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Diseases of neurodevelopment mostly exhibit neurological and psychiatric symptoms

that go from very mild to extremely severe. While the etiology of most cases of

neurodevelopmental disease is still unknown, the discovery of underlying genetic

causes is rapidly increasing, with hundreds of genes being currently implicated as

disease-causing. Here, we report a clinical case of a patient with a previously

undiagnosed syndrome comprising severe global developmental delay, intellectual

disability, and behavioral disorders (such as attention-deficit/hyperactivity disorder,

autism spectrum disorder and recurrent bouts of aggressive behavior). After genetic

testing, a pathogenic variant was detected in the GNB1 gene, which codes for the

G-protein subunit β1. The detected variant (c.217G>A, p.A73T) has not been previously

reported in any of the 58 published cases of GNB1 encephalopathy. However, it localizes

to the mutational hotspot in exons 6 and 7 in which 88% of all missense mutations

occur. An in silico model predicts that this mutation is likely to disrupt the WD40

domain of the GNB1 protein, which is required for its interaction with other G-proteins

and, consequently, for downstream signal transduction. In conclusion, we reported an

additional GNB1 encephalopathy patient, bearing a novel mutation, taking another step

toward a better understanding of its clinical presentation and prospective development

of treatments for the disease.
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INTRODUCTION

Knowledge on the genetic causes of neurodevelopmental diseases has been increasingly growing.
Among the hundreds of genes that have been established as neurodevelopmental disease-causing,
genes that encode for guanine nucleotide-binding proteins (G proteins) have recently been included
(1, 2). Specifically, mutations in GNB1, which encodes for the G protein subunit β1, have been
recently described as causal of a neurodevelopmental syndrome (1, 3). The Gβ subunit forms a
heterotrimer with Gα and Gγ in the steady-state which is bound to a membrane G protein-coupled
receptor (GPCR) (4). Upon binding of a specific extracellular ligand, there is separation of the Gα

from the Gβγ dimer, and consequently activation of an intracellular signaling cascade (4). This is
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a ubiquitous signaling pathway, which is in line with the fact that
its components, including GNB1, are ubiquitously expressed (5).
In neurons, GNB1 is also widely expressed in all brain regions,
but enriched in rod photoreceptor cells of the retina (5).

Pathogenic variants in GNB1 cause a heterogeneous
neurodevelopmental syndrome named GNB1 encephalopathy
(OMIM: 616973) whose unifying characteristic is a global
development delay (GDD), present in 100% of patients (3, 6).
Manifestations that are present in at least 50% of patients
include moderate-to-severe intellectual disability (ID), abnormal
muscle tone, abnormal vision, epilepsy, and gastrointestinal
abnormalities (3, 6). Several other neuropsychiatric and non-
neuropsychiatric symptoms have also been reported, albeit less
frequently (3, 6). Nevertheless, clinical data is very limited since
only 58 patients with clinical-impacting GNB1 variants have
been reported (1, 3, 7–19). Moreover, this syndrome can easily
overlap with many conditions, being clinically indistinguishable
from other neurodevelopmental disorders.

An interesting finding is that, out of the 51 patients with
pathogenic missense variants, 25 (49%) are located in exon
6, and 20 (39%) are in exon 7, indicating the presence of a
mutational hotspot (1, 3, 7–19). Of note, 13 patients (25%) bear
a p.(Ile80Thr) variant, which further supports such hypothesis
(Table 1). As previously suggested, these mutations are likely to
affect residues from the interacting interface of the GNB1 protein,
compromising its binding to the other G protein subunits (9).
Here, we describe a Portuguese patient with GDD bearing
the first pathogenic GNB1 missense mutation affecting residue
alanine 73 (A73), provide an in silico prediction of how it affects
protein function and integrate the clinical findings with the
previously described cases.

CASE REPORT

A 15 year 8-month old female patient was born at 36 weeks
gestation with a weight of 2880 g (P21), length of 47 cm
(P12), and head circumference of 33 cm (P23). Pregnancy
was uncomplicated, and birth was by cesarean section due
to prolonged labor, but otherwise unremarkable, with normal
Apgar scores. Metabolic screening and otoacoustic emissions
were normal. Parents (mother with 30 and father with 33
years of age) were non-consanguineous and healthy, and the
patient has a healthy younger sibling. Regarding developmental
milestones, the patient showed a social smile at 2 months,
sat unsupported at 9 months, walked autonomously at 17
months, spoke the first intelligible words at 4 years and built
sentences at 5 years of age, indicating a global developmental
delay (GDD), which was further supported by the Griffiths III
Mental Development Scale assessment (general quotient of 52
at 9 years of age). Pubertal development is adequate for the
current age.

In addition to GDD, the patient fulfilled clinical criteria
for autism spectrum disorder (ASD) at 18 months of age,
due to impaired social interaction, restricted interests, and
repetitive behavior. Throughout development, the patient has
additionally met the criteria for other behavioral disorders,

namely attention-deficit/hyperactivity disorder (ADHD) and
oppositional defiant disorder. Moreover, the patient was
diagnosed with mild-to-moderate intellectual disability (IQ
of 52 as measured by the WISC-III). Finally, the patient
met the criteria for a mixed language disorder, as well
as developmental coordination disorder. No other specific
neurological symptoms were observed, namely dystonia (or
other movement disorders), sensorineural hearing loss, visual
symptoms or epilepsy. Furthermore, no structural abnormalities
were observed in two brain MRIs (one at 3 years and another at
15 years of age), nor electroencephalographic changes (studied at
18 months of age). No dysmorphic features were observed.

At the current age of 15, the most impacting symptoms
are related with behavior, with the patient showing repeated
bouts of auto and hetero-aggressive behavior, attention deficit
and a frequently obsessive conduct. Multiple treatment
regimens have been tried, including several drug types, namely
antipsychotics, antidepressants, mood stabilizers and stimulants,
albeit with mixed results in the management of the psychiatric
disorder. Multiple episodes of extrapyramidal adverse effects of
antipsychotics have also been observed in the patient.

Considering the clinical presentation of the patient, genetic
testing was undertaken. A karyotype was normal, and a
comparative genomic hybridization (CGH) array was carried out
using the Agilent 180K oligo-array (Amadid 023363, Agilent,
Santa Clara, CA). The array-CGH detected 2 CNVs that were
deemed not pathogenic, as both were inherited from the patient’s
healthy parents [arr [hg18] 9q32 (114,200,278-114,248,375) X3
mat, 17q23.3 (59,293,888-59,356,442) X1 pat].

Following this initial approach, a pre-defined panel
of genes whose mutations are known to cause GDD/ID
(Supplementary Table 1) was sequenced by massive parallel
sequencing, using the SureSelectXT Target Enrichment System
(Agilent, Santa Clara, CA) for preparation of the DNA library,
followed by sequencing using a MiSeq system (Illumina,
San Diego, CA). Two heterozygote intronic variants were
detected, one in the SETD5 (NM_001282539.1; rs924035385)
and one in the TNIK gene (NM_015028.3; rs192028546),
both previously reported in the general population. Two
heterozygote missense mutations were also detected, namely
in the HIVEP2 (NM_006734.3; c.5866G>A; p.Gly1956Arg)
and GNB1 (NM_001282539.1; c.217G>A; p.Ala73Thr) genes,
with both genes having been implicated in autosomal dominant
GDD. However, the HIVEP2 variant is categorized as likely
benign, with in silico predictions strongly supporting a neutral
effect of the mutation in protein function (Condel, 0.317; SIFT,
0.630; Polyphen-2, 0.013; Massessor, −0.205). In contrast, the
GNB1 variant is predicted to be deleterious by several in silico
tools (Condel, 0.558; SIFT, 0.000; Polyphen-2, 0.976; Massessor,
1.000). Moreover, and as previously described, GNB1 is highly
intolerant to genetic variation, with disruptions to protein
structure leading to profound changes in its function (1). Finally,
the GNB1 variant was confirmed by Sanger sequencing in the
patient and shown to occur de novo, since it was not detected in
either parent (Figure 1A). Therefore, this novel GNB1 variant
can be categorized as pathogenic (as it fulfills 2 strong criteria for
pathogenicity, PS2 and PS3) (21). Interestingly, this variant maps
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TABLE 1 | List of all patients with clinically relevant GNB1 mutations currently published.

Affected exon Mutation type Mutation Total

patient no.

Reference

1 3 7 8 9 10 11 12 13 14 15 16 17 18 19

5 Missense p.Arg52Gly 1 1

Missense p.Gly53Glu 2 1 1

Missense p.Gly64Val 1 1

6 Missense p.Ser74Leu 1 1

Missense p.Asp76Gly 1 1

Missense p.Asp76Glu 1 1

Missense p.Gly77Ser 2 1 1

Missense p.Gly77Ala 1 1

Missense p.Gly77Val 1 1

Missense p.Gly77Arg 1 1

Missense p.Lys78Arg 2 1 1

Missense p.Ile80Asn 2 2

Missense p.Ile80Thr 13 3 8 1 1

Missense p.Lys89Arg 1 1

Splice Site c.268-1 G>T 1 1

7 Deletion p.His91Profs*9 1 1

Missense p.Ala92Thr 1 1

Missense p.Ala92Asp 1 1

Missense p.Pro94Ser 1 1

Missense p.Leu95Pro 5 1 2 1 1

Missense p.Arg96Leu 3 3

Missense p.Met101Val 2 2

Missense p.Ala106Thr 1 1

Missense p.Cys114Tyr 1 1

Missense p.Asp118Gly 3 2 1

Missense p.Asp118Tyr 1 1

9 Nonsense p.Trp211* 1 1

10 Splice Site c.700-1 G>T 1 1

Missense p.Ser279Phe 1 1

Deletion p.Gly306Cysfs*4 1 1

11 Splice Site c.917-1 G>T 1 1

Missense p.Ala326Thr 1 1

Deletion p.Gly330Valfs*4 1 1

Total 58

to exon 6, one of the two GNB1 exons with mutational hotspots
(Figure 1B).

GNB1 (Uniprot: P62873) is an extremely well-conserved
protein. In fact, the amino acid sequence is identical between
humans and other mammals, such as mouse, rat and bovine,
and differs only by 4 residues from zebrafish (Figure 2A). This
demonstrates that almost no mutations were selected during
evolution, indicating that any mutation could possibly have a
dramatic structural impact with consequent loss of function.
A73 is located in a core beta sheet from a WD40 repeat motif
that is part of the circularized β-propeller WD40 domain of
the GNB1 protein (Figure 2B). WD40 domains are mainly
involved in the assembly of large molecular complexes and
the WD motifs act as protein interaction scaffolds. A73 lies
within 4A from 9 residues: I58, Y59, A60, S72, S74, K78,

C79, V100 and C103 (Figure 2C, left). Substitution of the non-
polar A73 for the polar hydroxyl residue threonine (A73T,
Figure 2C, right) might locally impact the structure. It is
particularly important for lysine 78, a residue whose mutation
(K78R) was already identified as causal of GNB1 encephalopathy
(1). Moreover, simulation of the A73T substitution, using
the highest probable side chain orientations for threonine,
revealed an additional residue (T102, Figure 2C, right) in the
proximity (within 4A) that belongs to an adjacent WD40
motif. This indicates that any destabilization caused by the
A73T substitution might have a broader impact on the WD40
domains of GNB1. Interestingly, while A73 is not involved in
the formation of the Gβγ dimer (Figure 2D), K78 establishes
a polar contact with D26 from Gα (Figure 2E), helping
in the stabilization of the Gα N-terminal helix near the
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FIGURE 1 | Sanger sequencing confirms a de novo GNB1 variant. (A) Genogram of the proband with the respective results for GNB1 sequencing of the patient and

each parent. The c.217G>A heterozygous mutation was detected in the proband but not in the parents, indicating a de novo occurring variant. Results from Sanger

sequencing were aligned with the genomic GNB1 sequence (NG_047052.1) using the MAFFT 7 algorithm (20). The gDNA lane represents the genomic GNB1

sequence; the protein lane represents the translation of amino acids from GNB1 exon 6; the sequencing lane represents the results from Sanger sequencing of each

patient, with a c.217G>A variant in the proband. (B) Mutation map of all GNB1 variants implicated in GNB1 encephalopathy to the date of the study. Numbers inside

each box represent the translated exons of GNB1 (exons 1, 2, and 12 are not translated). Whenever possible, the mutation is represented by the change in protein

structure. The variant detected in the patient is highlighted in purple.

β-propeller domain of Gβ. A destabilization of this region
might therefore impact the Gα-Gβγ interaction, with important
functional consequences. Given the position of A73 within

the WD40 motif and the functionality of the WD40 domain,
a mutation in this residue could also impact G protein-
effector interactions.
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FIGURE 2 | The A73T mutation might compromise a WD40 repeat from the WD40 domain of GNB1. (A) Sequence alignment of GNB1 protein from different species

demonstrating that the amino acid sequence is almost unchanged across evolution. The alignment was performed using Jalview (Version 2) software (22).

(Continued)
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FIGURE 2 | (B) Three-dimensional structure of GNB1 (pdb −1gp2, chain B). A73 (red sticks) is located in a core β-sheet from an WD repeat (boxed) that composes

the circularized β-propeller WD40 domain of GNB1. Represented in green sticks are the residues that distance less than 4A of A73. (C) Three-dimensional structure

detail of the WD repeat encompassing A73 residue (left) and simulated A73T mutagenesis (right). Residues that are within 4A distance that might be stabilized by A73

are represented as green sticks. Upon A73T mutagenesis, using the highest probable side chain orientations for threonine, an additional residue (T102) from an

adjacent WD40 repeat appears within 4A distance, indicating that A73T might have an impact on this region. (D) Three-dimensional structure detail of the Gβγ dimer,

showing that A73 is unlikely to be required for dimer formation. (E) Three-dimensional structure detail of the Gαβγ trimer. The inset represents the interaction between

Gα D26 and Gβ K78 that is required for trimer assembly, which is potentially affected by the A73T mutation. Structural modeling was performed using PyMOL (23).

DISCUSSION

We have described a new case of GNB1 encephalopathy, namely
a patient with profound GDD, ID and a complex behavioral
disorder. Genetic testing uncovered a novel pathogenic de novo

GNB1 mutation which affects a different residue from all other
described patients, with in silico predictions indicating that

the abnormal protein is likely to be functionally compromised.

Similarly to more than 50% of the described series (6), the

presented patient displays developmental delay and ID. Less

frequent manifestations that were also observed in the patient
are behavioral issues (usually ADHD and ASD). Frequent

GNB1 encephalopathy symptoms that were not observed
are abnormal muscle tone, abnormal vision and epilepsy.
Nonetheless, the sole finding that is common to 100% of patients
is GDD.

This is the first described patient with a substitution on
residue A73, which is encoded in exon 6 of the GNB1 gene.
This supports the hypothesis of the presence of a mutational
hotspot spanning exons 6 and 7, as 88% of all missense
mutations map to his region. Functional studies have shown
that GPCR-dependent signal transduction that requires Gβ1
activity is decreased by all exon 6–7 mutations described
to the date of the study, suggesting that this is a critical
region for protein function (9). Nevertheless, mutations in
other regions also disrupt protein function and cause a similar
disorder. In fact, GNB1 has several WD40 domains that assemble
to form a tridimensional β-propeller interface to which Gγ

proteins bind, and an opposite β-barrel surface for Gα binding
(24). Therefore, key residues that span most of the length
of the protein have been implicated in these interactions,
suggesting that mutations outside of the predicted hotspot can be
equally damaging.

One of the effector interactions that could be destabilized
by the A73T substitution is the interaction of GNB1
with the β-adrenergic receptor kinase 1, GRK2. GNB1
tyrosine 59 is important for GNB1:GRK2 interaction,
since it stabilizes K663 and M664 from GRK2 (25). Any
structural impact on Y59 caused by the A73T mutation
could impact GNB1:GRK2 interaction. Interestingly, Y59
is also part of the interaction surface between GNB1 and
phosducin, a protein involved in the regulation of visual
phototransduction (26).

In conclusion, we have described a case of GNB1
encephalopathy with a de novo mutation which affects a
residue that has not been previously implicated in disease.
While other variants might contribute to the observed

phenotype, it is extremely likely that the GNB1 variant
is the key alteration that caused disease. In fact, the
patient presents with key aspects of the disorder and has a
mutation that is very likely to disrupt protein function. The
addition of new cases to the literature of this condition are
important (27), not only to expand the understanding of
this rare syndrome, but also in the hope of working toward
potential treatments.
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