]. Each sequential reaction (NO3

−, SO4, Fe3+, etc.) drives the ORP of the
groundwater downward into the range within which reductive dechlorination can occur,
and the dechlorination rate would be accelerated with the decrease in redox potential [8].
Therefore, it was supposed that the ORP continued to decrease with the occurrence of
reductive dechlorination. In this system, the production of large numbers of inorganic ions
such as CL− and Fe2+ would increase the conductivity [34].

By comparing the SHAP values’ range of water quality indicators, ORP and conduc-
tivity were important variables in prediction. DO, pH, and temperature had a relatively
low influence on the models’ performance.

Organic Indicators

Organic variables used for forecasting included BTEX and VC. Benzene was selected
to be analyzed as the representation of BTEX since it had a large sampling data size and
high concentrations, and the SHAP dependent plots of benzene and VC are shown in
Figure 8f,g.
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The SHAP values of benzene indicated it imposed negative impacts on LSTM. The
SHAP value increased to 0 with the increase in benzene until benzene equaled 2500 µg/L.
The negative effects on models manifested that it is beneficial to the degradation of DCE.
During degradation, BTEX consumed the electron acceptors and released the biodegradable
primary substrates to supply the electron donors for dechlorination [8,35]. Therefore, the
existence of benzene could support reductive dechlorination and impose negative effects
on models’ output. The depletion of electron acceptors would result in decreasing ORP
during this process. Figure 9e shows the SHAP value of benzene colored by ORP. Most
instances with negative SHAP values had negative ORP, while some instances with SHAP
values close to 0 had ORP near to or higher than 0 mV. It was speculated that benzene
with a negative SHAP value benefited dechlorination and decreased ORP in the meantime.
Similar to conductivity, when benzene increased to a certain concentration, it provided
enough primary substrates for reductive dechlorination, and therefore reached a limited
influence on the mode, therefore the SHAP value of benzene reached 0 when benzene had
concentrations higher than 2500 µg/L.

VC as the degradation product of DCE is formed from cis-1,2-DCE and 1,1-DCE after
they receive electrons. The presence of VC indicated the degradation of DCE, and therefore
it had a negative impact on the models’ output. The SHAP values of VC mainly exhibited a
negative effect, although some data instances had positive SHAP values (Figure 8g). Most
instances with negative SHAP values had negative ORP, some instances with positive
SHAP values had positive ORP, while other instances with negative SHAP values also
had positive ORP (Figure 9f). Most instances having negative ORP indicated a reductive
condition and VC as the daughter product revealed the degradation of DCE. For instances
with positive ORP but negative SHAP values, some studies found biodegradation of DCE
and VC in the aerobic condition and therefore these instances with small VC concentrations
showed the degradation of DCE in the relative aerobic environment [9].

In general, the explanation of the SHAP value of each variable indicated the high
consistency with the rules of biodegradation in the real environment.

4.2. Comparison between XGBoost and LSTM

As mentioned above, XGBoost is an ensemble model consisting of several weaker
models to prevent overfitting. Due to this characteristic, it allows each model to capture
some aspect of the data structure. Unlike XGBoost, the advantage of LSTM is it stores
all the previous steps’ inputs and merges that information with the current step’s input.
The ability of LSTM to learn long-term patterns explained its weakness in capturing the
variation in testing data compared to XGBoost. In JC24 and 30, although the 1,1-DCE
concentration had variation initially, they then went through a relatively steady period
until the testing period, which had an increment. XGBoost and LSTM showed significant
disparate predictions in JC24 and JC30 as XGBoost had fluctuating predictions while LSTM
was steadier.

The XGBoost model depends largely on several variables compared to LSTM. As
shown in Supplementary Figures S2 and S3, XGBoost had some variables with SHAP
values larger than 0.5, while LSTM seldom had variables with large SHAP values. XGBoost
contains several tree models, and each tree model could be split according to features,
therefore, if one feature was mostly used or had a high average gain across all splits, it
would be important. LSTM had a recurrent structure and different states to remember or
forget the new data. The disparate calculations between LSTM and XGBoost explained the
different SHAP values of variables in each well.

4.3. Suggestions for the Model and the Potential for Low-Cost Modeling

The prediction result of cis-1,2-DCE was better than 1,1-DCE in general. The core
pollution area of 1,1-DCE in Area II was at a higher level than cis-1,2-DCE, and the de-
scending trend of cis-1,2-DCE was better than that of 1,1-DCE. The increase in rain intensity
elevated the groundwater table, which would then bring 1,1-DCE back to groundwater
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from soil or sand and then decrease the downward trend. This phenomenon was not
presented obviously in cis-1,2-DCE, and since the prediction performance highly correlated
to the variation and concentration of DCE, the model’s prediction of cis-1,2-DCE was better
than that of 1,1-DCE. In addition, it is possible that the more favorable biodegradation of
cis-1,2-DCE than 1,1-DCE contributed to the better prediction performance of cis-1,2-DCE
than 1,1-DCE. The greater tendency of cis-1,2-DCE than 1,1-DCE to degrade in certain
conditions would contribute to the high correlation between concentrations with water
quality variables, which then benefited predictive models learned from them and they
performed better. In order to improve the prediction accuracy, some variables related to
the rain intensity or groundwater level could be considered as input variables. LSTM had
small evaluation metrics compared to XGBoost, especially for testing data with a steady
trend. The sharp increment in DCE concentration caused by rain needs to be considered,
while if we focus on the natural descending trend in the long term, LSTM performed better.

Considering the lower cost to acquire water quality indicators and the little different
prediction performance between models with or without organic variables, water quality
variables could be considered for predicting future DCE concentrations, which could
reduce the time consumption of traditional CAH concentration analysis methods and
certain economic costs. To acquire a more accurate prediction result, it is important to
select input variables. In the study, SHAP analysis showed the predominant variables
in each well. Therefore, reducing some of the non-significant variables could improve
prediction results. For each well, the optimal input combination of variables can be quickly
determined by adding the input variables one by one into models according to the order
of SHAP values. In Section 3.4, models showed excellent performance in some wells with
only water quality indicators. However, other wells performed badly with only water
quality indicators. Therefore, for the best use of models, it is suggested to select more
important input variables. Meanwhile, the cost and time to analyze these variables should
be considered. The findings from reducing some organic input variables manifested the
possibility of saving cost by reducing input variables. Therefore, under the premise of not
significantly reducing the prediction performance, removing the variables that contribute
less to the model performance is of significance to reducing monitoring costs.

5. Conclusions

In this work, XGBoost and LSTM models were used to forecast the concentration
of cis-1,2-DCE and 1,1-DCE. XGBoost was more likely to capture DCE variation and be
robust in high values, while the LSTM model presented better accuracies for all the wells.
A well with a larger DCE concentration would cause a high error in the model’s predictive
performance, and the influence of DCE concentration on XGBoost was more significant
than that of LSTM. The explanation of the SHAP value of each variable indicated the high
consistency with the rules of biodegradation in the real environment. ORP and conductivity
were more important than temperature, pH, and DO in predicting. LSTM and XGBoost
could realize the prediction of DCE concentrations with only water quality variables, and
LSTM performed better than XGBoost in forecasting DCE.
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