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Abstract  19 

Introduction: Endometriosis is an inflammatory disease associated with chronic pelvic pain 20 

(CPP). Growing evidence indicates that endometriotic lesions are not the sole source of pain. 21 

Instead, central nervous system (CNS) dysfunction created by prolonged peripheral and central 22 

sensitization plays a role in developing endometriosis-associated CPP. This study investigated 23 

how CPP is established using a multiple lesion induction mouse model of endometriosis, as 24 

repeated retrograde menstruation is considered underlying endometriosis pathogenesis. 25 

Methods: We generated endometriosis-like lesions by injecting endometrial tissue fragments 26 

into the peritoneal cavity in mice. The mice received a single (1x) or multiple inductions (6x) to 27 

simulate recurrent retrograde menstruation. Lesion development, hyperalgesia by behavioral 28 

testing, signs of peripheral sensitization, chronic inflammation, and neuroinflammation were 29 

examined with lesions, peritoneal fluids, dorsal root ganglia (DRG), spinal codes, and brain. 30 

Results: Multiple lesion inductions increased lesion numbers and elevated abdominal and hind 31 

paw hypersensitivity compared to single induction mice. Elevated persistent glial cell activation 32 

across several brain regions and/or spinal cords was found in the multiple induction mice. 33 

Specifically, IBA1+ microglial soma size was increased in the hippocampus and thalamus. 34 

IBA1+ cells were abundant in the cortex, hippocampus, thalamus, and hypothalamus of the 35 

multiple induction mice. GFAP+ astrocytes were mainly elevated in the hippocampus. Elevated 36 

TRPV1, SP, and CGRP expressions in the DRG were persistent in the multiple induction mice. 37 

Furthermore, multiple inductions induced the severe disappearance of TIM4hi MHCIIlo 38 

residential macrophages and the influx of increased proinflammatory TIM4lo MHCIIhi 39 

macrophages in the peritoneal cavity. The single and multiple inductions elevated secreted 40 

TNFα, IL-1β, and IL-6 levels in the peritoneal cavity at 2 weeks. Elevated cytokine levels 41 
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returned to the pre-induction levels in the single induction mice at 6 weeks; however, they 42 

remained elevated in the multiple induction mice.  43 

Conclusions: Our results indicate that the repeatedly occurring lesion inductions (=mimic 44 

retrograde menstruation) can be a peripheral stimulus that induces nociceptive pain and creates 45 

composite chronic inflammatory stimuli to cause neuroinflammation and sensitize the CNS. The 46 

circuits of neuroplasticity and stimulation of peripheral organs via a feedback loop of 47 

neuroinflammation may mediate widespread endometriosis-associated CPP.  48 
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Introduction  49 

Endometriosis is a chronic inflammatory disease characterized by the presence of 50 

endometrium-like tissues outside the uterus [1] that affects approximately 10% of reproductive-51 

aged women, representing ~190 million women worldwide [2, 3]. It can cause debilitating 52 

chronic pelvic pain (CPP), manifesting dysmenorrhea, dyschezia, dysuria, dyspareunia, and 53 

acyclic pelvis pain that dramatically reduces the quality of life of women [4-7]. Many patients 54 

can endure symptoms for several decades due to the onset of endometriosis-associated pain 55 

during adolescence [3] and have a greater risk of chronic opioid use for pain relief [8]. Despite a 56 

sizeable clinical burden, the pathogenesis of endometriosis is complicated and remains poorly 57 

understood. The current medical treatment/management is non-curative. It is limited to surgical 58 

excision of endometriotic lesions and/or hormonal treatments to suppress estrogen production 59 

and action due to endometriosis being an estrogen-dependent disease. Surgical excision of 60 

lesions can alleviate endometriosis-associated pain, though pelvic pain frequently returns within 61 

a year of lesion removal, even in the absence of lesion regeneration [9, 10]. Thus, endometriosis-62 

associated CPP is not solely dependent on the presence of lesions [11]. 63 

Pain relies on peripheral stimuli to the spinal cord for processing and perception by the 64 

brain. Inflammatory mediators, such as proinflammatory cytokines and chemokines, 65 

prostaglandins, and NGF, evoke pain by directly activating and sensitizing nociceptor neurons in 66 

the peripheral tissues via modulation of various ion channels like TRPA1, TRPV1, and voltage-67 

gated sodium channels [12]. Sensitized and activated nociceptors, specifically C-fibers, secrete 68 

neuropeptides like SP and CGRP [13], which can trigger a positive feedback loop to stimulate 69 

proinflammatory mediator secretion, further perpetuating pain signaling [11]. Through these 70 

processes of sensory signal transduction, increased release of neurotransmitters, such as SP and 71 
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CGRP, induces hyperactivity and hypersensitivity in the spinal cord and brain, known as central 72 

sensitization [14]. In endometriosis, abundant immune responses are present at lesion sites with 73 

increased proinflammatory cytokines and chemokines, growth factors, and NGF found 74 

throughout the pelvic cavity [15-18]. Elevated TNFα, IL-1β, and IL-6 levels have been reported 75 

in the peritoneal fluids and/or eutopic and ectopic endometrial tissues of women with 76 

endometriosis [17, 19-21]. Specifically, TNFα, IL-1β, CLL5, and NGF are elevated in the pelvic 77 

cavity of endometriosis patients who reported CPP [22, 23]. We have shown that TNFα, IL-1β, 78 

and IL-6 are elevated in the peritoneal fluids after a single induction of lesions in a mouse model 79 

of endometriosis [24, 25]. Lesion induction increases SP, CGRP, and TRPV1 expression in the 80 

dorsal root ganglia (DRG) and elevates mechanical hyperalgesia and allodynia [24, 25]. Thus, 81 

elevated inflammatory mediators sensitize nociceptor neurons in the endometriotic lesions and/or 82 

pelvic organs, initiating pain stimuli, transferring them to the spinal cord and brain to sensitize 83 

the central nervous system (CNS), and inducing endometriosis-associated pain.    84 

Immune cells modulate the immune response to inflammation and bi-directionally 85 

interact with nociceptors [12]. Macrophages are considered to be key players in promoting 86 

endometriosis disease progression and associated pain [27-29], as abundant macrophages are 87 

present in ectopic lesions [30] and elevated in the peritoneal cavity [28, 31, 32]. 88 

Transcriptionally and functionally dysregulated macrophages can establish an inflammatory 89 

environment by secreting cytokines and chemokines that exacerbate innervation and 90 

vascularization of lesions [17, 28, 29, 32-34] and contribute to endometriosis-associated pain 91 

[32, 35, 36]. Peritoneal macrophages also contribute to the inflammatory condition by releasing 92 

cytokines and growth factors that stimulate local inflammation, lesion infiltration, and 93 

vascularization [28, 32, 37, 38]. Although peripheral inflammation and sensitization explain 94 
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some aspects of CPP, CPP can persist or recur in patients after lesion removal [39]. Furthermore, 95 

the severity of pain is not correlated with the lesion size, location, and extent of lesion infiltration 96 

into tissues [40]. Chronic hyperexcitability perhaps induces long-lasting neuroplastic 97 

modification in the CNS. 98 

Neuroinflammation is defined as an inflammatory response within the brain and spinal 99 

cord characterized by infiltration of leukocytes, activation of glial cells, and production of 100 

proinflammatory cytokines and chemokines [12]. Microglia and astrocytes are key regulators of 101 

inflammatory responses within CNS, and the activation of microglial and astrocytes is not only a 102 

significant cause of neurologic and neurodegenerative diseases but also painful insults [12, 41]. 103 

CPP can also result from CNS top-down activation via neuroinflammation triggered by the 104 

dorsal root reflex in the spinal cord to induce peripheral sensitization [12, 42]. In endometriosis, 105 

retrograde menstruation, the reflux of menstrual tissues via the fallopian tube into the pelvic 106 

cavity, has been widely accepted as the origin of endometriotic lesions [43]. It causes massive 107 

inflammatory responses in the peritoneum. However, retrograded menstrual debris is cleared 108 

from the pelvic cavity by an innate immune response in the majority of women who do not 109 

develop endometriosis [11, 44], but menstrual cycles repeatedly occur in women. Each 110 

retrograde menstruation induces composite inflammation in the pelvic cavity, and unsolved 111 

inflammation is expected to worsen to develop chronic conditions further [11, 25]. Thus, 112 

multiple chronic inflammatory stimuli are expected to enhance central sensitization and induce 113 

neuroinflammation, resulting in endometriosis-associated CPP.  114 

In the present study, we carried out repeated cycles of lesion induction to examine how 115 

multiple inductions of lesions mimic repeated retrograde menstruation sensitize CNS and 116 

whether they can drive neuroinflammation in a mouse model of endometriosis. We also 117 
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examined mechanical hyperalgesia, peripheral inflammatory mediators and immune cells in the 118 

lesions and peritoneal fluids, and neurotransmitters in the DRG to understand how peripheral 119 

stimuli are associated with central sensitization and endometriosis-associated pain behavior. 120 

 121 

Materials and Methods 122 

Animals 123 

C57BL/6 mice were purchased from Inotiv and housed in an environment-controlled 124 

animal facility (12:12 light-dark cycle) with ad libitum access to food and water. All animal 125 

experiments were performed at Washington State University according to the NIH guidelines for 126 

the care and use of laboratory animals (protocol #6751).  127 

 128 

Mouse model of endometriosis  129 

An experimental mouse model of endometriosis was employed by adopting a published 130 

procedure with minor modifications [45]. To induce endometriosis-like lesions, female mice 131 

(donor) were injected subcutaneously with pregnant mare serum gonadotropin (PMSG, 5 IU, 132 

Sigma) to stimulate an estrogenic response within the uterus. Uteri were harvested from donor 133 

mice 41 hours after PMSG injection. The endometrium was then separated from the myometrium 134 

and dissected into fragments (1-2 mm per side), and 50 mg of fragments were introduced via 135 

injection (in 200 µl of PBS) into the peritoneal cavity in the ovary-intact recipient under 136 

anesthesia via inhaled isoflurane. 137 

 138 

Study design 139 

           Endometriosis-like lesions were induced in the recipient mice for a single time (1x) or six 140 
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times (6x, at 2-week intervals), as shown in Fig. 1a. On Day -1 (a day before lesion induction), 141 

14, and 42 (2 and 6 weeks after the last induction of 1x or 6x inductions), a behavioral test was 142 

performed, and then mice were euthanized for sample collections: peritoneal fluid (PF) was 143 

recovered by lavage (4 mL x 2 of ice-cold PBS with 3% FBS), and lesions, bilateral lumbar (L4-144 

6) DRG, spinal cord (L4-6), and brain were collected for further analysis. 145 

 146 

Von Frey test 147 

A standard behavioral (mechanical sensitivity) test was performed before sample 148 

collection, as described by our laboratory previously [24, 25]. Mice (n=10/group) were allowed 149 

to acclimate in the testing room for 30 min, and then the von Frey test was performed using von 150 

Frey filaments (BIO-VF-M, Bioseb). Filaments were applied 10 times to the skin perpendicular 151 

to the lower abdomen and bilateral hind paws. The force in grams (g) of the filament evoking a 152 

withdrawal response (50% response count as sensitive) was recorded. Three behaviors were 153 

considered positive responses to filament stimulation: 1) sharp retraction of the abdomen, 2) 154 

immediate licking and/or scratching of the area of filament stimulation, or 3) jumping. All 155 

behavioral tests were performed blindly without describing the identity and details of treatment 156 

groups to investigators assessing pain. These data were then analyzed by another blinded 157 

investigator. 158 

 159 

Flow cytometry  160 

Single-cell suspensions of peritoneal exudate cells were used for analyzing immune cell 161 

profiles by flow cytometry as described previously [24, 25, 28, 29]. Briefly, peritoneal exudate 162 

cells were lysed using Red Blood Cell Lysis Buffer (BioLegend) and incubated at room 163 
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temperature for 20 min with Zombie Aqua™ Fixable Viability dye (Bio-Legend). The cells were 164 

blocked on ice for 20 min with Fc Block anti-CD16/CD32 (ThermoFisher) and stained with 165 

fluorochrome-conjugated monoclonal antibodies for 1 hour (Supplementary Table S1). Samples 166 

(n=5/group) were acquired with the Attune NxT Acoustic Focusing Cytometer using Attune NxT 167 

software (ThermoFisher), and data were analyzed with FlowJo v10.4 software (FLOWJO).  168 

 169 

IQELISA  170 

            Total protein yield from peritoneal fluid was determined by BCA assay (Pierce), and 171 

TNFα (IQM-TNFA-1), IL-1β (IQM-IL1b-1), and IL-6 (IQM-IL6-1) were further quantified by 172 

IQELISA kits (Ray Biotech) according to the manufacturer’s instructions (n=5/group).  173 

 174 

Immunohistochemistry 175 

Immunostaining of TRPV1, SP, CGRP, PGP 9.5, LYVE1, IBA1, GFAP, neurofilament, 176 

and CD68 was performed with cross-sections (5 µm) of paraffin-embedded tissues using specific 177 

primary antibodies (Supplementary Table S1) and AlexaFluor 488 or 568-conjugated F(ab’) 178 

secondary antibody (Molecular Probe) or VECTASTAIN ABC kit (Vector lab). Immunostaining 179 

images were acquired by Leica DM4 B microscopy. Cell-specific CD68-positive cells were 180 

counted and quantified by Image J in the area of 0.289768 mm2 (n=5/group). LYVE1-positive 181 

and PGP9.5-positive cells in the lesion were counted and quantified from three different areas 182 

(0.289768 mm2/area) using Leica LAS X software (n=5/group). Neurofilament was used as a 183 

pan-neuronal marker and was co-stained with TRPV1, SP, or CGRP. TRPV1, SP, or CGRP 184 

positive DRG neurons in the section were counted in the area of 0.289768 mm2, and the 185 

percentages of TRPV1, SP, or CGRP positive cells per neurofilament-positive DRG were shown 186 
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(n=5/group). 187 

 188 

Image analysis 189 

Image analysis for IBA1 and GFAP was performed as described previously [46] with 190 

some modifications. Immunostained IBA1 or GFAP images (1.159063 mm2 in size) of the spinal 191 

cord (dorsal horn) and the brain (cortex, hippocampus, thalamus, and hypothalamus) were taken 192 

and exported by a blinded researcher to avoid any experimental bias. The exported images 193 

(1280x960 pixels) were deconvoluted using the inbuilt “Color Deconvolution (H-DAB)” 194 

function in Fiji image analysis software to obtain brown-stained areas [47]. The images were 195 

loaded into the machine learning “Trainable Weka Segmentation” plugin in Fiji, and the plugin 196 

was trained to identify three classes of immunostaining: stained cells, non-stained cells, and 197 

background. Then, the images were processed to create a classified image and thresholded [48]. 198 

The size and the number of cells were measured using the “Analyze Particles” function in Fiji 199 

with a size threshold of 45-infinity. The number of cells was divided by the analyzed area. For 200 

determining the percentage area, the total area of immunoreactivity was divided by the analyzed 201 

area (n=5/group). 202 

 203 

Statistical analysis 204 

Statistical analyses were performed using GraphPad Prism (version 9.5). Data were tested 205 

for normal distribution using the Shapiro-Wilk normality test. If data were normally distributed, 206 

one-way ANOVA followed by Tukey multiple comparison tests was used to analyze the 207 

differences among the groups. If data were not normally distributed, Mann-Whitney or Kruskal-208 

Wallis test was performed. A P value less than 0.05 was considered to be statistically significant. 209 
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 210 

Results 211 

Endometriosis lesion development and endometriosis-associated hyperalgesia  212 

 We first assessed how multiple inoculations of the endometrium affect endometriotic 213 

lesion development and progression. Lesion numbers were significantly increased in the multiple 214 

induction mice at 2 weeks after the last lesion induction than in mice that received only a single 215 

induction (Fig. 1b). These numbers remained higher in the multiple induction mice at 6 weeks 216 

after the lesion induction (Fig. 1b). As macrophage infiltration is critical for lesion development, 217 

angiogenesis, and innervation [24, 25, 27], we next examined macrophages (CD68), lymphatic 218 

endothelial cells (LYVE1), and nerve cells (PGP9.5) in the lesions (Fig. 1cd). CD68+ 219 

macrophages were comparable in the single and multiple induction mice at 2 weeks, whereas 220 

more CD68+ macrophages were detected in the lesions with multiple inductions at 6 weeks (Fig. 221 

1cd). Abundant LYVE1+ cells were observed in the multiple induction mice compared to the 222 

single induction mice at 2 and 6 weeks (Fig. 1cd). Multiple induction mice showed more 223 

significant PGP9.5+ nerve cells in the lesions than single induction mice at 6 weeks, although 224 

they were not significantly different in the single and multiple induction mice at 2 weeks (Fig. 225 

1cd). Thus, multiple inductions further support endometriotic lesion development and 226 

progression by enhancing macrophage infiltration, angiogenesis/lymphangiogenesis, and 227 

innervation compared to the single induction. Specifically, macrophage infiltration and 228 

innervation remained greater in the multiple induction mice for extended periods.      229 

We next performed the von Frey test to examine the abdominal and hind paw retraction 230 

threshold to determine whether multiple lesion inductions affect endometriosis-associated 231 

hyperalgesia (Fig. 2). Both single and multiple induction mice withdrew abdominal retraction 232 
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thresholds with significantly lighter stimuli at 2 and/or 6 weeks than pre-induction mice (Fig. 233 

2a). The multiple inductions showed higher sensitivity than the single induction at 6 weeks (Fig. 234 

2a). The hind paw retraction thresholds were more sensitive in the single and multiple induction 235 

mice at 2 weeks than at the pre-induction (Fig. 2b). While the sensitivity of hind paw retraction 236 

returned to the pre-induction level at 6 weeks in the single induction mice, it remained high in 237 

the multiple induction mice at 6 weeks (Fig. 2b). The results suggest that the multiple induction 238 

mice sustain higher sensitivity not only in the abdomen where lesion were established but also a 239 

different body site for extended periods, indicating the signs of chronic overlapping pain 240 

conditions and/or widespread pain via central sensitization.  241 

 242 

Microglial activation and astrocytes in the brain and spinal cord 243 

 Endometriosis-associated pain can be exacerbated by central sensitization, and glial cells, 244 

such as microglia and astrocytes, contribute to developing neuroinflammation and chronic pain 245 

[12, 49-51]. Thus, we next analyzed IBA1 (a marker of microglia) and GFAP (a marker of 246 

astrocytes) in the brain and spinal cord (Figs. 3-5 and Supplementary Fig. S1). Specifically, the 247 

regions of the brain were selected due to the prefrontal cortex for pain processing [52], the 248 

hippocampus for pain memory, depression, and anxiety [53, 54], the thalamus for pain 249 

modulation and relaying signals [55], and the hypothalamus for mood disorders, stress control, 250 

and reproductive function [56].  251 

As an increase in microglial soma size is considered a key indicator of microglial 252 

activation [57, 58], we analyzed the soma size, cell number, and % of cell extended area of 253 

IBA1+ microglia, as previously shown [46]. There were no differences in soma size of the 254 

microglia within the cortex, hippocampus, thalamus, or hypothalamus of single induction mice at 255 
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2 and 6 weeks (Figs. 3a and 4a). In contrast, the microglia of multiple induction mice had 256 

significantly enlarged somas in the hippocampus at 2 and 6 weeks and in the thalamus at 2 weeks 257 

compared with those in pre-induction mice (Figs. 3a and 4a). Soma size in the hippocampus or 258 

thalamus of multiple induction mice at 6 weeks or 2 and 6 weeks, respectively, was greater than 259 

that of single induction mice at these same time points (Figs. 3a and 4a). IBA1+ microglia 260 

number and/or % of area were increased in the hippocampus and/or hypothalamus of single 261 

induction mice only at 2 weeks. However, they were elevated in the cortex, hippocampus, 262 

thalamus, and hypothalamus of multiple induction mice at both 2 and 6 weeks (Figs. 3a and 4a). 263 

Furthermore, multiple inductions induced more IBA1+ microglia number or % of area in most 264 

brain regions than single induction, some at 2 weeks but all at 6 weeks (Figs. 3a and 4a). 265 

Astrocyte-mediated neuroinflammation is also a key mechanism underlying the 266 

maintenance of chronic pain [12, 59, 60]. Chronic neuropathic pain is known to induce astrocyte 267 

swelling [61]. Thus, we next analyzed astrocytes in the brain regions (Figs. 3b and 4b, and 268 

Supplementary Fig. S1ab), following the evaluation methods of microglia. In the hippocampus, 269 

the soma size of the astrocytes was larger in the multiple induction mice than in pre-induction 270 

mice at 2 and 6 weeks, but unchanged in the single induction mice (Figs. 3b and 4b). At 6 weeks, 271 

the soma size of the astrocytes was greater in the multiple induction mice than in the single 272 

induction mice (Figs. 3b and 4b). GFAP+ astrocyte number and % of area were elevated in the 273 

single induction mice at 2 weeks and in the multiple induction mice at 2 and 6 weeks compared 274 

with those at pre-induction. Multiple inductions further increased GFAP+ astrocyte number 275 

and % than single induction at both time points (Figs. 3b and 4b). In contrast, the soma size of 276 

the astrocytes did not alter in the cortex, thalamus, and hypothalamus following single or 277 

multiple lesion inductions (Supplementary Fig. S1ab). GFAP+ astrocyte number and % of area 278 
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were elevated in the hypothalamus of multiple induction mice at 2 and 6 weeks, and % of 279 

GFAP+ area was higher in the cortex (Supplementary Fig. S1ab).   280 

In the spinal cord, the soma size of microglia and astrocytes was not altered by lesion 281 

induction (Figs. 5ab). Multiple inductions induced more IBA1+ microglia number and % of area 282 

compared with those in pre-induction mice, whereas single induction only increased % of IBA1+ 283 

area at 2 weeks (Figs. 5ab). GFAP+ astrocyte number was also elevated in the spinal cord by 284 

multiple inductions at 2 and 6 weeks, and the number was higher in the multiple induction mice 285 

than in the single induction mice at 6 weeks (Figs. 5ab).  286 

 287 

Pain-related mediators in the DRG  288 

DRG are sensory neurons that detect and transmit stimuli to the CNS [62]. We have 289 

reported increased expression of transient receptor potential channels, TRPV1, and 290 

neurotransmitters, such as SP and CGRP, in mouse endometriosis [25]. We thus examined 291 

TRPV1, SP, and CGRP in the L4-6 DRG, the primary spinal ganglia receiving sensory input 292 

from pelvic organs (Fig. 6). Both single and multiple lesion inductions increased TRPV1, SP, 293 

and CGRP expression at 2 weeks compared with those at pre-induction (Fig. 6ab). Elevated 294 

TRPV1+ and SP+ DRG remained high in the multiple induction mice at 6 weeks but not in the 295 

single induction mice, while CGRP+ DRG were still high in the single induction mice at 6 weeks 296 

(Fig. 6ab). Furthermore, more SP+ and CGRP+ DRG were detected in the multiple induction 297 

mice than in the single induction mice at 2 and 6 weeks (Fig. 6ab). These results indicate that 298 

multiple inductions induce prolonged stimulation of nociceptor neurons in the DRG. 299 

 300 

Peritoneal macrophage dynamics and inflammatory environment establishment in the 301 
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peritoneal cavity 302 

 Heterogenous macrophage populations time-dependly alter in the peritoneum after lesion 303 

induction in mice [25]. We next examined how multiple inductions affect proinflammatory 304 

macrophages (TIM4lo MHCIIhi), FRβ+ macrophages, and residential macrophages (TIM4hi 305 

MHCIIlo), as well as neutrophils (Ly6G+) (Fig. 7). Although there were no significant 306 

differences in the CD11b+ total macrophage population between single and multiple inductions 307 

at 2 and 6 weeks, Ly6G+ neutrophils were significantly elevated in the multiple induction mice 308 

at 2 weeks (Fig. 7ad). CD11b+ macrophages were further gated to TIM4lo MHCIIhi and TIM4hi 309 

MHCIIlo macrophages to examine proinflammatory and residential macrophages, respectively 310 

(Fig. 7b). Both single and multiple inductions reduced TIM4hi MHCIIlo macrophages at 2 weeks 311 

as a sign of macrophage disappearance reaction (MDR). The population of TIM4hi MHCIIlo 312 

macrophages at 2 weeks was lower in the multiple induction mice than in the single induction 313 

mice (Fig. 7be), suggesting that the multiple inductions induced severe MDR. At 6 weeks, 314 

residential macrophages in the single induction mice returned to the pre-induction level but were 315 

still lower in the multiple induction mice. Thus, the MDR induced by the single induction was 316 

replenished and recovered, but the MDR induced by multiple inductions was not entirely 317 

resolved at 6 weeks (Fig. 7be). The single and multiple inductions elevated TIM4lo MHCIIhi 318 

proinflammatory macrophages at 2 weeks, while the multiple inductions further elevated their 319 

populations (Fig. 7be). TIM4lo MHCIIhi macrophages returned to the pre-induction levels in both 320 

groups at 6 weeks (Fig. 7be). We have previously reported the FRβ+ macrophage population that 321 

was differentiated from monocyte-derived proinflammatory macrophages and possessed 322 

residential macrophage characteristics [29]. The single and multiple inductions elevated FRβ+ 323 

macrophages at 2 weeks compared to those in pre-induction level (Fig. 7cf). FRβ+ macrophages 324 
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were higher in the multiple induction mice than in the single induction mice at 2 weeks (Fig. 325 

7cf). High levels of FRβ+ macrophages were sustained at 6 weeks in the multiple induction mice 326 

(Fig. 7cf). When FRβ+ macrophages were further gated to TIM4+ or MHCIIhi, most of the FRβ+ 327 

macrophages expressed high MHCII but limited TIM4 expression after lesion induction (Fig. 328 

7cf). Specifically, MHCIIhi FRβ+ macrophages were significantly elevated by the multiple 329 

inductions at 2 weeks (Fig. 7cf). These results suggest that elevated FRβ+ macrophages after 330 

lesion inductions were newly recruited monocyte-derived highly inflammatory macrophages, and 331 

the multiple inductions further recruited and elevated them in the peritoneal cavity.  332 

 In addition to macrophages, we also examined peritoneal B- and T-cells (Supplementary 333 

Fig. S2). CD19+ B cells were reduced in the multiple induction mice at 2 weeks compared with 334 

those in the pre-induction mice (Supplementary Fig. S2ac). CD3+ T-cells were elevated at 2 335 

weeks in the multiple induction mice following increased CD8+ and CD4+ T-cells 336 

(Supplementary Fig. S2abd). CD4+ T-cells were higher at 6 weeks in the multiple induction 337 

mice than the single induction mice (Supplementary Fig. S2bd).    338 

 To confirm elevated inflammation via the multiple inductions, peritoneal TNFα, IL-1β, 339 

and IL-6 protein concentrations were assessed (Fig. 8), as these cytokines are considered the key 340 

factors involved in maintaining the aberrant peritoneal inflammatory environment, promoting 341 

lesion growth and mediating peripheral sensitization [63-65]. The single and multiple inductions 342 

significantly elevated secreted TNFα, IL-1β, and IL-6 levels in the peritoneal cavity (Fig. 8) at 2 343 

weeks. All cytokine levels were higher in the multiple induction mice than in the single induction 344 

mice at 2 weeks (Fig. 8). Furthermore, elevated cytokine levels returned to the pre-induction 345 

levels in the single induction mice at 6 weeks, however, they remained high in the multiple 346 

induction mice (Fig. 8). These results further support that the multiple inductions establish the 347 
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aberrant inflammatory environment in the peritoneal cavity.  348 

  349 

Discussion  350 

 Approximately 60-80% of women with endometriosis suffer endometriosis-associated 351 

CPP [66, 67], which is 13 times higher than healthy patients [67]. Endometriosis patients 352 

experience menstrual cyclic and acyclic pain, i.e. dysmenorrhea with dyschezia, dysuria, or 353 

dyspareunia [66], and pain can be expanded throughout the pelvis and abdomen, further referred 354 

to the back and legs [66]. Women with endometriosis are often diagnosed with bladder and colon 355 

sensory dysfunctions, such as irritable bowel syndrome (IBS) and/or overactive bladder 356 

syndrome (OAB) [68]. Widespread pain is also a common experience in women with 357 

endometriosis. Phan et al. [69] have reported that endometriosis-associated CPP often causes 358 

myofascial dysfunction and sensitization beyond the pelvic regions that may be initiated or 359 

maintained by ongoing pelvic floor spasms. These comorbidities indicate widely varied 360 

endometriosis-associated CPP and more complex pathophysiology of endometriosis. Recent 361 

evidence suggests that protracted peripheral and central sensitization are present in endometriosis 362 

patients with CPP [11]. In the present study, we designed to induce multiple endometrial 363 

inoculations to mimic retrograde menstruation, as mice do not have menstrual cycles. As an 364 

important phenotype, our study demonstrated that multiple inductions of lesions resulted in 365 

greater hyperalgesia, especially presenting increased prolonged hind paw sensitivities in addition 366 

to abdominal sensitivity. While abdominal sensitivity is considered peripheral visceral pain due 367 

to thinner skin and less underlying muscle, the hind paw can be affected by both peripheral and 368 

central sensitization processing neural pathways [70]. Although lesion numbers were increased 369 

by multiple inductions as a nature of the mouse model of endometriosis (>90% of mice develop 370 
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lesions, which could be a limitation of the study), endometriosis-associated pain is not correlated 371 

with disease extent in women with endometriosis [11]. Thus, endometriotic lesion-dependent 372 

pain is apparent; however, these lesions cannot be the sole source of endometriosis-associated 373 

CPP.         374 

 Our results showed prolonged glial activation in several brain regions in the multiple 375 

induction mice. A consistent increase in the soma size of microglia and/or IBA+ microglial cells 376 

was observed in the brain and spinal cord, which indicates characteristic features of 377 

neuroinflammation in the CNS. Interestingly, the larger soma size of microglia and astrocytes 378 

with elevated IBA+ or GFAP+ cells was only observed in the hippocampus. Many studies have 379 

reported hippocampus abnormalities in patients experiencing chronic pain, anxiety, and 380 

depression [71]. GFAP+ astrocytes in the hippocampus are associated with mood disorders in 381 

persistent pain states [60, 71]. Endometriosis is known to affect the mental health and emotional 382 

well-being of women, leading to anxiety and depression [72, 73]. Due to abundant glial 383 

activation in the hippocampus induced by multiple inductions, cyclic sources of peripheral input 384 

are likely to induce neuroinflammation for extended periods, causing anxiety and depression and 385 

reducing the quality of life in endometriosis women. IBA1+ microglial cells were increased in 386 

the cortex, which has important pain-processing functions connecting stimuli to other brain 387 

regions, such as the hippocampus and thalamus [52]. As-Sanie et al. [74, 75] demonstrate that 388 

changes in regional gray matter volume within the central pain system in the cortex play an 389 

important role in developing endometriosis-associated CPP, regardless of the endometriotic 390 

lesions. While the connection between neuroinflammation and the altered gray matter volume in 391 

the cortex is unclear, the changes in the central pain system are crucial to developing 392 

endometriosis-associated CPP. In addition to the hippocampus and/or cortex, we have observed a 393 
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persistent increase of IBA1+ and GFAP+ cells in the hypothalamus in the multiple induction 394 

mice. Microglia in the hypothalamus are considered to be key regulators of homeostasis 395 

processes, transmitting sensing signals to the CNS [76]. Microglia can regulate the 396 

hypothalamus-pituitary-adrenal (HPA) axis with the involvement of the stress process in 397 

controlling cortisol levels [77, 78]. Neuroinflammation in the hypothalamus can also alter the 398 

HGA axis and develop glucocorticoid resistance associated with somatic diseases and depressive 399 

disorders [79]. Thus, our results support the contribution of hypothalamus neuroinflammation for 400 

endometriosis-associated anxiety and depression. 401 

Increased soma size of microglia has been reported in the cortex, hippocampus, thalamus, 402 

and hypothalamus in a mouse model of endometriosis with a single induction of lesion [46]. In 403 

contrast, single lesion induction in our study did not show strong glial activation, except IBA1+ 404 

microglia and GFAP+ astrocytes in the hippocampus or hypothalamus or IBA1+ microglia in the 405 

spinal cord at 2 weeks. However, it should be noted that a different method was used to induce 406 

lesions in the previous study [46]. Chiefly, the uterine fragments were inoculated by a 407 

dorsolateral incision [46], whereas we chose to inject minced endometrial tissues with a needle 408 

to reduce the amount of procedural-specific inflammatory stimulation. We thus assume that the 409 

higher stimuli were induced by the cutting and suturing of the skin and muscle layer than the 410 

simple injection. In support of this, ovariectomy “surgery” can increase macrophage 411 

replenishment and alter the peritoneal immune environment [80].  412 

 In the present study, multiple lesion inductions elevated peripheral inflammation due to 413 

high and persistent TNFα, IL-1β, and IL-6 levels in the peritoneal fluid for extended periods. In 414 

contrast, single induction only increased cytokine levels up to 2 weeks after lesion induction, 415 

meaning initial inflammation has probably been resolved. The results of immune cell distribution 416 
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in the peritoneal cavity support establishing a chronic inflammatory environment via multiple 417 

inductions. Peritoneal macrophages are highly diverse [29, 80], differ in their ontogeny [81], and 418 

have transcriptionally and functionally divergent features depending on the signals of the local 419 

environment [82]. When endometrial tissues are introduced in the peritoneum, acute 420 

inflammatory responses are caused. Peritoneal residential macrophages (TIM4hi MCHIIlo) are 421 

important for the initial uptake where they adhere to the mesothelium to cover organs [83, 84] or 422 

die via pyroptosis to release proinflammatory cytokines, such as IL-1β [85], called MDR. If 423 

residential macrophages die/disappear, they appear to be replaced by bone marrow/monocyte-424 

derived macrophages [86]. Our study showed that MDR induced by multiple inductions was 425 

more severe than that in the single induction. In support of our previous study [25], MDR was 426 

recovered by 6 weeks in the single induction mice, whereas MDR was not fully solved at 6 427 

weeks in the multiple induction mice. Following MDR results, a more significant monocyte-428 

derived proinflammatory macrophage population was found in the multiple induction mice, 429 

indicating higher levels of inflammation with severe replenishment of macrophages have 430 

occurred. Interestingly, Ly6G+ neutrophils were also elevated in the multiple induction mice at 2 431 

weeks. Neutrophils are first to arrive in the peritoneal cavity when inflammation occurs as an 432 

initial inflammatory response and die immediately after [87]. Thus, persistent inflammatory 433 

stimuli still exist in the peritoneal cavity 2 weeks after lesion induction in the multiple induction 434 

mice. Our previous study demonstrates that monocyte-derived proinflammatory macrophages 435 

further differentiate into FRβ+ macrophages with some residential macrophage features (=large 436 

peritoneal macrophages) [29]. Herein, we show that newly recruited FRβ+ macrophages highly 437 

express MHCII but lowly express TIM4. These results suggest that repetitive inoculations of 438 

endometrial tissues cause persistent inflammatory stimuli to enhance and maintain peripheral 439 
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chronic inflammation, probably elevating FRβ+ macrophages. Because neurotransmitters (SP 440 

and CGRP) and TRPV1 were greater in the DRG in the multiple induction mice, chronic 441 

inflammatory stimuli further affect the peripheral sensory nervous system. Of note, the peritoneal 442 

T-cell population was increased in multiple induction mice, which was not seen in our previous 443 

study using a single induction mouse endometriosis [24, 25, 28]. CD8+ T cells have been 444 

reported to be enriched in the endometriotic lesions, potentially linked to endometriosis 445 

development, infertility, and chronic pain [88, 89]. Further involvement of T-cell functions and 446 

CPP remains to be studied.    447 

In the present study, we used a multiple induction mouse model of endometriosis to 448 

mimic repeatedly occurring retrograde menstruation to study how endometriosis-associated CPP 449 

has been established. We demonstrate that multiple inductions can enhance peripheral 450 

sensitization via established chronic inflammation with altered peritoneal macrophage profiles. 451 

We have also found that multiple inductions of lesions induce persistent glial cell activation as a 452 

sign of neuroinflammation across several brain regions linked to pain processing, anxiety, 453 

depression, and stress response. Neuroinflammation can give feedback to stimulate peripheral 454 

organs, potentially inducing widespread pain in endometriosis patients. Indeed, the multiple 455 

induction mice showed higher endometriosis-associated hyperalgesia than the single induction 456 

mice. Especially hind paw sensitivity was persistent in the multiple induction mice, although 457 

anxiety and depression-related behavioral tests should be included in future studies. Thus, 458 

repeatedly occurring retrograde menstruation can be the peripheral stimuli that induce 459 

nociceptive pain but also induce composite chronic inflammatory stimuli, which may cause 460 

neuroinflammation and further sensitize CNS. The circuits of neuroplasticity from enhanced 461 

chronic inflammation and stimulation of peripheral organs via the feedback loop of 462 
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neuroinflammation may induce widespread endometriosis-associated CPP. It is known that the 463 

presence of endometriosis lesions does not appropriately explain endometriosis-associated CPP, 464 

and additional mechanisms to understand dysfunctions in the CNS can be crucial [66, 74, 75, 90, 465 

91]. While many studies focus on lesion formation and development in the pathogenesis of 466 

endometriosis, it will be necessary to study underlying mechanisms for the endometriosis-467 

associated CPP to understand endometriosis pathophysiology further.   468 
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Figure legends 738 

Figure 1. Multiple lesion induction mouse model of endometriosis. (a) Experimental study 739 

design as described in Material and Methods. (b) Quantification of lesion numbers in the single 740 

or multiple induction mice at 2 or 6 weeks after the last lesion induction (n=10). Representative 741 

immunohistochemical images (c) and quantification (d) of CD68+, LYVE1+, or PGP9.5+ cells 742 

in the lesions (n=5). Data are shown as the mean ± SEM. ELL: endometriosis-like lesions. *P < 743 

0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.  744 

 745 

Figure 2. Evaluation of endometriosis-associated hyperalgesia followed by single or multiple 746 

inductions at 2 or 6 weeks after the last lesion induction. Abdominal (a) and hind paw (b) 747 

withdrawal thresholds were assessed using the von Frey test. Data are shown as mean ± SEM (n 748 

= 10). ELL: endometriosis-like lesions. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.  749 

 750 

Figure 3. Representative immunohistochemical images of (a) IBA1 in the cortex, hippocampus, 751 

thalamus, and hypothalamus, and (b) GFAP in the hippocampus in the single and multiple 752 

induction mice at 2 or 6 weeks after the last lesion induction. ELL: endometriosis-like lesions.  753 

 754 

Figure 4. Quantification of immunohistochemical images of (a) IBA1 in the cortex, 755 

hippocampus, thalamus, and hypothalamus, and (b) GFAP in the hippocampus in the single and 756 

multiple induction mice at 2 or 6 weeks after the last lesion induction. Data are shown as mean ± 757 

SEM (n = 5). ELL: endometriosis-like lesions. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 758 

0.0001.  759 

 760 
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Figure 5. Representative immunohistochemical images (a) and quantification (bc) of IBA and 761 

GFAP in the spinal cord in the single and multiple induction mice at 2 or 6 weeks after the last 762 

lesion induction. Data are shown as the mean ± SEM (n=5). ELL: endometriosis-like lesions. *P 763 

< 0.05. 764 

 765 

Figure 6. Expression of TRPV1, SP, and CGRP in DRG in the single and multiple induction 766 

mice at 2 or 6 weeks after the last lesion induction. (a) Representative images showing DRG 767 

sections double stained with TRPV1, SP, or CGRP (red), and neurofilament (green), as a marker 768 

of neural cells. (b) Quantification of TRPV1+, SP+, or CGRP+ cells in neurofilament-positive 769 

cells. Data are shown as the mean ± SEM (n=5). ELL: endometriosis-like lesions. *P < 0.05, **P 770 

< 0.01, ***P < 0.001, ****P < 0.0001.  771 

 772 

Figure 7. Comparison of peritoneal immune cell profiles in the single and multiple induction 773 

mice at 2 or 6 weeks after the last lesion induction. (a) Representative flow plots illustrating the 774 

composition of CD11b+ and Ly6G+ cells. (b) CD11b+ cells were further gated by TIM4 and 775 

MHCII. (c) CD11b+ cells were further gated by FRβ (top), and FRβ+ cells were then gated by 776 

TIM4 and MHCII (bottom). Proportions of CD11b+ or Ly6G+ (d) and TIM4hi MHCIIlo and 777 

TIM4lo MHCIIhi (e) are shown. (f) Proportions of FRβ+ of CD11b+ cells, and TIM4+ or MHCIIhi 778 

of FRβ+ macrophages were shown. Data are shown as the mean ± SEM (n=5). ELL: 779 

endometriosis-like lesions. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.  780 

 781 

Figure 8. Proinflammatory cytokine levels (TNFα, IL-1β, and IL-6) in the peritoneal fluid were 782 

analyzed by IQELISA. Data are shown as the mean ± SEM (n=5). ELL: endometriosis-like 783 
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lesions. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.  784 

 785 

Supplementary Figure S1. Representative immunohistochemical images (a) and quantification 786 

(b) of GFAP in the cortex, thalamus, and hypothalamus. Data are shown as the mean ± SEM 787 

(n=5). ELL: endometriosis-like lesions. **P < 0.01, ***P < 0.001, ****P < 0.0001.  788 

 789 

Supplementary Figure S2. Comparison of peritoneal B or T cell profiles in the single and 790 

multiple induction mice at 2 or 6 weeks after the last lesion induction. (a) Representative flow 791 

plots illustrating the composition of CD19+ and CD3+ cells. (b) CD3+ cells were further gated 792 

by CD8 and CD4. Proportions of CD19+ or CD3+ (c) and CD8+ or CD4+ (d) are shown. Data 793 

are shown as the mean ± SEM (n=5). ELL: endometriosis-like lesions. *P < 0.05, **P < 0.01, 794 

****P < 0.0001.  795 
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