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Hepatocellular carcinomas (HCCs) have different etiology and heterogenic genomic
alterations lead to high complexity. The molecular features of HCC have largely been
studied by gene expression and proteome profiling focusing on the correlations between
the expression of specific markers and clinical data. Integration of the increasing amounts
of data in databases has facilitated the link of genomic and proteomic profiles of HCC
to disease state and clinical outcome. Despite the current knowledge, specific molecular
markers remain to be identified and new strategies are required to establish novel-targeted
therapies. In the last years, mathematical models reconstructing gene and protein
networks based on experimental data of HCC have been developed providing powerful
tools to predict candidate interactions and potential targets for therapy. Furthermore, the
combination of dynamic and logical mathematical models with quantitative data allows
detailed mechanistic insights into system properties. To address effects at the organ level,
mathematical models reconstructing the three-dimensional organization of liver lobules
were developed. In the future, integration of different modeling approaches capturing the
effects at the cellular up to the organ level is required to address the complex properties
of HCC and to enable the discovery of new targets for HCC prevention or treatment.
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INTRODUCTION
Hepatocellular carcinoma (HCC) represents one of the most fre-
quent cancers with the highest incidence in developing countries.
Due to its aggressiveness it is third in causing cancer-related
deaths worldwide (Ferlay et al., 2010). Major reasons for HCC
development are Hepatitis B-virus (HBV) and Hepatitis C-virus
(HCV) infection, alcoholic liver diseases, and non-alcoholic fatty
liver diseases. Type II diabetes and obesity are among the less
common but emerging causes of HCC in Western countries
(El-Serag, 2011). Fibrosis and cirrhosis in response to chronic
inflammation are characterized by expansion of dysplastic clonal
hepatocyte populations (Pons et al., 2005). Dysplasia is charac-
terized by three states: foci of small dysplastic cells, low grade
dysplastic nodules characterized by fibrotic tissue, and high grade
dysplastic nodules representing preneoplastic lesions. The size of
the nodules and their invasiveness define the HCC stage as “early,”
“intermediate” or “late.” Primary HCC satellite nodules are char-
acterized by different genomic profiles, and thus contribute to the
high heterogeneity of HCC (Cetta et al., 2001). The best treat-
ment for HCC is liver transplantation or partial hepatectomy.
While the former involves a complete resection of the tumor tis-
sue, its application is limited by the low number of donors and
is not advised when metastasis are present. The latter is applied
in cases where there is no tumor spread and no cirrhosis, but has
limited effects due to only partial resection of the tissue (Befeler
and Di Bisceglie, 2002). When none of the previously described
methods can be applied, chemotherapy represents a possible
choice, although it showed very low efficiency in HCC patients
due to genomic heterogeneity (El-Serag, 2011; Lee et al., 2011a)
and multidrug resistance of the tumors (Schwartz et al., 2002).
Systems biology combines experimental data with mathematical

modeling and provides several strategies to deal with the com-
plexity to predict tumor response to targeted therapies. In this
review, as schematically shown in Figure 1, we will focus on
systems-wide analysis based on high-throughput gene expression
and proteomic profiling (Woo et al., 2009; Kim et al., 2011; Lee
et al., 2011b) and on different mathematical modeling approaches
that can contribute to a deeper understanding of liver functions.

SYSTEMS-WIDE ANALYSIS
High-throughput gene and protein expression profiling provided
molecular evidence for the high complexity of HCC. This knowl-
edge allowed screening different stages of HCC, to define sub-
classes of HCC and to establish criteria for targeted therapies
of HCC.

GENOMICS
Genomic analysis of HCC samples have been widely performed
(Buendia, 2000; Feo et al., 2000) showing that several pathways
are altered (Hsu et al., 1991; Zhang et al., 1994; De La Coste et al.,
1998) and that the frequency of mutations is variable, thus con-
tributing to the HCC heterogeneity. Several datasets were used
to demonstrate a correlation between CGH status, etiology, and
histology of HCC (Moinzadeh et al., 2005).

The extensive use of high-throughput gene expression profil-
ing opened the possibility to compare a large number of sam-
ples analyzed by different laboratories, enlarging the screening
spectrum. Studies have focused on correlations between gene
expression profiles and the mutational status of the samples
(e.g., p53 status), vascular invasion (Chen et al., 2002; Okada
et al., 2003), tumor etiology (e.g., infection status) (Okabe et al.,
2001), or early intrahepatic recurrence of the tumor (Iizuka
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FIGURE 1 | Systems biology approaches for the study of hepatocellular

carcinoma. Systems biology of HCC at systems-wide level includes the gene
expression and proteome profiling and the generation of databases for data

storage. Mathematical modeling can describe signaling pathways, the entire
network or the organ function by liver tissue models, which include
information arising from different levels such as vasculature and cellular level.

et al., 2003; Kurokawa et al., 2004). High-throughput data require
the development of algorithms allowing the identification of
genes as predictors. Correlation of gene copy number alteration
with gene expression profiles was analyzed for 15 HCC sam-
ples by applying a regional pattern recognition approach and
Connectivity Map (Woo et al., 2009). The Connectivity Map
allows connecting the gene expression profile to drug response
(Lamb et al., 2006). A set of 50 genes residing in the most
commonly altered regions showed a strong prognostic value, sug-
gesting their potential role as driver genes. The highest prognostic
effect has been attributed to 30 genes residing in the 1q and 8q
chromosomal arms, known to be involved in the early stages
of HCC. Analyses of these effectors of the driver genes revealed
a cross-talk among the mTOR, EGFR, and AMPK pathway,
and suggested these pathways as candidates for multi-targeted
therapy. In a subsequent study, the same authors performed a
wider analysis on several gene expression profiles in combina-
tion with clinical data (Kim et al., 2011). By combining two
independent gene expression signatures associated with HCC

recurrence and other clinical parameters, the risk score was cal-
culated based on the Cox coefficient and the expression level.
The two datasets showed an overlap of 65 genes representing
the risk score factors for predicting overall survival of HCC
patients. Interestingly, the enriched functional category of the 65
selected genes was signal transduction. Further experimental val-
idation revealed that Akt, IGFR, and RPS6 phosphorylation as
well as a mutation in beta-catenin are strongly associated with the
risk score.

A functional genomic study was performed applying siRNA
to identify tumor suppressor genes in a mosaic mouse model
(p53−/−) (Zender et al., 2008). With this approach 12 genes were
identified as tumor suppressor genes, such as XOP4, FGF6, and
GLO1. Furthermore, miRNA profiling was employed comparing
miRNA expression of HCC samples and normal tissue revealing
an overall down-regulation of miRNAs (Murakami et al., 2006).
Interestingly, the comparison of different HCC stages showed an
inverse correlation between the HCC stage and the expression of
four miRNAs (miR-18, miR-20, miR-92, and miR-99a).

Frontiers in Physiology | Systems Biology February 2013 | Volume 4 | Article 28 | 2

http://www.frontiersin.org/Systems_Biology
http://www.frontiersin.org/Systems_Biology
http://www.frontiersin.org/Systems_Biology/archive


D’Alessandro et al. Systems biology of hepatocellular carcinoma

PROTEOMICS
Gene expression profiles have been employed to derive
protein–protein interaction networks of HCC. An improved
method that accounts for the topological characteristics of
human protein interaction networks (Zhang et al., 2011) was
developed to establish a scale-free network based on gene
expression data and direct connections between candidate genes
and was used to link HCC classifiers to network topology.
Integration of the topological feature of the network allowed
the selection of candidate genes that strongly affect the tumor
classifier performance. The analysis identified 13 HCC-related
genes, including members of key signaling cascades, e.g., EGFR,
SMAD2, SOCS3, MAPK1, and FOS.

Proteome-wide analysis of the interaction of liver proteins
was performed by a yeast-two hybrid technology using 5026
human liver proteins (Wang et al., 2011). This allowed the gen-
eration of the human liver protein interaction network (HLPN).
To reduce the complexity of the proteome profiling and to dis-
criminate key molecules in HCC, Lee and colleagues (Lee et al.,
2011b) employed subcellular fractionation in combination with
mass spectrometry analysis comparing normal vs. tumor tis-
sue and identifying 21 potential candidate proteins, such as
MATR3 and FASN. To identify disease biomarkers based on phos-
phorylation differences, quantitative analysis of phosphopeptides
from HCC specimen and cell lines were performed (Lee et al.,
2009).

Quantitative analysis of the proteome was applied for 11 HCC
samples and their healthy counterparts by applying culture-
derived isotope tag methods (Li et al., 2012). This approach
allows the simultaneous identification and quantification of a
large number of proteins. These studies yielded a set of pro-
teins differentially expressed in normal vs. tumor tissue samples
and between early and late HCC stages. These results suggested
that the granzyme A-mediated apoptosis pathway is upregulated
in the HCC samples and could represent a therapeutic target.
In summary, the analysis of proteomic profiles is an impor-
tant prerequisite for an earlier diagnosis and better tumor stage
discrimination.

DATABASES
The increasing amount of high-throughput data collected in the
past years made it necessary to develop appropriate databases in
order to facilitate easy queries of genomic alterations or changes
in expression levels and to ideally provide a link to clinical patient
information. Moreover, databases are essential tools for sharing
the available data within the scientific community.

The Cancer Genome Atlas (TCGA) is a database for genomic
changes of several cancer types, including 99 HCC samples and
their normal liver tissues. TCGA includes gene and miRNA
expression data and the epigenetic DNA methylation status.

The integrated Clinical Omics Database (iCOD) collects all
available information of 140 cases of HCC, ranging from gene
expression profiles to relevant clinical data (Shimokawa et al.,
2010). The data can be visualized as a map allowing the user to
connect each patient to the molecular, pathological, and clini-
cal features and to correlate gene expression profile with clinical
information.

Another source of information is provided by the Liverbase
database collecting the results obtained within the Human Liver
Proteome Project (HLPP) (Sun et al., 2010). The Liverbase
includes information on the human liver at the genomic and
proteomic level as well as protein localization and metabolic
network data.

The available data of molecular interaction of human chronic
liver diseases has been manually curated and collected in the
Library of Molecular Association (LOMA) that contains links
of gene expression to specific liver diseases (Buchkremer et al.,
2010). A potential limiting factor of databases could be a lack
of manual curation and of comprehensive annotation. The cur-
rently available databases widely overcome these difficulties and
represent powerful tools to link intracellular alterations with
clinical data.

HBV- AND HCV-INDUCED HCC: A SYSTEMS BIOLOGY
APPROACH
Although HBV and HCV infection represent one of the major
risk factors for HCC development, the molecular mechanisms
triggering HBV- or HCV-induced HCC remain to be elucidated.

To understand the central characteristics of each stage of
HCC formation with respect to HCV infection, gene expres-
sion profiles of 75 HCC samples representing eight different
stages of the tumor were compared to normal liver tissue
(Wurmbach et al., 2007). Gene signatures for each tumor stage
have been identified representing molecular markers for diag-
nosis. These sets of genes were combined with a HCV specific
protein–protein interaction data set that allowed the genera-
tion of protein–protein interaction networks of HCV-HCC for
each tumor stage (Zheng et al., 2011). The resulting indepen-
dent networks revealed a higher number of common proteins
between the early stages than between the early and later stages
of the tumor, indicating a strong deregulation of the network
between the precancerous and late tumor stage. This analysis
suggested that the adaptive immune response is strongly acti-
vated during the cirrhosis phase and down-regulated at the
dysplastic nodule stage, while cell cycle progression is con-
stantly up-regulated. Additionally, two non-structural HCV pro-
teins showed to be potential regulators of key components of
the networks, suggesting a specific mechanism of action of
HCV-HCC.

It was shown that HBV and HCV infection leads to dis-
tinct deregulated signaling and gene expression patterns (Iizuka
et al., 2002; Honda et al., 2006) that underlie differential features
of HCC progression. Comparison of gene expression profiles
between HBV or HCV-infected tumor samples were performed
and weighted gene co-expression network analysis was applied.
Both studies suggested potential targets for therapy to prevent
HCC development in cases of viral infection.

NETWORK MODELS
Network models based on high-throughput data provide an
extensive description of HCC but lack information on dynamic
properties of the system. Traditionally, kinetic models based on
flux balance analysis of enzymatic activities in hepatocytes were
developed to describe liver metabolism (Garfinkel and Hess, 1964;
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Jerby et al., 2010). However, many of the required reaction param-
eters up to now could not be determined in vivo. An alternative
approach aiming to generate a human metabolic model was
developed based on all available published data (Duarte et al.,
2007). This model represents a reference model and has predictive
power for metabolite changes, but lacks tissue specificity. A tissue-
specific metabolic network model was constructed by applying a
constraint-based method and using gene as well as protein expres-
sion data from 10 tissues including liver (Shlomi et al., 2008). To
reconstruct the human liver metabolism in more detail, Gille and
collaborators generated the HepatoNet1 that represents a network
based on manually curated biochemical data available in the liter-
ature for human hepatocytes (Gille et al., 2010). The HepatoNet1
represents a highly valuable source for metabolic studies of
liver function. An even more elaborated model of human liver
metabolism was developed by combining gene expression pro-
files, proteomics, metabolomics, and phenotype data extracted
from the literature (Jerby et al., 2010). The described models
are based on physiological liver conditions and possess predic-
tive power to simulate metabolic alterations in HCC. Besides
the key role of liver metabolism, genomic mutations point to
an important role of alterations in signaling networks for the
development of HCC. Data-driven discrete logical modeling was
applied to compare signaling networks in primary human hep-
atocytes and four human liver cancer cell lines (Saez-Rodriguez
et al., 2011). By stimulating cells with insulin, TNFα, IL6, IL1β,
and TGFα, the authors analyzed the activation by phospho-
rylation of the immediate-early signaling pathways deregulated
in HCC. Additionally, to reveal molecular targets for therapeu-
tic applications, combinations of selected kinase inhibitors were
applied. By this approach, an interaction regulating Hsp27 phos-
phorylation specifically present in primary hepatocytes but absent
in the screened HCC cell lines has been discovered, known to
be associated with tumor progression (Yasuda et al., 2005). In
addition, in accordance with previous findings (Hoffmann et al.,
2002; Lin and Karin, 2003; Basak et al., 2012), it was shown that
NFκB activation in HCC cell lines only requires TNFα stimula-
tion, and that activation of PI3K signaling in response to insulin
is predominantly observed in HCC cell lines. In subsequent work,
the intracellular response and the secreted molecules induced by
inflammatory factors in combination with kinase inhibitors were
addressed (Alexopoulos et al., 2010). By applying inference inter-
action graph methods for network reconstruction, the authors
showed that primary hepatocytes were more responsive to inflam-
matory stimuli, while the HCC cell lines primarily responded
to growth factors. The down-regulation of the inflammatory
response of HCC cells could be associated with the adaptation
of cancer cells to counteract immune surveillance. This work
showed that the dissection of network regulation with mathe-
matical modeling requires large numbers of measurements under
different conditions.

CELLULAR PHENOTYPE AND LIVER TISSUE MODELS
HCC is extremely heterogeneous and therefore the analysis of
cellular phenotype is important besides genomic and proteomic
studies. The analysis of patient material showed a phenotype
suggesting epithelial-mesenchymal transition (EMT) (van Zijl

et al., 2011). By treating cells with targeted or cytostatic drugs,
the study showed that mesenchymal HCC cells were more
resistant to the targeted agents and the combination of both
treatments was most potent against both cell types. Based on
these observations, a mathematical model employing integro-
differential equations was developed (Delitala and Lorenzi, 2012).
The integro-differential equations take into account the integral
and the derivatives of a function resembling the dynamics of
proliferation of epithelial and mesenchymal HCC cells as well
as major influencing factors such as mutations, interactions of
tumor cells, role of cytokines, and action of cytotoxic and ther-
apeutic agents. By performing model simulations, the authors
showed that the highly proliferative cells are selected during
cancer progression and that tumor heterogeneity is a cause of
resistance to targeted therapy, while cytotoxic drugs are more
effective. Therefore, an improved therapeutic strategy has to be
developed.

The previously presented studies focused on the cellular
level, but an analysis at the organ level is equally important
for a comprehensive understanding of the system. By employ-
ing image processing, a three-dimensional mathematical center-
based (single-cell-based) model of liver lobule was developed
(Hoehme et al., 2010). This model includes architectural parame-
ters and process parameters and is able to simulate liver regenera-
tion in response to liver injury in an individual lobule. The model
simulations suggested that the liver lobule architecture is primar-
ily restored by proliferation of hepatocytes along the sinusoidal
vessels, which are less sensitive to the toxic agent. The model pre-
dictions were validated by experimental data based on imaging,
confirming the predictive power of the model.

Taken together, these studies show that even for complex sit-
uation such as HCC, systems properties can be addressed by
combining experimental data with mathematical modeling.

CONCLUSIONS
HCC represents a particularly complex disease and the inte-
gration of all features of HCC including the tumor stage, the
etiology, the mutational status, the response to therapy, and
tumor recurrence are required to better understand its devel-
opment and to design a most efficient treatment. There is an
urgent need for molecular markers specific for HCC to facilitate
early diagnosis in order to improve the prognosis after treatment.
Systems-wide studies begin to show evidence for HCC classifiers
and for the impact of alterations in hub genes for these classi-
fiers. Additionally, first steps have been taken to provide a deeper
understanding of dynamic properties of signaling networks in the
liver. A summary of the reviewed results is given in Table 1.

Future developments require the integration of data at differ-
ent scales, connecting the genomic information to the signaling
regulation and finally to tumor behavior. To this aim, model inte-
gration linking intracellular events to responses at the organ level
is essential. The major challenge is to develop mathematical for-
malisms allowing connecting events occurring at different time
scales. In conclusion, the combination of clinical and experimen-
tal data with mathematical modeling promises to provide means
to handle the complexity that is characteristic for HCC and to
facilitate the development of personalized targeted therapy.
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Table 1 | Summary of the reviewed data and model types.

GENOMICS –HCC screening and correlation with clinical data: predictor genes
as risk score factor

–Enriched functional category: signal transduction

–siRNA screening: novel tumor suppressor genes
–Correlation miRNA expression profile and tumor stage

PROTEOMICS/PHOSPHOPROTEOMIC –Link proteomic with genomic: HCC-related genes/proteins

–Combination of proteome profiling and subcellular protein

localization

–Quantitative proteomic: discrimination between early and late

HCC stages

–HCC biomarkers based on phosphopeptide analysis
–HCV and HBV-induced HCC: adaptive immune response and
tumor progression

DATABASE –TCGA: The Cancer Genome Atlas
–iCOD: integrated Clinical Omics Database
–Liverbase: data from the Human Liver Proteome Project
–LOMA: Library of Molecular Association

NETWORK MODEL –Metabolic network model of primary human hepatocytes
–Comparison of signaling pathway activation of HCC cell lines with
primary hepatocytes

–Analysis of intracellular response and molecules secretion upon
inflammatory stimuli

CELLULAR PHENOTYPE and TISSUE MODEL –Mathematical model resembling the epithelial-mesenchymal

transition phenotype of HCC
–Most efficient therapies: combination of targeted and cytotoxic

drugs

–Mathematical model based on experimental data resembling single
liver lobule regeneration

In the table the keywords are highlighted in bold.
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