1	Multiple lesion inductions intensify central sensitization driven by neuroinflammation in a
2	mouse model of endometriosis.
3	
4	
5	Madeleine E. Harvey ¹⁺ , Mingxin Shi ¹⁺ , Yeongseok Oh ¹⁺ , Debra A. Mitchell ¹ , Ov D. Slayden ² ,
6	James A. MacLean II ¹ , Kanako Hayashi ^{1*}
7	
8	
9	¹ School of Molecular Biosciences, Center for Reproductive Biology, Washington State
10	University, 1770 NE Stadium Way, Pullman, WA, 99164, USA
11	² Division of Reproductive and Developmental Sciences, Oregon National Primate Research
12	Center, Oregon Health & Science University, Beaverton, OR, 97006, USA.
13	
14	*Correspondence: Kanako Hayashi, <u>k.hayashi@wsu.edu</u>
15	† These authors contributed equally to this work.
16	
17	Keywords: Endometriosis, Chronic pain, Neuroinflammation, Central sensitization,
18	Macrophages, and Chronic inflammation.

19 Abstract

Introduction: Endometriosis is an inflammatory disease associated with chronic pelvic pain 20 (CPP). Growing evidence indicates that endometriotic lesions are not the sole source of pain. 21 Instead, central nervous system (CNS) dysfunction created by prolonged peripheral and central 22 sensitization plays a role in developing endometriosis-associated CPP. This study investigated 23 24 how CPP is established using a multiple lesion induction mouse model of endometriosis, as repeated retrograde menstruation is considered underlying endometriosis pathogenesis. 25 Methods: We generated endometriosis-like lesions by injecting endometrial tissue fragments 26 27 into the peritoneal cavity in mice. The mice received a single (1x) or multiple inductions (6x) to simulate recurrent retrograde menstruation. Lesion development, hyperalgesia by behavioral 28 29 testing, signs of peripheral sensitization, chronic inflammation, and neuroinflammation were examined with lesions, peritoneal fluids, dorsal root ganglia (DRG), spinal codes, and brain. 30 Results: Multiple lesion inductions increased lesion numbers and elevated abdominal and hind 31 paw hypersensitivity compared to single induction mice. Elevated persistent glial cell activation 32 across several brain regions and/or spinal cords was found in the multiple induction mice. 33 Specifically, IBA1+ microglial soma size was increased in the hippocampus and thalamus. 34 35 IBA1+ cells were abundant in the cortex, hippocampus, thalamus, and hypothalamus of the multiple induction mice. GFAP+ astrocytes were mainly elevated in the hippocampus. Elevated 36 TRPV1, SP, and CGRP expressions in the DRG were persistent in the multiple induction mice. 37 Furthermore, multiple inductions induced the severe disappearance of TIM4^{hi} MHCII^{lo} 38 residential macrophages and the influx of increased proinflammatory TIM4^{lo} MHCII^{hi} 39 40 macrophages in the peritoneal cavity. The single and multiple inductions elevated secreted 41 TNF α , IL-1 β , and IL-6 levels in the peritoneal cavity at 2 weeks. Elevated cytokine levels

- 42 returned to the pre-induction levels in the single induction mice at 6 weeks; however, they
- 43 remained elevated in the multiple induction mice.
- 44 **Conclusions:** Our results indicate that the repeatedly occurring lesion inductions (=mimic
- 45 retrograde menstruation) can be a peripheral stimulus that induces nociceptive pain and creates
- 46 composite chronic inflammatory stimuli to cause neuroinflammation and sensitize the CNS. The
- 47 circuits of neuroplasticity and stimulation of peripheral organs via a feedback loop of
- 48 neuroinflammation may mediate widespread endometriosis-associated CPP.

49 Introduction

Endometriosis is a chronic inflammatory disease characterized by the presence of 50 endometrium-like tissues outside the uterus [1] that affects approximately 10% of reproductive-51 aged women, representing ~190 million women worldwide [2, 3]. It can cause debilitating 52 chronic pelvic pain (CPP), manifesting dysmenorrhea, dyschezia, dysuria, dyspareunia, and 53 54 acyclic pelvis pain that dramatically reduces the quality of life of women [4-7]. Many patients can endure symptoms for several decades due to the onset of endometriosis-associated pain 55 during adolescence [3] and have a greater risk of chronic opioid use for pain relief [8]. Despite a 56 57 sizeable clinical burden, the pathogenesis of endometriosis is complicated and remains poorly understood. The current medical treatment/management is non-curative. It is limited to surgical 58 59 excision of endometriotic lesions and/or hormonal treatments to suppress estrogen production and action due to endometriosis being an estrogen-dependent disease. Surgical excision of 60 lesions can alleviate endometriosis-associated pain, though pelvic pain frequently returns within 61 a year of lesion removal, even in the absence of lesion regeneration [9, 10]. Thus, endometriosis-62 associated CPP is not solely dependent on the presence of lesions [11]. 63 Pain relies on peripheral stimuli to the spinal cord for processing and perception by the 64 65 brain. Inflammatory mediators, such as proinflammatory cytokines and chemokines, prostaglandins, and NGF, evoke pain by directly activating and sensitizing nociceptor neurons in 66 the peripheral tissues via modulation of various ion channels like TRPA1, TRPV1, and voltage-67 68 gated sodium channels [12]. Sensitized and activated nociceptors, specifically C-fibers, secrete

69 neuropeptides like SP and CGRP [13], which can trigger a positive feedback loop to stimulate

70 proinflammatory mediator secretion, further perpetuating pain signaling [11]. Through these

71 processes of sensory signal transduction, increased release of neurotransmitters, such as SP and

72	CGRP, induces hyperactivity and hypersensitivity in the spinal cord and brain, known as central
73	sensitization [14]. In endometriosis, abundant immune responses are present at lesion sites with
74	increased proinflammatory cytokines and chemokines, growth factors, and NGF found
75	throughout the pelvic cavity [15-18]. Elevated TNF α , IL-1 β , and IL-6 levels have been reported
76	in the peritoneal fluids and/or eutopic and ectopic endometrial tissues of women with
77	endometriosis [17, 19-21]. Specifically, $TNF\alpha$, IL-1 β , CLL5, and NGF are elevated in the pelvic
78	cavity of endometriosis patients who reported CPP [22, 23]. We have shown that TNF α , IL-1 β ,
79	and IL-6 are elevated in the peritoneal fluids after a single induction of lesions in a mouse model
80	of endometriosis [24, 25]. Lesion induction increases SP, CGRP, and TRPV1 expression in the
81	dorsal root ganglia (DRG) and elevates mechanical hyperalgesia and allodynia [24, 25]. Thus,
82	elevated inflammatory mediators sensitize nociceptor neurons in the endometriotic lesions and/or
83	pelvic organs, initiating pain stimuli, transferring them to the spinal cord and brain to sensitize
84	the central nervous system (CNS), and inducing endometriosis-associated pain.
85	Immune cells modulate the immune response to inflammation and bi-directionally
86	interact with nociceptors [12]. Macrophages are considered to be key players in promoting
87	endometriosis disease progression and associated pain [27-29], as abundant macrophages are
88	present in ectopic lesions [30] and elevated in the peritoneal cavity [28, 31, 32].
89	Transcriptionally and functionally dysregulated macrophages can establish an inflammatory
90	environment by secreting cytokines and chemokines that exacerbate innervation and
91	vascularization of lesions [17, 28, 29, 32-34] and contribute to endometriosis-associated pain
92	[32, 35, 36]. Peritoneal macrophages also contribute to the inflammatory condition by releasing
93	cytokines and growth factors that stimulate local inflammation, lesion infiltration, and
94	vascularization [28, 32, 37, 38]. Although peripheral inflammation and sensitization explain

some aspects of CPP, CPP can persist or recur in patients after lesion removal [39]. Furthermore,
the severity of pain is not correlated with the lesion size, location, and extent of lesion infiltration
into tissues [40]. Chronic hyperexcitability perhaps induces long-lasting neuroplastic
modification in the CNS.

Neuroinflammation is defined as an inflammatory response within the brain and spinal 99 100 cord characterized by infiltration of leukocytes, activation of glial cells, and production of proinflammatory cytokines and chemokines [12]. Microglia and astrocytes are key regulators of 101 inflammatory responses within CNS, and the activation of microglial and astrocytes is not only a 102 103 significant cause of neurologic and neurodegenerative diseases but also painful insults [12, 41]. CPP can also result from CNS top-down activation via neuroinflammation triggered by the 104 dorsal root reflex in the spinal cord to induce peripheral sensitization [12, 42]. In endometriosis, 105 106 retrograde menstruation, the reflux of menstrual tissues via the fallopian tube into the pelvic cavity, has been widely accepted as the origin of endometriotic lesions [43]. It causes massive 107 inflammatory responses in the peritoneum. However, retrograded menstrual debris is cleared 108 109 from the pelvic cavity by an innate immune response in the majority of women who do not develop endometriosis [11, 44], but menstrual cycles repeatedly occur in women. Each 110 111 retrograde menstruation induces composite inflammation in the pelvic cavity, and unsolved inflammation is expected to worsen to develop chronic conditions further [11, 25]. Thus, 112 113 multiple chronic inflammatory stimuli are expected to enhance central sensitization and induce 114 neuroinflammation, resulting in endometriosis-associated CPP. In the present study, we carried out repeated cycles of lesion induction to examine how 115

multiple inductions of lesions mimic repeated retrograde menstruation sensitize CNS and
whether they can drive neuroinflammation in a mouse model of endometriosis. We also

118	examined mechanical hyperalgesia, peripheral inflammatory mediators and immune cells in the
119	lesions and peritoneal fluids, and neurotransmitters in the DRG to understand how peripheral
120	stimuli are associated with central sensitization and endometriosis-associated pain behavior.
121	
122	Materials and Methods
123	Animals
124	C57BL/6 mice were purchased from Inotiv and housed in an environment-controlled
125	animal facility (12:12 light-dark cycle) with ad libitum access to food and water. All animal
126	experiments were performed at Washington State University according to the NIH guidelines for
127	the care and use of laboratory animals (protocol #6751).
128	
129	Mouse model of endometriosis
130	An experimental mouse model of endometriosis was employed by adopting a published
131	procedure with minor modifications [45]. To induce endometriosis-like lesions, female mice
132	(donor) were injected subcutaneously with pregnant mare serum gonadotropin (PMSG, 5 IU,
133	Sigma) to stimulate an estrogenic response within the uterus. Uteri were harvested from donor
134	mice 41 hours after PMSG injection. The endometrium was then separated from the myometrium
135	and dissected into fragments (1-2 mm per side), and 50 mg of fragments were introduced via
136	injection (in 200 μ l of PBS) into the peritoneal cavity in the ovary-intact recipient under
137	anesthesia via inhaled isoflurane.
138	
139	Study design

140 Endometriosis-like lesions were induced in the recipient mice for a single time (1x) or six

times (6x, at 2-week intervals), as shown in Fig. 1a. On Day -1 (a day before lesion induction),
14, and 42 (2 and 6 weeks after the last induction of 1x or 6x inductions), a behavioral test was
performed, and then mice were euthanized for sample collections: peritoneal fluid (PF) was
recovered by lavage (4 mL x 2 of ice-cold PBS with 3% FBS), and lesions, bilateral lumbar (L46) DRG, spinal cord (L4-6), and brain were collected for further analysis.

146

147 Von Frey test

A standard behavioral (mechanical sensitivity) test was performed before sample 148 149 collection, as described by our laboratory previously [24, 25]. Mice (n=10/group) were allowed to acclimate in the testing room for 30 min, and then the von Frey test was performed using von 150 Frey filaments (BIO-VF-M, Bioseb). Filaments were applied 10 times to the skin perpendicular 151 152 to the lower abdomen and bilateral hind paws. The force in grams (g) of the filament evoking a withdrawal response (50% response count as sensitive) was recorded. Three behaviors were 153 considered positive responses to filament stimulation: 1) sharp retraction of the abdomen, 2) 154 immediate licking and/or scratching of the area of filament stimulation, or 3) jumping. All 155 behavioral tests were performed blindly without describing the identity and details of treatment 156 groups to investigators assessing pain. These data were then analyzed by another blinded 157 investigator. 158

159

160 Flow cytometry

161 Single-cell suspensions of peritoneal exudate cells were used for analyzing immune cell 162 profiles by flow cytometry as described previously [24, 25, 28, 29]. Briefly, peritoneal exudate 163 cells were lysed using Red Blood Cell Lysis Buffer (BioLegend) and incubated at room

164	temperature for 20 min with Zombie Aqua TM Fixable Viability dye (Bio-Legend). The cells were
165	blocked on ice for 20 min with Fc Block anti-CD16/CD32 (ThermoFisher) and stained with
166	fluorochrome-conjugated monoclonal antibodies for 1 hour (Supplementary Table S1). Samples
167	(n=5/group) were acquired with the Attune NxT Acoustic Focusing Cytometer using Attune NxT
168	software (ThermoFisher), and data were analyzed with FlowJo v10.4 software (FLOWJO).
169	
170	IQELISA
171	Total protein yield from peritoneal fluid was determined by BCA assay (Pierce), and
172	TNF α (IQM-TNFA-1), IL-1 β (IQM-IL1b-1), and IL-6 (IQM-IL6-1) were further quantified by
173	IQELISA kits (Ray Biotech) according to the manufacturer's instructions (n=5/group).
174	
175	Immunohistochemistry
176	Immunostaining of TRPV1, SP, CGRP, PGP 9.5, LYVE1, IBA1, GFAP, neurofilament,
177	and CD68 was performed with cross-sections (5 μ m) of paraffin-embedded tissues using specific
178	primary antibodies (Supplementary Table S1) and AlexaFluor 488 or 568-conjugated F(ab')
179	secondary antibody (Molecular Probe) or VECTASTAIN ABC kit (Vector lab). Immunostaining
180	images were acquired by Leica DM4 B microscopy. Cell-specific CD68-positive cells were
181	counted and quantified by Image J in the area of 0.289768 mm ² (n=5/group). LYVE1-positive
182	and PGP9.5-positive cells in the lesion were counted and quantified from three different areas
183	(0.289768 mm ² /area) using Leica LAS X software (n=5/group). Neurofilament was used as a
184	pan-neuronal marker and was co-stained with TRPV1, SP, or CGRP. TRPV1, SP, or CGRP
185	positive DRG neurons in the section were counted in the area of 0.289768 mm ² , and the
186	percentages of TRPV1, SP, or CGRP positive cells per neurofilament-positive DRG were shown

187 (n=5/group).

188

189 Image analysis

Image analysis for IBA1 and GFAP was performed as described previously [46] with 190 some modifications. Immunostained IBA1 or GFAP images (1.159063 mm² in size) of the spinal 191 192 cord (dorsal horn) and the brain (cortex, hippocampus, thalamus, and hypothalamus) were taken and exported by a blinded researcher to avoid any experimental bias. The exported images 193 (1280x960 pixels) were deconvoluted using the inbuilt "Color Deconvolution (H-DAB)" 194 195 function in Fiji image analysis software to obtain brown-stained areas [47]. The images were loaded into the machine learning "Trainable Weka Segmentation" plugin in Fiji, and the plugin 196 197 was trained to identify three classes of immunostaining: stained cells, non-stained cells, and 198 background. Then, the images were processed to create a classified image and thresholded [48]. The size and the number of cells were measured using the "Analyze Particles" function in Fiji 199 with a size threshold of 45-infinity. The number of cells was divided by the analyzed area. For 200 determining the percentage area, the total area of immunoreactivity was divided by the analyzed 201 area (n=5/group). 202

203

204 Statistical analysis

205 Statistical analyses were performed using GraphPad Prism (version 9.5). Data were tested 206 for normal distribution using the Shapiro-Wilk normality test. If data were normally distributed, 207 one-way ANOVA followed by Tukey multiple comparison tests was used to analyze the 208 differences among the groups. If data were not normally distributed, Mann-Whitney or Kruskal-209 Wallis test was performed. A P value less than 0.05 was considered to be statistically significant.

210

211 Results

212 Endometriosis lesion development and endometriosis-associated hyperalgesia

We first assessed how multiple inoculations of the endometrium affect endometriotic 213 lesion development and progression. Lesion numbers were significantly increased in the multiple 214 215 induction mice at 2 weeks after the last lesion induction than in mice that received only a single induction (Fig. 1b). These numbers remained higher in the multiple induction mice at 6 weeks 216 after the lesion induction (Fig. 1b). As macrophage infiltration is critical for lesion development, 217 218 angiogenesis, and innervation [24, 25, 27], we next examined macrophages (CD68), lymphatic endothelial cells (LYVE1), and nerve cells (PGP9.5) in the lesions (Fig. 1cd). CD68+ 219 220 macrophages were comparable in the single and multiple induction mice at 2 weeks, whereas 221 more CD68+ macrophages were detected in the lesions with multiple inductions at 6 weeks (Fig. 1cd). Abundant LYVE1+ cells were observed in the multiple induction mice compared to the 222 single induction mice at 2 and 6 weeks (Fig. 1cd). Multiple induction mice showed more 223 significant PGP9.5+ nerve cells in the lesions than single induction mice at 6 weeks, although 224 they were not significantly different in the single and multiple induction mice at 2 weeks (Fig. 225 1cd). Thus, multiple inductions further support endometriotic lesion development and 226 progression by enhancing macrophage infiltration, angiogenesis/lymphangiogenesis, and 227 228 innervation compared to the single induction. Specifically, macrophage infiltration and 229 innervation remained greater in the multiple induction mice for extended periods.

We next performed the von Frey test to examine the abdominal and hind paw retraction threshold to determine whether multiple lesion inductions affect endometriosis-associated hyperalgesia (Fig. 2). Both single and multiple induction mice withdrew abdominal retraction

thresholds with significantly lighter stimuli at 2 and/or 6 weeks than pre-induction mice (Fig. 233 2a). The multiple inductions showed higher sensitivity than the single induction at 6 weeks (Fig. 234 2a). The hind paw retraction thresholds were more sensitive in the single and multiple induction 235 mice at 2 weeks than at the pre-induction (Fig. 2b). While the sensitivity of hind paw retraction 236 returned to the pre-induction level at 6 weeks in the single induction mice, it remained high in 237 238 the multiple induction mice at 6 weeks (Fig. 2b). The results suggest that the multiple induction mice sustain higher sensitivity not only in the abdomen where lesion were established but also a 239 different body site for extended periods, indicating the signs of chronic overlapping pain 240 241 conditions and/or widespread pain via central sensitization. 242 Microglial activation and astrocytes in the brain and spinal cord 243 Endometriosis-associated pain can be exacerbated by central sensitization, and glial cells, 244 such as microglia and astrocytes, contribute to developing neuroinflammation and chronic pain 245 [12, 49-51]. Thus, we next analyzed IBA1 (a marker of microglia) and GFAP (a marker of 246 astrocytes) in the brain and spinal cord (Figs. 3-5 and Supplementary Fig. S1). Specifically, the 247 regions of the brain were selected due to the prefrontal cortex for pain processing [52], the 248 249 hippocampus for pain memory, depression, and anxiety [53, 54], the thalamus for pain modulation and relaying signals [55], and the hypothalamus for mood disorders, stress control, 250 and reproductive function [56]. 251 252 As an increase in microglial soma size is considered a key indicator of microglial activation [57, 58], we analyzed the soma size, cell number, and % of cell extended area of 253 IBA1+ microglia, as previously shown [46]. There were no differences in soma size of the 254 255 microglia within the cortex, hippocampus, thalamus, or hypothalamus of single induction mice at

256 2 and 6 weeks (Figs. 3a and 4a). In contrast, the microglia of multiple induction mice had significantly enlarged somas in the hippocampus at 2 and 6 weeks and in the thalamus at 2 weeks 257 compared with those in pre-induction mice (Figs. 3a and 4a). Soma size in the hippocampus or 258 thalamus of multiple induction mice at 6 weeks or 2 and 6 weeks, respectively, was greater than 259 260 that of single induction mice at these same time points (Figs. 3a and 4a). IBA1+ microglia 261 number and/or % of area were increased in the hippocampus and/or hypothalamus of single induction mice only at 2 weeks. However, they were elevated in the cortex, hippocampus, 262 thalamus, and hypothalamus of multiple induction mice at both 2 and 6 weeks (Figs. 3a and 4a). 263 264 Furthermore, multiple inductions induced more IBA1+ microglia number or % of area in most brain regions than single induction, some at 2 weeks but all at 6 weeks (Figs. 3a and 4a). 265 Astrocyte-mediated neuroinflammation is also a key mechanism underlying the 266 267 maintenance of chronic pain [12, 59, 60]. Chronic neuropathic pain is known to induce astrocyte swelling [61]. Thus, we next analyzed astrocytes in the brain regions (Figs. 3b and 4b, and 268 269 Supplementary Fig. S1ab), following the evaluation methods of microglia. In the hippocampus, 270 the soma size of the astrocytes was larger in the multiple induction mice than in pre-induction mice at 2 and 6 weeks, but unchanged in the single induction mice (Figs. 3b and 4b). At 6 weeks, 271 272 the soma size of the astrocytes was greater in the multiple induction mice than in the single induction mice (Figs. 3b and 4b). GFAP+ astrocyte number and % of area were elevated in the 273 274 single induction mice at 2 weeks and in the multiple induction mice at 2 and 6 weeks compared 275 with those at pre-induction. Multiple inductions further increased GFAP+ astrocyte number and % than single induction at both time points (Figs. 3b and 4b). In contrast, the soma size of 276 277 the astrocytes did not alter in the cortex, thalamus, and hypothalamus following single or 278 multiple lesion inductions (Supplementary Fig. S1ab). GFAP+ astrocyte number and % of area

279	were elevated in the hypothalamus of multiple induction mice at 2 and 6 weeks, and % of
280	GFAP+ area was higher in the cortex (Supplementary Fig. S1ab).
281	In the spinal cord, the soma size of microglia and astrocytes was not altered by lesion
282	induction (Figs. 5ab). Multiple inductions induced more IBA1+ microglia number and % of area
283	compared with those in pre-induction mice, whereas single induction only increased % of IBA1+
284	area at 2 weeks (Figs. 5ab). GFAP+ astrocyte number was also elevated in the spinal cord by
285	multiple inductions at 2 and 6 weeks, and the number was higher in the multiple induction mice
286	than in the single induction mice at 6 weeks (Figs. 5ab).
287	
288	Pain-related mediators in the DRG
289	DRG are sensory neurons that detect and transmit stimuli to the CNS [62]. We have
290	reported increased expression of transient receptor potential channels, TRPV1, and
291	neurotransmitters, such as SP and CGRP, in mouse endometriosis [25]. We thus examined
292	TRPV1, SP, and CGRP in the L4-6 DRG, the primary spinal ganglia receiving sensory input
293	from pelvic organs (Fig. 6). Both single and multiple lesion inductions increased TRPV1, SP,
294	and CGRP expression at 2 weeks compared with those at pre-induction (Fig. 6ab). Elevated
295	TRPV1+ and SP+ DRG remained high in the multiple induction mice at 6 weeks but not in the
296	single induction mice, while CGRP+ DRG were still high in the single induction mice at 6 weeks
297	(Fig. 6ab). Furthermore, more SP+ and CGRP+ DRG were detected in the multiple induction
298	mice than in the single induction mice at 2 and 6 weeks (Fig. 6ab). These results indicate that
299	multiple inductions induce prolonged stimulation of nociceptor neurons in the DRG.
300	

301 Peritoneal macrophage dynamics and inflammatory environment establishment in the

302 peritoneal cavity

Heterogenous macrophage populations time-dependly alter in the peritoneum after lesion 303 induction in mice [25]. We next examined how multiple inductions affect proinflammatory 304 macrophages (TIM4^{lo} MHCII^{hi}), FRβ+ macrophages, and residential macrophages (TIM4^{hi} 305 MHCII^{lo}), as well as neutrophils (Ly6G+) (Fig. 7). Although there were no significant 306 307 differences in the CD11b+ total macrophage population between single and multiple inductions at 2 and 6 weeks, Ly6G+ neutrophils were significantly elevated in the multiple induction mice 308 at 2 weeks (Fig. 7ad). CD11b+ macrophages were further gated to TIM4^{lo} MHCII^{hi} and TIM4^{hi} 309 MHCII^{lo} macrophages to examine proinflammatory and residential macrophages, respectively 310 (Fig. 7b). Both single and multiple inductions reduced TIM4^{hi} MHCII^{lo} macrophages at 2 weeks 311 as a sign of macrophage disappearance reaction (MDR). The population of TIM4^{hi} MHCII^{lo} 312 313 macrophages at 2 weeks was lower in the multiple induction mice than in the single induction mice (Fig. 7be), suggesting that the multiple inductions induced severe MDR. At 6 weeks, 314 residential macrophages in the single induction mice returned to the pre-induction level but were 315 still lower in the multiple induction mice. Thus, the MDR induced by the single induction was 316 replenished and recovered, but the MDR induced by multiple inductions was not entirely 317 resolved at 6 weeks (Fig. 7be). The single and multiple inductions elevated TIM4^{lo} MHCII^{hi} 318 proinflammatory macrophages at 2 weeks, while the multiple inductions further elevated their 319 populations (Fig. 7be). TIM4^{lo} MHCII^{hi} macrophages returned to the pre-induction levels in both 320 321 groups at 6 weeks (Fig. 7be). We have previously reported the FR β + macrophage population that was differentiated from monocyte-derived proinflammatory macrophages and possessed 322 residential macrophage characteristics [29]. The single and multiple inductions elevated FR^{β+} 323 324 macrophages at 2 weeks compared to those in pre-induction level (Fig. 7cf). FR β + macrophages

325	were higher in the multiple induction mice than in the single induction mice at 2 weeks (Fig.
326	7cf). High levels of FR β + macrophages were sustained at 6 weeks in the multiple induction mice
327	(Fig. 7cf). When FR β + macrophages were further gated to TIM4+ or MHCII ^{hi} , most of the FR β +
328	macrophages expressed high MHCII but limited TIM4 expression after lesion induction (Fig.
329	7cf). Specifically, MHCII ^{hi} FR β + macrophages were significantly elevated by the multiple
330	inductions at 2 weeks (Fig. 7cf). These results suggest that elevated FR β + macrophages after
331	lesion inductions were newly recruited monocyte-derived highly inflammatory macrophages, and
332	the multiple inductions further recruited and elevated them in the peritoneal cavity.
333	In addition to macrophages, we also examined peritoneal B- and T-cells (Supplementary
334	Fig. S2). CD19+ B cells were reduced in the multiple induction mice at 2 weeks compared with
335	those in the pre-induction mice (Supplementary Fig. S2ac). CD3+ T-cells were elevated at 2
336	weeks in the multiple induction mice following increased CD8+ and CD4+ T-cells
337	(Supplementary Fig. S2abd). CD4+ T-cells were higher at 6 weeks in the multiple induction
338	mice than the single induction mice (Supplementary Fig. S2bd).
339	To confirm elevated inflammation via the multiple inductions, peritoneal TNF α , IL-1 β ,
340	and IL-6 protein concentrations were assessed (Fig. 8), as these cytokines are considered the key
341	factors involved in maintaining the aberrant peritoneal inflammatory environment, promoting
342	lesion growth and mediating peripheral sensitization [63-65]. The single and multiple inductions
343	significantly elevated secreted TNF α , IL-1 β , and IL-6 levels in the peritoneal cavity (Fig. 8) at 2
344	weeks. All cytokine levels were higher in the multiple induction mice than in the single induction
345	mice at 2 weeks (Fig. 8). Furthermore, elevated cytokine levels returned to the pre-induction
346	levels in the single induction mice at 6 weeks, however, they remained high in the multiple
347	induction mice (Fig. 8). These results further support that the multiple inductions establish the

348 aberrant inflammatory environment in the peritoneal cavity.

349

350 Discussion

Approximately 60-80% of women with endometriosis suffer endometriosis-associated 351 CPP [66, 67], which is 13 times higher than healthy patients [67]. Endometriosis patients 352 353 experience menstrual cyclic and acyclic pain, i.e. dysmenorrhea with dyschezia, dysuria, or dyspareunia [66], and pain can be expanded throughout the pelvis and abdomen, further referred 354 to the back and legs [66]. Women with endometriosis are often diagnosed with bladder and colon 355 356 sensory dysfunctions, such as irritable bowel syndrome (IBS) and/or overactive bladder syndrome (OAB) [68]. Widespread pain is also a common experience in women with 357 358 endometriosis. Phan et al. [69] have reported that endometriosis-associated CPP often causes 359 myofascial dysfunction and sensitization beyond the pelvic regions that may be initiated or maintained by ongoing pelvic floor spasms. These comorbidities indicate widely varied 360 endometriosis-associated CPP and more complex pathophysiology of endometriosis. Recent 361 evidence suggests that protracted peripheral and central sensitization are present in endometriosis 362 patients with CPP [11]. In the present study, we designed to induce multiple endometrial 363 364 inoculations to mimic retrograde menstruation, as mice do not have menstrual cycles. As an important phenotype, our study demonstrated that multiple inductions of lesions resulted in 365 greater hyperalgesia, especially presenting increased prolonged hind paw sensitivities in addition 366 367 to abdominal sensitivity. While abdominal sensitivity is considered peripheral visceral pain due to thinner skin and less underlying muscle, the hind paw can be affected by both peripheral and 368 central sensitization processing neural pathways [70]. Although lesion numbers were increased 369 370 by multiple inductions as a nature of the mouse model of endometriosis (>90% of mice develop

lesions, which could be a limitation of the study), endometriosis-associated pain is not correlated
with disease extent in women with endometriosis [11]. Thus, endometriotic lesion-dependent
pain is apparent; however, these lesions cannot be the sole source of endometriosis-associated
CPP.

Our results showed prolonged glial activation in several brain regions in the multiple 375 376 induction mice. A consistent increase in the soma size of microglia and/or IBA+ microglial cells was observed in the brain and spinal cord, which indicates characteristic features of 377 neuroinflammation in the CNS. Interestingly, the larger soma size of microglia and astrocytes 378 379 with elevated IBA+ or GFAP+ cells was only observed in the hippocampus. Many studies have reported hippocampus abnormalities in patients experiencing chronic pain, anxiety, and 380 depression [71]. GFAP+ astrocytes in the hippocampus are associated with mood disorders in 381 persistent pain states [60, 71]. Endometriosis is known to affect the mental health and emotional 382 well-being of women, leading to anxiety and depression [72, 73]. Due to abundant glial 383 activation in the hippocampus induced by multiple inductions, cyclic sources of peripheral input 384 are likely to induce neuroinflammation for extended periods, causing anxiety and depression and 385 reducing the quality of life in endometriosis women. IBA1+ microglial cells were increased in 386 387 the cortex, which has important pain-processing functions connecting stimuli to other brain regions, such as the hippocampus and thalamus [52]. As-Sanie et al. [74, 75] demonstrate that 388 389 changes in regional gray matter volume within the central pain system in the cortex play an 390 important role in developing endometriosis-associated CPP, regardless of the endometriotic lesions. While the connection between neuroinflammation and the altered gray matter volume in 391 392 the cortex is unclear, the changes in the central pain system are crucial to developing 393 endometriosis-associated CPP. In addition to the hippocampus and/or cortex, we have observed a

persistent increase of IBA1+ and GFAP+ cells in the hypothalamus in the multiple induction 394 mice. Microglia in the hypothalamus are considered to be key regulators of homeostasis 395 processes, transmitting sensing signals to the CNS [76]. Microglia can regulate the 396 hypothalamus-pituitary-adrenal (HPA) axis with the involvement of the stress process in 397 controlling cortisol levels [77, 78]. Neuroinflammation in the hypothalamus can also alter the 398 399 HGA axis and develop glucocorticoid resistance associated with somatic diseases and depressive disorders [79]. Thus, our results support the contribution of hypothalamus neuroinflammation for 400 endometriosis-associated anxiety and depression. 401 402 Increased soma size of microglia has been reported in the cortex, hippocampus, thalamus, and hypothalamus in a mouse model of endometriosis with a single induction of lesion [46]. In 403 contrast, single lesion induction in our study did not show strong glial activation, except IBA1+ 404 microglia and GFAP+ astrocytes in the hippocampus or hypothalamus or IBA1+ microglia in the 405 spinal cord at 2 weeks. However, it should be noted that a different method was used to induce 406 lesions in the previous study [46]. Chiefly, the uterine fragments were inoculated by a 407 dorsolateral incision [46], whereas we chose to inject minced endometrial tissues with a needle 408 to reduce the amount of procedural-specific inflammatory stimulation. We thus assume that the 409 higher stimuli were induced by the cutting and suturing of the skin and muscle layer than the 410 simple injection. In support of this, ovariectomy "surgery" can increase macrophage 411 412 replenishment and alter the peritoneal immune environment [80]. 413 In the present study, multiple lesion inductions elevated peripheral inflammation due to high and persistent TNF α , IL-1 β , and IL-6 levels in the peritoneal fluid for extended periods. In 414 415 contrast, single induction only increased cytokine levels up to 2 weeks after lesion induction, 416 meaning initial inflammation has probably been resolved. The results of immune cell distribution

in the peritoneal cavity support establishing a chronic inflammatory environment via multiple 417 inductions. Peritoneal macrophages are highly diverse [29, 80], differ in their ontogeny [81], and 418 have transcriptionally and functionally divergent features depending on the signals of the local 419 environment [82]. When endometrial tissues are introduced in the peritoneum, acute 420 inflammatory responses are caused. Peritoneal residential macrophages (TIM4^{hi} MCHII^{lo}) are 421 422 important for the initial uptake where they adhere to the mesothelium to cover organs [83, 84] or die via pyroptosis to release proinflammatory cytokines, such as IL-1 β [85], called MDR. If 423 residential macrophages die/disappear, they appear to be replaced by bone marrow/monocyte-424 425 derived macrophages [86]. Our study showed that MDR induced by multiple inductions was more severe than that in the single induction. In support of our previous study [25], MDR was 426 427 recovered by 6 weeks in the single induction mice, whereas MDR was not fully solved at 6 428 weeks in the multiple induction mice. Following MDR results, a more significant monocytederived proinflammatory macrophage population was found in the multiple induction mice, 429 indicating higher levels of inflammation with severe replenishment of macrophages have 430 occurred. Interestingly, Ly6G+ neutrophils were also elevated in the multiple induction mice at 2 431 weeks. Neutrophils are first to arrive in the peritoneal cavity when inflammation occurs as an 432 433 initial inflammatory response and die immediately after [87]. Thus, persistent inflammatory stimuli still exist in the peritoneal cavity 2 weeks after lesion induction in the multiple induction 434 mice. Our previous study demonstrates that monocyte-derived proinflammatory macrophages 435 436 further differentiate into FR β + macrophages with some residential macrophage features (=large peritoneal macrophages) [29]. Herein, we show that newly recruited FR β + macrophages highly 437 438 express MHCII but lowly express TIM4. These results suggest that repetitive inoculations of 439 endometrial tissues cause persistent inflammatory stimuli to enhance and maintain peripheral

chronic inflammation, probably elevating FR β + macrophages. Because neurotransmitters (SP 440 and CGRP) and TRPV1 were greater in the DRG in the multiple induction mice, chronic 441 inflammatory stimuli further affect the peripheral sensory nervous system. Of note, the peritoneal 442 T-cell population was increased in multiple induction mice, which was not seen in our previous 443 study using a single induction mouse endometriosis [24, 25, 28]. CD8+ T cells have been 444 445 reported to be enriched in the endometriotic lesions, potentially linked to endometriosis development, infertility, and chronic pain [88, 89]. Further involvement of T-cell functions and 446 CPP remains to be studied. 447

In the present study, we used a multiple induction mouse model of endometriosis to 448 mimic repeatedly occurring retrograde menstruation to study how endometriosis-associated CPP 449 450 has been established. We demonstrate that multiple inductions can enhance peripheral 451 sensitization via established chronic inflammation with altered peritoneal macrophage profiles. We have also found that multiple inductions of lesions induce persistent glial cell activation as a 452 sign of neuroinflammation across several brain regions linked to pain processing, anxiety, 453 depression, and stress response. Neuroinflammation can give feedback to stimulate peripheral 454 organs, potentially inducing widespread pain in endometriosis patients. Indeed, the multiple 455 456 induction mice showed higher endometriosis-associated hyperalgesia than the single induction mice. Especially hind paw sensitivity was persistent in the multiple induction mice, although 457 458 anxiety and depression-related behavioral tests should be included in future studies. Thus, 459 repeatedly occurring retrograde menstruation can be the peripheral stimuli that induce nociceptive pain but also induce composite chronic inflammatory stimuli, which may cause 460 461 neuroinflammation and further sensitize CNS. The circuits of neuroplasticity from enhanced 462 chronic inflammation and stimulation of peripheral organs via the feedback loop of

463	neuroinflammation may induce widespread endometriosis-associated CPP. It is known that the
464	presence of endometriosis lesions does not appropriately explain endometriosis-associated CPP,
465	and additional mechanisms to understand dysfunctions in the CNS can be crucial [66, 74, 75, 90,
466	91]. While many studies focus on lesion formation and development in the pathogenesis of
467	endometriosis, it will be necessary to study underlying mechanisms for the endometriosis-
468	associated CPP to understand endometriosis pathophysiology further.
469	
470	Author contributions
471	M.S. and K.H. designed the research; M.H., M.S., Y.O., and D.M. performed research and
472	analyzed data; J.A.M. and O.D.S. provided critical feedback on the manuscript; K.H. wrote the
473	paper; all authors read, reviewed, edited, and approved the manuscript.
474	
475	Funding
476	This work was supported by NIH/NICHD, R01HD104619 (to KH), and NIH, P51OD011092 (to
477	ODS).
478	
479	Availability of data and materials
480	The raw data and images used and analyzed for the study are available upon reasonable request.
481	
482	Ethics approval and consent to participate
483	All animal experiments were performed at Washington State University according to the NIH
484	guidelines for the care and use of laboratory animals (protocol #6751).
485	

486 **Consent for publication**

487 Not applicable.

488

489 Competing interests

490 The authors declare that they have no competing interests.

491

492 **Reference**

493	1.	Brosens I, Brosens JJ, Benagiano G: The eutopic endometrium in endometriosis: are the
494		changes of clinical significance? <i>Reprod Biomed Online</i> 2012, 24 (5):496-502.
495	2.	Saunders PTK, Horne AW: Endometriosis: Etiology, pathobiology, and therapeutic
496		prospects. Cell 2021, 184(11):2807-2824.
497	3.	Zondervan KT, Becker CM, Missmer SA: Endometriosis. The New England journal of medicine
498		2020, 382 (13):1244-1256.
499	4.	Nnoaham KE, Hummelshoj L, Webster P, d'Hooghe T, de Cicco Nardone F, de Cicco Nardone C,
500		Jenkinson C, Kennedy SH, Zondervan KT, World Endometriosis Research Foundation Global
501		Study of Women's Health c: Impact of endometriosis on quality of life and work
502		productivity: a multicenter study across ten countries. Fertility and sterility 2011, 96(2):366-
503		373 e368.
504	5.	Sepulcri Rde P, do Amaral VF: Depressive symptoms, anxiety, and quality of life in women
505		with pelvic endometriosis. Eur J Obstet Gynecol Reprod Biol 2009, 142(1):53-56.
506	6.	Simoens S, Dunselman G, Dirksen C, Hummelshoj L, Bokor A, Brandes I, Brodszky V, Canis M,
507		Colombo GL. DeLeire T et al: The burden of endometriosis: costs and quality of life of
508		women with endometriosis and treated in referral centres. <i>Human reproduction</i> 2012.
509		27 (5):1292-1299
510	7	Zondervan KT, Becker CM, Koga K, Missmer SA, Taylor RN, Vigano P. Endometriosis. Nat
511	<i>,</i> .	Rev Dis Primers 2018 $4(1)$:9
512	8	Chiuve SF Kilpatrick RD Hornstein MD Petruski-Ivleva N Wearzyn I R Dabrowski FC
512	0.	Velentges P. Snakes MC. Bateman BT: Chronic onioid use and complication risks in women
51/		with endometricsis: A cohort study in US administrative claims. <i>Pharmacoanidamiol Drug</i>
515		Saf 2021 $30(6)$.787 706
516	0	Abbett I Howa I Hunter D Holmes M Finn D Corry D: Lanaroscopic evolution of
510	9.	andometricsis: a randomized placebo controlled trial <i>Eartility and starility</i> 2004 92 (4):878
517		endometriosis. a randomized, pracebo-controlled trial. <i>Pertutty and Steritity</i> 2004, 82 (4).878-
510	10	oot. Shakiba K. Bana IF. MaCill KM. Minger I. Falcone T. Surgical treatment of andometricsis: a
219	10.	7 year follow up on the requirement for further surgery. Obstativies and graceless 2008
520		111 (6).1295 1202
521	11	111(0).1203-1292. Moddom I. Coundy I. Costro I. Drivelov SM: Dain in Endometricsis. Event Coll Neurosci 2020
522	11.	Maddenii J, Ofundy L, Casuo J, Bheney SM. Fan in Endometriosis. From Cen Neurosci 2020, 14.500822
525	10	14.390023. I. D. Naaklay A. Hub V. Tarranda N. Maiynar W: Naurainflammation and Control
524	12.	JI KK, Nackley A, Hull I, Tellalido N, Maixilei W. Neuroinfianniadon and Central Sensitization in Chuonic and Wideenwood Dain. Anosthesislass, 2018, 120(2):242-266
525	12	Sensitization in Chronic and widespread Fain. Anesthesiology 2018, 129(2):343-300.
520	13.	Chiu INI, von Henn CA, wooli CJ: Neurogenic initammation and the peripheral nervous
527	14	Wealf CL Selter MW. Neuronal plasticity increasing the gain in pain Science 2000
528	14.	woolf CJ, Salter MW: Neuronal plasticity: increasing the gain in pain. Science 2000,
529	1.5	288 (54/2):1/65-1/69.
530	15.	Berkkanoglu M, Arici A: Immunology and endometriosis. American journal of reproductive
531	16	immunology 2003, 50(1):48-59.
532	16.	Capobianco A, Monno A, Cottone L, Venneri MA, Biziato D, Di Puppo F, Ferrari S, De Palma
533		M, Manfredi AA, Rovere-Querini P: Proangiogenic Tie2(+) macrophages infiltrate human
534		and murine endometriotic lesions and dictate their growth in a mouse model of the disease.
535		The American journal of pathology 2011, 179 (5):2651-2659.
536	17.	Rana N, Braun DP, House R, Gebel H, Rotman C, Dmowski WP: Basal and stimulated
537		secretion of cytokines by peritoneal macrophages in women with endometriosis. Fertility and
538		sterility 1996, 65 (5):925-930.
539	18.	Symons LK, Miller JE, Kay VR, Marks RM, Liblik K, Koti M, Tayade C: The
		Immun on other handle are of Endom stringing. Then $d_{2}M_{1}M_{2}d_{2}019$ $34(0),749.762$

541 19. Bergqvist A, Bruse C, Carlberg M, Carlstrom K: Interleukin 1beta, interleukin-6, and tumor necrosis factor-alpha in endometriotic tissue and in endometrium. Fertility and sterility 2001, 542 543 75(3):489-495. 544 20. Keenan JA, Chen TT, Chadwell NL, Torry DS, Caudle MR: IL-1 beta, TNF-alpha, and IL-2 in peritoneal fluid and macrophage-conditioned media of women with endometriosis. 545 American journal of reproductive immunology 1995, 34(6):381-385. 546 547 21. Malutan AM, Drugan T, Costin N, Ciortea R, Bucuri C, Rada MP, Mihu D: Proinflammatory 548 cytokines for evaluation of inflammatory status in endometriosis. Cent Eur J Immunol 2015, 549 40(1):96-102. Bedaiwy MA, Falcone T, Sharma RK, Goldberg JM, Attaran M, Nelson DR, Agarwal A: 550 22. Prediction of endometriosis with serum and peritoneal fluid markers: a prospective 551 552 controlled trial. Human reproduction 2002, 17(2):426-431. 553 23. Scholl B, Bersinger NA, Kuhn A, Mueller MD: Correlation between symptoms of pain and peritoneal fluid inflammatory cytokine concentrations in endometriosis. Gynecol Endocrinol 554 2009, 25(11):701-706. 555 24. Herup-Wheeler T, Shi M, Harvey ME, Talwar C, Kommagani R, MacLean II JA, Hayashi K: 556 557 High-fat diets promote peritoneal inflammation and augment endometriosis-associated 558 abdominal hyperalgesia. Front Endocrinol (Lausanne) 2024. 559 25. Shi M, MacLean JA, 2nd, Hayashi K: The involvement of peritoneal GATA6(+) macrophages 560 in the pathogenesis of endometriosis. Frontiers in immunology 2024, 15:1396000. Ji RR, Chamessian A, Zhang YQ: Pain regulation by non-neuronal cells and inflammation. 561 26. 562 Science 2016, 354(6312):572-577. 563 27. Hogg C, Horne AW, Greaves E: Endometriosis-Associated Macrophages: Origin, Phenotype, 564 and Function. Front Endocrinol (Lausanne) 2020, 11:7. 565 28. Shi M, Sekulovski N, Whorton AE, MacLean JA, 2nd, Greaves E, Hayashi K: Efficacy of 566 niclosamide on the intra-abdominal inflammatory environment in endometriosis. FASEB J 2021, 35(5):e21584. 567 568 29. Zhao L, Shi M, Winuthayanon S, MacLean JA, 2nd, Hayashi K: Niclosamide targets the dynamic progression of macrophages for the resolution of endometriosis in a mouse model. 569 Commun Biol 2022, 5(1):1225. 570 571 30. Capobianco A, Rovere-Ouerini P: Endometriosis, a disease of the macrophage. Frontiers in immunology 2013, 4:9. 572 573 31. Hill JA, Faris HM, Schiff I, Anderson DJ: Characterization of leukocyte subpopulations in the peritoneal fluid of women with endometriosis. Fertility and sterility 1988, 50(2):216-222. 574 Bacci M, Capobianco A, Monno A, Cottone L, Di Puppo F, Camisa B, Mariani M, Brignole C, 32. 575 576 Ponzoni M, Ferrari S et al: Macrophages are alternatively activated in patients with 577 endometriosis and required for growth and vascularization of lesions in a mouse model of disease. The American journal of pathology 2009, 175(2):547-556. 578 579 33. Prather GR, MacLean JA, 2nd, Shi M, Boadu DK, Paquet M, Hayashi K: Niclosamide As a Potential Nonsteroidal Therapy for Endometriosis That Preserves Reproductive Function 580 in an Experimental Mouse Model. Biology of reproduction 2016, 95(4):76. 581 582 34. Beste MT, Pfaffle-Doyle N, Prentice EA, Morris SN, Lauffenburger DA, Isaacson KB, Griffith LG: Molecular network analysis of endometriosis reveals a role for c-Jun-regulated 583 584 macrophage activation. Science translational medicine 2014, 6(222):222ra216. 35. Forster R, Sarginson A, Velichkova A, Hogg C, Dorning A, Horne AW, Saunders PTK, Greaves 585 E: Macrophage-derived insulin-like growth factor-1 is a key neurotrophic and nerve-586 587 sensitizing factor in pain associated with endometriosis. FASEB J 2019:fj201900797R. 588 36. Wu J, Xie H, Yao S, Liang Y: Macrophage and nerve interaction in endometriosis. J 589 *Neuroinflammation* 2017, **14**(1):53.

590 591	37.	Cheong YC, Shelton JB, Laird SM, Richmond M, Kudesia G, Li TC, Ledger WL: IL-1 , IL-6 and TNF-alpha concentrations in the peritoneal fluid of women with pelvic adhesions . <i>Human</i>
592	38	Sekiguchi K. Ito V. Hattori K. Inoue T. Hosono K. Honda M. Numao A. Amano H. Shihuya M.
593	56.	Unno N at al: VECE Docontor 1 Expressing Macronhages Descripted from Bone Marrow
594		Enhances Angiogenesis in Endometrial Tissues Sci Pap 2010 0(1):7027
595	30	Abbott IA Hawe I Clayton PD Garry R: The affacts and affactiveness of lanarosconic
507	57.	aversion of andometricsis: a prospective study with 2.5 year follow up. Human reproduction
508		2003 18 (0):1022 1027
590	40	Adamson GD: Endometriesis classification: an undate Curr Opin Obstat Curacel 2011
599	40.	Addition OD. Endometriosis classification. an update. Curr Opin Obstet Oynecol 2011, 23 (A):213-220
601	<i>4</i> 1	23(4).213-220. Kwon US, Kab SU: Nouroinflammation in nourodogenerative disorders: the roles of
601	41.	microglia and astroputes. Transl Neurodogoner 2020. 0(1):42
602	12	Vorthes DN Sondlyhler I. Neurogenia neuroinflormation, inflormatory CNS reactions in
603	42.	Adminos DN, Sandkumer J: Neurogenic neuroinnanination: innaninatory CNS reactions in response to neuronal activity. Nat Pay Neurosci 2014, 15(1):42–52
604 605	12	response to neuronal activity. Nal Rev Neurosci 2014, 15(1):45-55.
605	43.	Sampson JA: Metastatic of Empolic Endometriosis, due to the Menstrual Dissemination of Endometrial Tissue into the Veneus Circulation. The American journal of notheless 1027
606		Endometrial Fissue into the venous Circulation . The American journal of pathology 1927, 2 (2):02,110,142
607	11	S(2):95-110 145. O DE Baskama T. Van dan Exinda K. Vanhia A. Detaras DD. Maulaman C. Tamassatti C. Basman
608	44.	UDF, Koskams I, van den Eynde K, vannie A, Peterse DF, Meuleman C, Tomasseur C, Peeraer
609		K, D Hooghe TM, Fassoender A: The Presence of Endometrial Cens in Peritoneal Fluid of Warran With and With ant Endometriagia. Danua dusting asimpso 2017. 24(2):242-251
610	15	Women with and without Endometriosis. <i>Reproductive sciences</i> 2017, 24(2):242-251.
611	45.	Notifick wB, Colvin A, Cheng KF, Al-Abed Y: Inhibition of macrophage migration
612		inhibitory factor reduces endometriolic implant size in mice with experimentally induced
613	10	disease . J Endometr 2011, 5 (3):135-142.
614 C15	46.	Basnir ST, Redden CR, Raj K, Arcanjo RB, Stasiak S, Li Q, Steelman AJ, Nowak RA:
615		Endometriosis leads to central nervous system-wide gial activation in a mouse model of
616	47	endometriosis. J Neuroinflammation 2023, 20(1):59.
617	4/.	Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch I, Preibisch S, Rueden
618		C, Saaifeid S, Schmid B et al: Fiji: an open-source platform for biological-image analysis. Nat
619	10	Meinoas 2012, 9(7):070-082.
620	48.	Arganda-Carreras I, Kaynig V, Rueden C, Eliceiri Kw, Schindelin J, Cardona A, Sebastian
621		Seung H: I rainable weka Segmentation: a machine learning tool for microscopy pixel
622	40	classification. Bioinformatics 2017, 53 (15):2424-2426.
623	49.	Ikeda H, Kiritoshi I, Murase K: Contribution of microglia and astrocytes to the central
624 C25	50	sensitization, inflammatory and neuropathic pain in the juvenile rat. Mol Pain 2012, 8:43.
625	50.	rang Y, Liu L, Xu D, Zhang W, Zhang Y, Zhou J, Huang W: Interaction between astrocytic
626		colony stimulating factor and its receptor on microglia mediates central sensitization and
627		benavioral hypersensitivity in chronic post ischemic pain model. Brain Behav Immun 2018,
628	5 1	
629	51.	Xie YF, Zhang S, Chiang CY, Hu JW, Dostrovsky JO, Sessie BJ: Involvement of glia in central
630		sensitization in trigeminal subnucleus caudalis (medullary dorsal norn). Brain Benav Immun
631	50	2007, 21(5):634-641.
632	52.	Ung w Y, Stonier CS, Herr DR: Kole of the Prefrontal Cortex in Pain Processing. <i>Mol</i>
633	50	Neuropiol 2019, 50 (2):113/-1100.
634	55.	Mutso AA, Radzicki D, Baliki MN, Huang L, Banisadr G, Centeno MV, Radulovic J, Martina M,
635		Willer KJ, Apkarian AV: Abnormalities in hippocampal functioning with persistent pain. J
030 627	54	Iveurosci 2012, 32 (1/):5/4/-5/30. Doulous C. Molluch SD. Semanaol D. Sachura DII. Develing DJ. Development DM. Himmerson
620 620	34.	Darkus C, Michingh SB, Sprengel K, Seedurg PH, Kawlins JN, Bannerman DM: Hippocampal
850 620		INVIDA receptors and anxiety: at the interface between cognition and emotion . Eur J
639		<i>Pharmacol</i> 2010, 020 (1):49-56.

640 641	55.	Ab Aziz CB, Ahmad AH: The role of the thalamus in modulating pain . <i>Malays J Med Sci</i> 2006 13 (2):11-18
642	56	Bao AM. Swaab DF: The human hypothalamus in mood disorders: The HPA axis in the
643	50.	center. IBRO Rep 2019, 6:45-53.
644	57.	Davis BM, Salinas-Navarro M, Cordeiro MF, Moons L, De Groef L: Characterizing microglia
645		activation: a spatial statistics approach to maximize information extraction. Sci Rep 2017,
646		7(1):1576.
647	58.	Green TRF, Rowe RK: Quantifying microglial morphology: an insight into function. Clinical
648		and experimental immunology 2024, 216 (3):221-229.
649	59.	Tsuda M: Modulation of Pain and Itch by Spinal Glia. Neurosci Bull 2018, 34(1):178-185.
650	60.	Ji RR, Donnelly CR, Nedergaard M: Astrocytes in chronic pain and itch. Nat Rev Neurosci
651		2019, 20 (11):667-685.
652	61.	He L, Ma S, Ding Z, Huang Z, Zhang Y, Xi C, Zou K, Deng Q, Huang WJM, Guo Q et al:
653		Inhibition of NFAT5-Dependent Astrocyte Swelling Alleviates Neuropathic Pain. Adv Sci
654		(Weinh) 2024, 11(11):e2302916.
655	62.	Krames ES: The dorsal root ganglion in chronic pain and as a target for neuromodulation: a
656		review. Neuromodulation 2015, 18(1):24-32; discussion 32.
657	63.	Garcia-Gomez E, Vazquez-Martinez ER, Reyes-Mayoral C, Cruz-Orozco OP, Camacho-Arroyo
658		I, Cerbon M: Regulation of Inflammation Pathways and Inflammasome by Sex Steroid
659		Hormones in Endometriosis. Front Endocrinol (Lausanne) 2019, 10:935.
660	64.	Harada T, Iwabe T, Terakawa N: Role of cytokines in endometriosis. Fertility and sterility
661		2001, 76 (1):1-10.
662	65.	Machairiotis N, Vasilakaki S, Thomakos N: Inflammatory Mediators and Pain in
663		Endometriosis: A Systematic Review. Biomedicines 2021, 9(1).
664	66.	Karp BI, Stratton P: Endometriosis-associated chronic pelvic pain. Med 2023, 4(3):143-146.
665	67.	Ballard KD, Seaman HE, de Vries CS, Wright JT: Can symptomatology help in the diagnosis
666		of endometriosis? Findings from a national case-control studyPart 1. BJOG 2008,
667		115 (11):1382-1391.
668	68.	Surrey ES, Soliman AM, Johnson SJ, Davis M, Castelli-Haley J, Snabes MC: Risk of
669		Developing Comorbidities Among Women with Endometriosis: A Retrospective Matched
670		Cohort Study . <i>J Womens Health (Larchmt)</i> 2018, 27 (9):1114-1123.
671	69.	Phan VT, Stratton P, Tandon HK, Sinaii N, Aredo JV, Karp BI, Merideth MA, Shah JP:
672		Widespread myofascial dysfunction and sensitisation in women with endometriosis-
673		associated chronic pelvic pain: A cross-sectional study. <i>Eur J Pain</i> 2021, 25 (4):831-840.
674	70.	Phelps CE, Navratilova E, Dickenson AH, Porreca F, Bannister K: Kappa opioid signaling in
675		the right central amygdala causes hind paw specific loss of diffuse noxious inhibitory
676		controls in experimental neuropathic pain. Pain 2019, 160(7):1614-1621.
677	71.	Fasick V, Spengler RN, Samankan S, Nader ND, Ignatowski TA: The hippocampus and TNF:
678		Common links between chronic pain and depression . <i>Neurosci Biobehav Rev</i> 2015, 53 :139-
679		159.
680	72.	Culley L, Law C, Hudson N, Denny E, Mitchell H, Baumgarten M, Raine-Fenning N: The social
681		and psychological impact of endometriosis on women's lives: a critical narrative review.
682		Human reproduction update 2013, 19 (6):625-639.
683	73.	Nassiri Kigloo H, Itani R, Montreuil T, Feferkorn I, Raina J, Tulandi T, Mansour F,
684		Krishnamurthy S, Suarthana E: Endometriosis, chronic pain, anxiety, and depression: A
685		retrospective study among 12 million women. J Affect Disord 2024, 346:260-265.
686	/4.	As-Sanie S, Harris RE, Napadow V, Kim J, Neshewat G, Kairys A, Williams D, Clauw DJ,
687		Schmidt-Wilcke T: Changes in regional gray matter volume in women with chronic pelvic
688		pain: a voxel-based morphometry study. Pain 2012, 153(5):1006-1014.

689	75.	As-Sanie S, Kim J, Schmidt-Wilcke T, Sundgren PC, Clauw DJ, Napadow V, Harris RE:
690		Functional Connectivity is Associated With Altered Brain Chemistry in Women With
691		Endometriosis-Associated Chronic Pelvic Pain. J Pain 2016, 17(1):1-13.
692	76.	Rosin JM, Kurrasch DM: Emerging roles for hypothalamic microglia as regulators of
693		physiological homeostasis. Front Neuroendocrinol 2019, 54:100748.
694	77.	Sugama S, Fujita M, Hashimoto M, Conti B: Stress induced morphological microglial
695		activation in the rodent brain: involvement of interleukin-18. Neuroscience 2007,
696		146 (3):1388-1399.
697	78.	Sugama S, Takenouchi T, Hashimoto M, Ohata H, Takenaka Y, Kakinuma Y: Stress-induced
698		microglial activation occurs through beta-adrenergic receptor: noradrenaline as a key
699		neurotransmitter in microglial activation. J Neuroinflammation 2019, 16(1):266.
700	79.	Cernackova A, Durackova Z, Trebaticka J, Mravec B: Neuroinflammation and depressive
701		disorder: The role of the hypothalamus. J Clin Neurosci 2020, 75:5-10.
702	80.	Bain CC, Gibson DA, Steers NJ, Boufea K, Louwe PA, Doherty C, Gonzalez-Huici V, Gentek R,
703		Magalhaes-Pinto M. Shaw T et al: Rate of replenishment and microenvironment contribute
704		to the sexually dimorphic phenotype and function of peritoneal macrophages. Sci Immunol
705		2020 5(48)
706	81	Ghosn FF Cassado AA Govoni GR Fukuhara T Yang Y Monack DM Bortoluci KR Almeida
707	01.	SR Herzenberg I A Herzenberg I A: Two nhysically functionally and developmentally
708		distinct neritoneal macronhage subsets Proc Natl Acad Sci U.S. 4 2010 107(6):2568-2573
700	82	Wynn TA Chawla A Pollard IW: Macronhage biology in development homeostasis and
705	02.	disease Nature 2013 A06(7446):445 455
710	82	Ardavin C. Alvaraz Ladran N. Farriz M. Gutiarraz Ganzalaz A. Vaga Daraz A: Mausa Tissua
711	05.	Ardavin C, Arvarez-Ladron N, Fenz IV, Ourenez-Oonzarez A, Vega-rerez A. Wouse rissue-
712		Kesiuent i entoneai Macrophages in nomeostasis, Kepan, intection, and i untor Metastasis.
713	81	Adv Sci (Weinh) 2023, 10(11):e2206617. Salm I. Shim P. Naskovicova N. Kubas P: Cata6(+) large paritoneal meanophages: an
713 714 715	84.	Adv Sci (Weinh) 2023, 10(11):e2206617. Salm L, Shim R, Noskovicova N, Kubes P: Gata6(+) large peritoneal macrophages: an
713 714 715 716	84.	Adv Sci (Weinh) 2023, 10(11):e2206617. Salm L, Shim R, Noskovicova N, Kubes P: Gata6(+) large peritoneal macrophages: an evolutionarily conserved sentinel and effector system for infection and injury. Trends in immunology 2023, 44(2):120, 145.
713 714 715 716 717	84.	Adv Sci (Weinh) 2023, 10(11):e2206617. Salm L, Shim R, Noskovicova N, Kubes P: Gata6(+) large peritoneal macrophages: an evolutionarily conserved sentinel and effector system for infection and injury. Trends in immunology 2023, 44(2):129-145.
713 714 715 716 717 718	84. 85.	Adv Sci (Weinh) 2023, 10(11):e2206617. Salm L, Shim R, Noskovicova N, Kubes P: Gata6(+) large peritoneal macrophages: an evolutionarily conserved sentinel and effector system for infection and injury. Trends in immunology 2023, 44(2):129-145. Vega-Perez A, Villarrubia LH, Godio C, Gutierrez-Gonzalez A, Feo-Lucas L, Ferriz M, Martinez Puente N, Alexin L, More A, Schie G et al: Pesident mearophage dependent immune
713 714 715 716 717 718 710	84. 85.	Adv Sci (Weinh) 2023, 10(11):e2206617. Salm L, Shim R, Noskovicova N, Kubes P: Gata6(+) large peritoneal macrophages: an evolutionarily conserved sentinel and effector system for infection and injury. Trends in immunology 2023, 44(2):129-145. Vega-Perez A, Villarrubia LH, Godio C, Gutierrez-Gonzalez A, Feo-Lucas L, Ferriz M, Martinez-Puente N, Alcain J, Mora A, Sabio G et al: Resident macrophage-dependent immune cell coeffelds drive anti-hactorial defense in the paritoneal againty. Immunity 2021
713 714 715 716 717 718 719	84. 85.	Adv Sci (Weinh) 2023, 10(11):e2206617. Salm L, Shim R, Noskovicova N, Kubes P: Gata6(+) large peritoneal macrophages: an evolutionarily conserved sentinel and effector system for infection and injury. <i>Trends in</i> <i>immunology</i> 2023, 44(2):129-145. Vega-Perez A, Villarrubia LH, Godio C, Gutierrez-Gonzalez A, Feo-Lucas L, Ferriz M, Martinez-Puente N, Alcain J, Mora A, Sabio G <i>et al</i> : Resident macrophage-dependent immune cell scaffolds drive anti-bacterial defense in the peritoneal cavity. <i>Immunity</i> 2021, 54(11):2578-2504 -2575
713 714 715 716 717 718 719 720 721	84. 85.	 Adv Sci (Weinh) 2023, 10(11):e2206617. Salm L, Shim R, Noskovicova N, Kubes P: Gata6(+) large peritoneal macrophages: an evolutionarily conserved sentinel and effector system for infection and injury. Trends in immunology 2023, 44(2):129-145. Vega-Perez A, Villarrubia LH, Godio C, Gutierrez-Gonzalez A, Feo-Lucas L, Ferriz M, Martinez-Puente N, Alcain J, Mora A, Sabio G et al: Resident macrophage-dependent immune cell scaffolds drive anti-bacterial defense in the peritoneal cavity. Immunity 2021, 54(11):2578-2594 e2575. Lin Z, Cu Y, Chelsrary S, Plariet C, Kuels L, Chen Y, Shin A, Huang W, Drass PL, Dutertra CA.
713 714 715 716 717 718 719 720 721	84. 85. 86.	 Adv Sci (Weinh) 2023, 10(11):e2206617. Salm L, Shim R, Noskovicova N, Kubes P: Gata6(+) large peritoneal macrophages: an evolutionarily conserved sentinel and effector system for infection and injury. Trends in immunology 2023, 44(2):129-145. Vega-Perez A, Villarrubia LH, Godio C, Gutierrez-Gonzalez A, Feo-Lucas L, Ferriz M, Martinez-Puente N, Alcain J, Mora A, Sabio G et al: Resident macrophage-dependent immune cell scaffolds drive anti-bacterial defense in the peritoneal cavity. Immunity 2021, 54(11):2578-2594 e2575. Liu Z, Gu Y, Chakarov S, Bleriot C, Kwok I, Chen X, Shin A, Huang W, Dress RJ, Dutertre CA
713 714 715 716 717 718 719 720 721 722 722	84. 85. 86.	 <i>Adv Sci (Weinh)</i> 2023, 10(11):e2206617. Salm L, Shim R, Noskovicova N, Kubes P: Gata6(+) large peritoneal macrophages: an evolutionarily conserved sentinel and effector system for infection and injury. <i>Trends in immunology</i> 2023, 44(2):129-145. Vega-Perez A, Villarrubia LH, Godio C, Gutierrez-Gonzalez A, Feo-Lucas L, Ferriz M, Martinez-Puente N, Alcain J, Mora A, Sabio G et al: Resident macrophage-dependent immune cell scaffolds drive anti-bacterial defense in the peritoneal cavity. <i>Immunity</i> 2021, 54(11):2578-2594 e2575. Liu Z, Gu Y, Chakarov S, Bleriot C, Kwok I, Chen X, Shin A, Huang W, Dress RJ, Dutertre CA et al: Fate Mapping via Ms4a3-Expression History Traces Monocyte-Derived Cells. <i>Cell</i> 2010, 1570(-) 1505.
713 714 715 716 717 718 719 720 721 722 723	84.85.86.	 <i>Adv Sci (Weinh)</i> 2023, 10(11):e2206617. Salm L, Shim R, Noskovicova N, Kubes P: Gata6(+) large peritoneal macrophages: an evolutionarily conserved sentinel and effector system for infection and injury. <i>Trends in immunology</i> 2023, 44(2):129-145. Vega-Perez A, Villarrubia LH, Godio C, Gutierrez-Gonzalez A, Feo-Lucas L, Ferriz M, Martinez-Puente N, Alcain J, Mora A, Sabio G et al: Resident macrophage-dependent immune cell scaffolds drive anti-bacterial defense in the peritoneal cavity. <i>Immunity</i> 2021, 54(11):2578-2594 e2575. Liu Z, Gu Y, Chakarov S, Bleriot C, Kwok I, Chen X, Shin A, Huang W, Dress RJ, Dutertre CA et al: Fate Mapping via Ms4a3-Expression History Traces Monocyte-Derived Cells. <i>Cell</i> 2019, 178(6):1509-1525 e1519.
713 714 715 716 717 718 719 720 721 722 723 724	84.85.86.87.	 <i>Adv Sci (Weinh)</i> 2023, 10(11):e2206617. Salm L, Shim R, Noskovicova N, Kubes P: Gata6(+) large peritoneal macrophages: an evolutionarily conserved sentinel and effector system for infection and injury. <i>Trends in immunology</i> 2023, 44(2):129-145. Vega-Perez A, Villarrubia LH, Godio C, Gutierrez-Gonzalez A, Feo-Lucas L, Ferriz M, Martinez-Puente N, Alcain J, Mora A, Sabio G et al: Resident macrophage-dependent immune cell scaffolds drive anti-bacterial defense in the peritoneal cavity. <i>Immunity</i> 2021, 54(11):2578-2594 e2575. Liu Z, Gu Y, Chakarov S, Bleriot C, Kwok I, Chen X, Shin A, Huang W, Dress RJ, Dutertre CA et al: Fate Mapping via Ms4a3-Expression History Traces Monocyte-Derived Cells. <i>Cell</i> 2019, 178(6):1509-1525 e1519. Liu M, Silva-Sanchez A, Randall TD, Meza-Perez S: Specialized immune responses in the
713 714 715 716 717 718 719 720 721 722 723 724 725	84.85.86.87.	 <i>Adv Sci (Weinh)</i> 2023, 10(11):e2206617. Salm L, Shim R, Noskovicova N, Kubes P: Gata6(+) large peritoneal macrophages: an evolutionarily conserved sentinel and effector system for infection and injury. <i>Trends in immunology</i> 2023, 44(2):129-145. Vega-Perez A, Villarrubia LH, Godio C, Gutierrez-Gonzalez A, Feo-Lucas L, Ferriz M, Martinez-Puente N, Alcain J, Mora A, Sabio G et al: Resident macrophage-dependent immune cell scaffolds drive anti-bacterial defense in the peritoneal cavity. <i>Immunity</i> 2021, 54(11):2578-2594 e2575. Liu Z, Gu Y, Chakarov S, Bleriot C, Kwok I, Chen X, Shin A, Huang W, Dress RJ, Dutertre CA et al: Fate Mapping via Ms4a3-Expression History Traces Monocyte-Derived Cells. <i>Cell</i> 2019, 178(6):1509-1525 e1519. Liu M, Silva-Sanchez A, Randall TD, Meza-Perez S: Specialized immune responses in the peritoneal cavity and omentum. <i>J Leukoc Biol</i> 2021, 109(4):717-729.
713 714 715 716 717 718 719 720 721 722 723 724 725 726	 84. 85. 86. 87. 88. 	 <i>Adv Sci (Weinh)</i> 2023, 10(11):e2206617. Salm L, Shim R, Noskovicova N, Kubes P: Gata6(+) large peritoneal macrophages: an evolutionarily conserved sentinel and effector system for infection and injury. <i>Trends in immunology</i> 2023, 44(2):129-145. Vega-Perez A, Villarrubia LH, Godio C, Gutierrez-Gonzalez A, Feo-Lucas L, Ferriz M, Martinez-Puente N, Alcain J, Mora A, Sabio G et al: Resident macrophage-dependent immune cell scaffolds drive anti-bacterial defense in the peritoneal cavity. <i>Immunity</i> 2021, 54(11):2578-2594 e2575. Liu Z, Gu Y, Chakarov S, Bleriot C, Kwok I, Chen X, Shin A, Huang W, Dress RJ, Dutertre CA et al: Fate Mapping via Ms4a3-Expression History Traces Monocyte-Derived Cells. <i>Cell</i> 2019, 178(6):1509-1525 e1519. Liu M, Silva-Sanchez A, Randall TD, Meza-Perez S: Specialized immune responses in the peritoneal cavity and omentum. <i>J Leukoc Biol</i> 2021, 109(4):717-729. Kisovar A, Becker CM, Granne I, Southcombe JH: The role of CD8+ T cells in endometriosis:
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727	 84. 85. 86. 87. 88. 	 <i>Adv Sci (Weinh)</i> 2023, 10(11):e2206617. Salm L, Shim R, Noskovicova N, Kubes P: Gata6(+) large peritoneal macrophages: an evolutionarily conserved sentinel and effector system for infection and injury. <i>Trends in immunology</i> 2023, 44(2):129-145. Vega-Perez A, Villarrubia LH, Godio C, Gutierrez-Gonzalez A, Feo-Lucas L, Ferriz M, Martinez-Puente N, Alcain J, Mora A, Sabio G et al: Resident macrophage-dependent immune cell scaffolds drive anti-bacterial defense in the peritoneal cavity. <i>Immunity</i> 2021, 54(11):2578-2594 e2575. Liu Z, Gu Y, Chakarov S, Bleriot C, Kwok I, Chen X, Shin A, Huang W, Dress RJ, Dutertre CA et al: Fate Mapping via Ms4a3-Expression History Traces Monocyte-Derived Cells. <i>Cell</i> 2019, 178(6):1509-1525 e1519. Liu M, Silva-Sanchez A, Randall TD, Meza-Perez S: Specialized immune responses in the peritoneal cavity and omentum. <i>J Leukoc Biol</i> 2021, 109(4):717-729. Kisovar A, Becker CM, Granne I, Southcombe JH: The role of CD8+ T cells in endometriosis: a systematic review. <i>Frontiers in immunology</i> 2023, 14:1225639.
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728	 84. 85. 86. 87. 88. 89. 	 <i>Adv Sci (Weinn)</i> 2023, 10(11):e2206617. Salm L, Shim R, Noskovicova N, Kubes P: Gata6(+) large peritoneal macrophages: an evolutionarily conserved sentinel and effector system for infection and injury. <i>Trends in immunology</i> 2023, 44(2):129-145. Vega-Perez A, Villarrubia LH, Godio C, Gutierrez-Gonzalez A, Feo-Lucas L, Ferriz M, Martinez-Puente N, Alcain J, Mora A, Sabio G et al: Resident macrophage-dependent immune cell scaffolds drive anti-bacterial defense in the peritoneal cavity. <i>Immunity</i> 2021, 54(11):2578-2594 e2575. Liu Z, Gu Y, Chakarov S, Bleriot C, Kwok I, Chen X, Shin A, Huang W, Dress RJ, Dutertre CA et al: Fate Mapping via Ms4a3-Expression History Traces Monocyte-Derived Cells. <i>Cell</i> 2019, 178(6):1509-1525 e1519. Liu M, Silva-Sanchez A, Randall TD, Meza-Perez S: Specialized immune responses in the peritoneal cavity and omentum. <i>J Leukoc Biol</i> 2021, 109(4):717-729. Kisovar A, Becker CM, Granne I, Southcombe JH: The role of CD8+ T cells in endometriosis: a systematic review. <i>Frontiers in immunology</i> 2023, 14:1225639. Szukiewicz D: Epigenetic regulation and T-cell responses in endometriosis - something other
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729	 84. 85. 86. 87. 88. 89. 	 <i>Adv Sci (Weini)</i> 2023, 10(11):e2206617. Salm L, Shim R, Noskovicova N, Kubes P: Gata6(+) large peritoneal macrophages: an evolutionarily conserved sentinel and effector system for infection and injury. Trends in immunology 2023, 44(2):129-145. Vega-Perez A, Villarrubia LH, Godio C, Gutierrez-Gonzalez A, Feo-Lucas L, Ferriz M, Martinez-Puente N, Alcain J, Mora A, Sabio G et al: Resident macrophage-dependent immune cell scaffolds drive anti-bacterial defense in the peritoneal cavity. Immunity 2021, 54(11):2578-2594 e2575. Liu Z, Gu Y, Chakarov S, Bleriot C, Kwok I, Chen X, Shin A, Huang W, Dress RJ, Dutertre CA et al: Fate Mapping via Ms4a3-Expression History Traces Monocyte-Derived Cells. Cell 2019, 178(6):1509-1525 e1519. Liu M, Silva-Sanchez A, Randall TD, Meza-Perez S: Specialized immune responses in the peritoneal cavity and omentum. J Leukoc Biol 2021, 109(4):717-729. Kisovar A, Becker CM, Granne I, Southcombe JH: The role of CD8+ T cells in endometriosis: a systematic review. Frontiers in immunology 2023, 14:1225639. Szukiewicz D: Epigenetic regulation and T-cell responses in endometriosis - something other than autoimmunity. Frontiers in immunology 2022, 13:943839.
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730	 84. 85. 86. 87. 88. 89. 90. 	 <i>Adv Sci (Weinh)</i> 2023, 10(11):e2206617. Salm L, Shim R, Noskovicova N, Kubes P: Gata6(+) large peritoneal macrophages: an evolutionarily conserved sentinel and effector system for infection and injury. <i>Trends in immunology</i> 2023, 44(2):129-145. Vega-Perez A, Villarrubia LH, Godio C, Gutierrez-Gonzalez A, Feo-Lucas L, Ferriz M, Martinez-Puente N, Alcain J, Mora A, Sabio G et al: Resident macrophage-dependent immune cell scaffolds drive anti-bacterial defense in the peritoneal cavity. <i>Immunity</i> 2021, 54(11):2578-2594 e2575. Liu Z, Gu Y, Chakarov S, Bleriot C, Kwok I, Chen X, Shin A, Huang W, Dress RJ, Dutertre CA et al: Fate Mapping via Ms4a3-Expression History Traces Monocyte-Derived Cells. <i>Cell</i> 2019, 178(6):1509-1525 e1519. Liu M, Silva-Sanchez A, Randall TD, Meza-Perez S: Specialized immune responses in the peritoneal cavity and omentum. <i>J Leukoc Biol</i> 2021, 109(4):717-729. Kisovar A, Becker CM, Granne I, Southcombe JH: The role of CD8+ T cells in endometriosis: a systematic review. <i>Frontiers in immunology</i> 2023, 14:1225639. Szukiewicz D: Epigenetic regulation and T-cell responses in endometriosis - something other than autoimmunity. <i>Frontiers in immunology</i> 2022, 13:943839. Till SR, Nakamura R, Schrepf A, As-Sanie S: Approach to Diagnosis and Management of
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731	 84. 85. 86. 87. 88. 89. 90. 	 <i>Adv Sci (Weinh)</i> 2023, 10(11):e2206617. Salm L, Shim R, Noskovicova N, Kubes P: Gata6(+) large peritoneal macrophages: an evolutionarily conserved sentinel and effector system for infection and injury. <i>Trends in immunology</i> 2023, 44(2):129-145. Vega-Perez A, Villarrubia LH, Godio C, Gutierrez-Gonzalez A, Feo-Lucas L, Ferriz M, Martinez-Puente N, Alcain J, Mora A, Sabio G et al: Resident macrophage-dependent immune cell scaffolds drive anti-bacterial defense in the peritoneal cavity. <i>Immunity</i> 2021, 54(11):2578-2594 e2575. Liu Z, Gu Y, Chakarov S, Bleriot C, Kwok I, Chen X, Shin A, Huang W, Dress RJ, Dutertre CA et al: Fate Mapping via Ms4a3-Expression History Traces Monocyte-Derived Cells. <i>Cell</i> 2019, 178(6):1509-1525 e1519. Liu M, Silva-Sanchez A, Randall TD, Meza-Perez S: Specialized immune responses in the peritoneal cavity and omentum. <i>J Leukoc Biol</i> 2021, 109(4):717-729. Kisovar A, Becker CM, Granne I, Southcombe JH: The role of CD8+ T cells in endometriosis: a systematic review. <i>Frontiers in immunology</i> 2023, 14:1225639. Szukiewicz D: Epigenetic regulation and T-cell responses in endometriosis - something other than autoimmunity. <i>Frontiers in immunology</i> 2022, 13:943839. Till SR, Nakamura R, Schrepf A, As-Sanie S: Approach to Diagnosis and Management of Chronic Pelvic Pain in Women: Incorporating Chronic Overlapping Pain Conditions in
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732	 84. 85. 86. 87. 88. 89. 90. 	 <i>Adv Sci (Weinh)</i> 2023, 10(11):e2206617. Salm L, Shim R, Noskovicova N, Kubes P: Gata6(+) large peritoneal macrophages: an evolutionarily conserved sentinel and effector system for infection and injury. <i>Trends in immunology</i> 2023, 44(2):129-145. Vega-Perez A, Villarrubia LH, Godio C, Gutierrez-Gonzalez A, Feo-Lucas L, Ferriz M, Martinez-Puente N, Alcain J, Mora A, Sabio G <i>et al</i>: Resident macrophage-dependent immune cell scaffolds drive anti-bacterial defense in the peritoneal cavity. <i>Immunity</i> 2021, 54(11):2578-2594 e2575. Liu Z, Gu Y, Chakarov S, Bleriot C, Kwok I, Chen X, Shin A, Huang W, Dress RJ, Dutertre CA <i>et al</i>: Fate Mapping via Ms4a3-Expression History Traces Monocyte-Derived Cells. <i>Cell</i> 2019, 178(6):1509-1525 e1519. Liu M, Silva-Sanchez A, Randall TD, Meza-Perez S: Specialized immune responses in the peritoneal cavity and omentum. <i>J Leukoc Biol</i> 2021, 109(4):717-729. Kisovar A, Becker CM, Granne I, Southcombe JH: The role of CD8+ T cells in endometriosis: a systematic review. <i>Frontiers in immunology</i> 2023, 14:1225639. Szukiewicz D: Epigenetic regulation and T-cell responses in endometriosis - something other than autoimmunity. <i>Frontiers in immunology</i> 2022, 13:943839. Till SR, Nakamura R, Schrepf A, As-Sanie S: Approach to Diagnosis and Management of Chronic Pelvic Pain in Women: Incorporating Chronic Overlapping Pain Conditions in Assessment and Management. <i>Obstetrics and gynecology clinics of North America</i> 2022,
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733	 84. 85. 86. 87. 88. 89. 90. 	 Adv Sci (Weinh) 2023, 10(11):e2206617. Salm L, Shim R, Noskovicova N, Kubes P: Gata6(+) large peritoneal macrophages: an evolutionarily conserved sentinel and effector system for infection and injury. <i>Trends in immunology</i> 2023, 44(2):129-145. Vega-Perez A, Villarrubia LH, Godio C, Gutierrez-Gonzalez A, Feo-Lucas L, Ferriz M, Martinez-Puente N, Alcain J, Mora A, Sabio G <i>et al</i>: Resident macrophage-dependent immune cell scaffolds drive anti-bacterial defense in the peritoneal cavity. <i>Immunity</i> 2021, 54(11):2578-2594 e2575. Liu Z, Gu Y, Chakarov S, Bleriot C, Kwok I, Chen X, Shin A, Huang W, Dress RJ, Dutertre CA <i>et al</i>: Fate Mapping via Ms4a3-Expression History Traces Monocyte-Derived Cells. <i>Cell</i> 2019, 178(6):1509-1525 e1519. Liu M, Silva-Sanchez A, Randall TD, Meza-Perez S: Specialized immune responses in the peritoneal cavity and omentum. <i>J Leukoc Biol</i> 2021, 109(4):717-729. Kisovar A, Becker CM, Granne I, Southcombe JH: The role of CD8+ T cells in endometriosis: a systematic review. <i>Frontiers in immunology</i> 2022, 13:943839. Till SR, Nakamura R, Schrepf A, As-Sanie S: Approach to Diagnosis and Management of Chronic Pelvic Pain in Women: Incorporating Chronic Overlapping Pain Conditions in Assessment and Management. <i>Obstetrics and gynecology clinics of North America</i> 2022, 49(2):219-239.
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734	 84. 85. 86. 87. 88. 89. 90. 91. 	 Adv Set (Weinh) 2023, 10(11):e2206617. Salm L, Shim R, Noskovicova N, Kubes P: Gata6(+) large peritoneal macrophages: an evolutionarily conserved sentinel and effector system for infection and injury. <i>Trends in immunology</i> 2023, 44(2):129-145. Vega-Perez A, Villarrubia LH, Godio C, Gutierrez-Gonzalez A, Feo-Lucas L, Ferriz M, Martinez-Puente N, Alcain J, Mora A, Sabio G <i>et al</i>: Resident macrophage-dependent immune cell scaffolds drive anti-bacterial defense in the peritoneal cavity. <i>Immunity</i> 2021, 54(11):2578-2594 e2575. Liu Z, Gu Y, Chakarov S, Bleriot C, Kwok I, Chen X, Shin A, Huang W, Dress RJ, Dutertre CA <i>et al</i>: Fate Mapping via Ms4a3-Expression History Traces Monocyte-Derived Cells. <i>Cell</i> 2019, 178(6):1509-1525 e1519. Liu M, Silva-Sanchez A, Randall TD, Meza-Perez S: Specialized immune responses in the peritoneal cavity and omentum. <i>J Leukoc Biol</i> 2021, 109(4):717-729. Kisovar A, Becker CM, Granne I, Southcombe JH: The role of CD8+ T cells in endometriosis: a systematic review. <i>Frontiers in immunology</i> 2022, 13:943839. Till SR, Nakamura R, Schrepf A, As-Sanie S: Approach to Diagnosis and Management of Chronic Pelvic Pain in Women: Incorporating Chronic Overlapping Pain Conditions in Assessment and Management. <i>Obstetrics and gynecology clinics of North America</i> 2022, 49(2):219-239.
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735	 84. 85. 86. 87. 88. 89. 90. 91. 	 Adv Set (Weinh) 2023, 10(11):e2206617. Salm L, Shim R, Noskovicova N, Kubes P: Gata6(+) large peritoneal macrophages: an evolutionarily conserved sentinel and effector system for infection and injury. Trends in immunology 2023, 44(2):129-145. Vega-Perez A, Villarrubia LH, Godio C, Gutierrez-Gonzalez A, Feo-Lucas L, Ferriz M, Martinez-Puente N, Alcain J, Mora A, Sabio G et al: Resident macrophage-dependent immune cell scaffolds drive anti-bacterial defense in the peritoneal cavity. Immunity 2021, 54(11):2578-2594 e2575. Liu Z, Gu Y, Chakarov S, Bleriot C, Kwok I, Chen X, Shin A, Huang W, Dress RJ, Dutertre CA et al: Fate Mapping via Ms4a3-Expression History Traces Monocyte-Derived Cells. Cell 2019, 178(6):1509-1525 e1519. Liu M, Silva-Sanchez A, Randall TD, Meza-Perez S: Specialized immune responses in the peritoneal cavity and omentum. J Leukoc Biol 2021, 109(4):717-729. Kisovar A, Becker CM, Granne I, Southcombe JH: The role of CD8+ T cells in endometriosis: a systematic review. Frontiers in immunology 2023, 14:1225639. Szukiewicz D: Epigenetic regulation and T-cell responses in endometriosis - something other than autoimmunity. Frontiers in inmunology 2022, 13:943839. Till SR, Nakamura R, Schrepf A, As-Sanie S: Approach to Diagnosis and Management of Chronic Pelvic Pain in Women: Incorporating Chronic Overlapping Pain Conditions in Assessment and Management. Obstetrics and gynecology clinics of North America 2022, 49(2):219-239. As-Sanie S, Black R, Giudice LC, Gray Valbrun T, Gupta J, Jones B, Laufer MR, Milspaw AT, Missmer SA, Norman A et al: Assessing research gaps and unmet needs in endometriosis. Am
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736	 84. 85. 86. 87. 88. 89. 90. 91. 	 Adv Sci (Weinh) 2025, 10(11):e2206017. Salm L, Shim R, Noskovicova N, Kubes P: Gata6(+) large peritoneal macrophages: an evolutionarily conserved sentinel and effector system for infection and injury. <i>Trends in immunology</i> 2023, 44(2):129-145. Vega-Perez A, Villarrubia LH, Godio C, Gutierrez-Gonzalez A, Feo-Lucas L, Ferriz M, Martinez-Puente N, Alcain J, Mora A, Sabio G <i>et al</i>: Resident macrophage-dependent immune cell scaffolds drive anti-bacterial defense in the peritoneal cavity. <i>Immunity</i> 2021, 54(11):2578-2594 e2575. Liu Z, Gu Y, Chakarov S, Bleriot C, Kwok I, Chen X, Shin A, Huang W, Dress RJ, Dutertre CA <i>et al</i>: Fate Mapping via Ms4a3-Expression History Traces Monocyte-Derived Cells. <i>Cell</i> 2019, 178(6):1509-1525 e1519. Liu M, Silva-Sanchez A, Randall TD, Meza-Perez S: Specialized immune responses in the peritoneal cavity and omentum. <i>J Leukoc Biol</i> 2021, 109(4):717-729. Kisovar A, Becker CM, Granne I, Southcombe JH: The role of CD8+ T cells in endometriosis: a systematic review. <i>Frontiers in immunology</i> 2022, 13:943839. Till SR, Nakamura R, Schrepf A, As-Sanie S: Approach to Diagnosis and Management of Chronic Pelvic Pain in Women: Incorporating Chronic Overlapping Pain Conditions in Assessment and Management. <i>Obstetrics and gynecology clinics of North America</i> 2022, 49(2):219-239. As-Sanie S, Black R, Giudice LC, Gray Valbrun T, Gupta J, Jones B, Laufer MR, Milspaw AT, Missmer SA, Norman A <i>et al</i>: Assessing research gaps and unmet needs in endometriosis. <i>Am J Obstet Gynecol</i> 2019, 221(2):86-94.
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 730 731 732 733 734 735 736	 84. 85. 86. 87. 88. 89. 90. 91. 	 Adv Sci (Weinh) 2023, 10(11):22206017. Salm L, Shim R, Noskovicova N, Kubes P: Gata6(+) large peritoneal macrophages: an evolutionarily conserved sentinel and effector system for infection and injury. <i>Trends in immunology</i> 2023, 44(2):129-145. Vega-Perez A, Villarrubia LH, Godio C, Gutierrez-Gonzalez A, Feo-Lucas L, Ferriz M, Martinez-Puente N, Alcain J, Mora A, Sabio G <i>et al</i>: Resident macrophage-dependent immune cell scaffolds drive anti-bacterial defense in the peritoneal cavity. <i>Immunity</i> 2021, 54(11):2578-2594 e2575. Liu Z, Gu Y, Chakarov S, Bleriot C, Kwok I, Chen X, Shin A, Huang W, Dress RJ, Dutertre CA <i>et al</i>: Fate Mapping via Ms4a3-Expression History Traces Monocyte-Derived Cells. <i>Cell</i> 2019, 178(6):1509-1525 e1519. Liu M, Silva-Sanchez A, Randall TD, Meza-Perez S: Specialized immune responses in the peritoneal cavity and omentum. <i>J Leukoc Biol</i> 2021, 109(4):717-729. Kisovar A, Becker CM, Granne I, Southcombe JH: The role of CD8+ T cells in endometriosis: a systematic review. <i>Frontiers in immunology</i> 2022, 13:943839. Till SR, Nakamura R, Schrepf A, As-Sanie S: Approach to Diagnosis and Management of Chronic Pelvic Pain in Women: Incorporating Chronic Overlapping Pain Conditions in Assessment and Management. <i>Obstetrics and gynecology clinics of North America</i> 2022, 49(2):219-239. As-Sanie S, Black R, Giudice LC, Gray Valbrun T, Gupta J, Jones B, Laufer MR, Milspaw AT, Missmer SA, Norman A <i>et al</i>: Assessing research gaps and unmet needs in endometriosis. <i>Am J Obstet Gynecol</i> 2019, 221(2):86-94.

738 Figure legends

Figure 1. Multiple lesion induction mouse model of endometriosis. (a) Experimental study 739 design as described in Material and Methods. (b) Quantification of lesion numbers in the single 740 or multiple induction mice at 2 or 6 weeks after the last lesion induction (n=10). Representative 741 immunohistochemical images (c) and quantification (d) of CD68+, LYVE1+, or PGP9.5+ cells 742 in the lesions (n=5). Data are shown as the mean \pm SEM. ELL: endometriosis-like lesions. *P < 743 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.744 745 746 Figure 2. Evaluation of endometriosis-associated hyperalgesia followed by single or multiple inductions at 2 or 6 weeks after the last lesion induction. Abdominal (a) and hind paw (b) 747 withdrawal thresholds were assessed using the von Frey test. Data are shown as mean \pm SEM (n 748 = 10). ELL: endometriosis-like lesions. *P < 0.05, **P < 0.01, ***P < 0.001, ***P < 0.001. 749 750 Figure 3. Representative immunohistochemical images of (a) IBA1 in the cortex, hippocampus, 751 thalamus, and hypothalamus, and (b) GFAP in the hippocampus in the single and multiple 752 induction mice at 2 or 6 weeks after the last lesion induction. ELL: endometriosis-like lesions. 753 754 Figure 4. Quantification of immunohistochemical images of (a) IBA1 in the cortex, 755 756 hippocampus, thalamus, and hypothalamus, and (b) GFAP in the hippocampus in the single and 757 multiple induction mice at 2 or 6 weeks after the last lesion induction. Data are shown as mean \pm SEM (n = 5). ELL: endometriosis-like lesions. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.001, 758 0.0001. 759

760

Figure 5. Representative immunohistochemical images (a) and quantification (bc) of IBA and GFAP in the spinal cord in the single and multiple induction mice at 2 or 6 weeks after the last lesion induction. Data are shown as the mean \pm SEM (n=5). ELL: endometriosis-like lesions. **P* < 0.05.

765

Figure 6. Expression of TRPV1, SP, and CGRP in DRG in the single and multiple induction mice at 2 or 6 weeks after the last lesion induction. (a) Representative images showing DRG sections double stained with TRPV1, SP, or CGRP (red), and neurofilament (green), as a marker of neural cells. (b) Quantification of TRPV1+, SP+, or CGRP+ cells in neurofilament-positive cells. Data are shown as the mean \pm SEM (n=5). ELL: endometriosis-like lesions. **P* < 0.05, ***P* < 0.01, ****P* < 0.001, *****P* < 0.0001.

772

Figure 7. Comparison of peritoneal immune cell profiles in the single and multiple induction 773 mice at 2 or 6 weeks after the last lesion induction. (a) Representative flow plots illustrating the 774 composition of CD11b+ and Ly6G+ cells. (b) CD11b+ cells were further gated by TIM4 and 775 MHCII. (c) CD11b+ cells were further gated by FR β (top), and FR β + cells were then gated by 776 TIM4 and MHCII (bottom). Proportions of CD11b+ or Ly6G+ (d) and TIM4^{hi} MHCII^{lo} and 777 TIM4^{lo} MHCII^{hi} (e) are shown. (f) Proportions of FRβ+ of CD11b+ cells, and TIM4+ or MHCII^{hi} 778 of FR β + macrophages were shown. Data are shown as the mean ± SEM (n=5). ELL: 779 endometriosis-like lesions. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. 780 781 Figure 8. Proinflammatory cytokine levels (TNF α , IL-1 β , and IL-6) in the peritoneal fluid were 782

analyzed by IQELISA. Data are shown as the mean \pm SEM (n=5). ELL: endometriosis-like

resions. *P < 0.05, **P < 0.01, ***P < 0.001, ***P < 0.001, ****P < 0.0001.

785

786 Supplementary Figure S1. Representative immunohistochemical images (a) and quantification

(b) of GFAP in the cortex, thalamus, and hypothalamus. Data are shown as the mean \pm SEM

788 (n=5). ELL: endometriosis-like lesions. **P < 0.01, ***P < 0.001, ****P < 0.0001.

789

790 Supplementary Figure S2. Comparison of peritoneal B or T cell profiles in the single and

multiple induction mice at 2 or 6 weeks after the last lesion induction. (a) Representative flow

plots illustrating the composition of CD19+ and CD3+ cells. (b) CD3+ cells were further gated

by CD8 and CD4. Proportions of CD19+ or CD3+ (c) and CD8+ or CD4+ (d) are shown. Data

are shown as the mean \pm SEM (n=5). ELL: endometriosis-like lesions. *P < 0.05, **P < 0.01,

795 *****P* < 0.0001.

С

d

Figure 3

42

6x ELL

14

14 42

14 42

6x ELL

14 42 6x ELL

42

6x ELL

14 42 14 42 1x ELL 6x ELL

Figure 5

Figure 7

