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Abstract: The application range of flexible polyurethane (PU) foams is comprehensive because of their
versatility and flexibility in adjusting structure and performance. In addition to the investigations
associated with further broadening of their potential properties, researchers are looking for new raw
materials, beneficially originated from renewable resources or recycling. A great example of such a
material is ground tire rubber (GTR)—the product of the material recycling of post-consumer car
tires. To fully exploit the benefits of this material, it should be modified to enhance the interfacial
interactions between PU and GTR. In the presented work, GTR particles were thermo-mechanically
modified with the addition of fresh and waste rapeseed oil in the reactive extrusion process. The
introduction of modified GTR particles into a flexible PU matrix caused a beneficial 17–28% decrease
in average cell diameters. Such an effect caused an even 5% drop in thermal conductivity coefficient
values, enhancing thermal insulation performance. The application of waste oil resulted in the
superior mechanical performance of composites compared to the fresh one and thermo-mechanical
modification without oils. The compressive and tensile performance of composites filled with waste
oil-modified GTR was almost the same as for the unfilled foam. Moreover, the introduction of ground
tire rubber particles enhanced the thermal stability of neat polyurethane foam.

Keywords: polyurethane foams; ground tire rubber; composites; oil modification; recycling

1. Introduction

Polyurethanes (PU) are very versatile materials with a broad range of potential indus-
trial applications. Therefore, the PU market is constantly growing over the last decades [1].
Currently, the global demand for polyurethane materials is estimated at around 20.4 mil-
lion tons [2]. Forecasts indicate that in 2024 it should increase by around 10% and reach
22.5 million tons [3]. Among all polyurethane materials, 59% accounts for the polyurethane
foams, while 31% solely for the flexible polyurethane foams [4,5]. They are commonly
applied in the furniture, automotive, construction, packaging industries, as well as damp-
ing and soundproofing materials [6]. The growth of the polyurethane market poses many
challenges for manufacturers but, at the same time, an exciting opportunity. Their activities
are focused on improving current products, expanding their offer, and increasing produc-
tion profitability. Among the main directions of development of flexible polyurethane
foams, also pronounced by the producers, should be mentioned increasing the functionality,
reducing waste generation, or reducing materials’ costs, e.g., by applying the recycled
raw materials [7]. The use of recycled raw materials in polyurethane technology can be
realized using recycled polyols or the introduction of fillers. Considering polyols, they can
be obtained, e.g., by glycolysis of polyurethanes, or poly(ethylene terephthalate), or by
liquefying lignocellulosic biomass [8–10]. Solutions based on the use of recycled polyols are
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already present in the polyurethanes market. Manufacturers offer products derived from
glycolysis processes waste polyurethane foams or glycolysis of waste poly(ethylene tereph-
thalate) from used bottles [11–13]. Nevertheless, it is still entirely reasonable to search for
further possibilities of using recycled materials to produce polyurethanes, including foams.

Therefore, except for recycled polyols, various waste-based fillers may be introduced
into a foamed polyurethane matrix. One of the possibilities is to use wastes generated
during polyurethane foam production and prepare all-polyurethane composites [14]. Such
solutions are currently present in the market and used as carpet linings or floor under-
lays [15]. Among the other potential fillers for the flexible polyurethane foams could be
mentioned waste rubber particles such as ground tire rubber (GTR). It is the material
generated during material recycling of post-consumer car tires [16]. As mentioned above,
the multiple applications of flexible PU foams include the products, whose important
aspect is the material cost. Therefore, the use of relatively cheap GTR could reduce the cost
of the material and significantly increase its attractiveness to potential buyers [17]. Ground
tire rubber is significantly cheaper than commonly applied polyurethane systems [18].
Except for the cost benefits, the introduction of waste rubber may enhance the performance
of flexible polyurethane foams. Literature data indicate that it may beneficially affect
the compressive strength and the damping properties considering the mechanical and
acoustic vibrations [19]. Such effects play a vital role in the applications of PU foams in
packaging, automotive, and construction industries or as soundproofing materials [20].
Gayathri et al. [21] observed a substantial enhancement of tensile and compressive per-
formance of foams with the addition of waste rubber. The strength of the material was
increased by over 100% for the 2 wt% filler addition. Similar effects associated with the
strength increase were noted by Cachaço et al. [22]. Moreover, Gayathri et al. [21] reported
the significant rise of the sound absorption coefficient of foams after GTR addition, which is
a great advantage from the application point of view. Depending on the applied sound fre-
quency, the absorption was even 60% higher than for unfilled foam. A similar enhancement
of the soundproofing performance was reported by Zhang et al. [23]. They investigated
the impact of unmodified and partially devulcanized GTR. Modification was performed
using pan-mill type mechanochemical reactor at ambient temperature. It enabled reduction
of particle size from ~250 µm to ~60 µm. Moreover, the X-ray photoelectron spectral
analysis indicated the 3.4% increase of the oxygen content, indicating partial oxidation of
the GTR surface. Such an effect was beneficial for the foams’ cellular structure and enabled
reduction of the average cell diameter, pointing to the enhanced interfacial interactions
with polyurethane matrix. Such an effect is very beneficial for the foams’ performance [24].
Composites filled with 20 wt% of neat and devulcanized GTR showed the sound absorption
coefficients (at 1000 Hz) of 0.143 and 0.242. Moreover, the loss modulus determined by
the dynamic mechanical analysis was higher for application of modified GTR over the
whole range of analyzed frequencies (from 0 to 180 Hz). The beneficial effect of devulcan-
ization was also observed for higher filler loadings. For the 30 wt% content, the absorption
coefficient around 1000 Hz reached even the value of 0.350, which was attributed to the
enhanced elasticity of foams. Presented results show that the partial devulcanization
of GTR is very promising approach for the manufacturing of PU/GTR based damping
materials. Nevertheless, our previous results [19] indicate that after modifications of GTR,
the formulations of PU foams should be modified to adjust the proper ratio between iso-
cyanate and hydroxyl groups in the system. Such a phenomenon was confirmed by our
other work [20] dealing with the application of GTR oxidized with KMnO4 and H2O2
solutions. An excessive oxidation of GTR surface with potassium permanganate caused
the disturbance of the NCO:OH ratio, which resulted in the weakening of polyurethane
matrix and significant reduction in compressive strength. On the other hand, the results
for composites filled with H2O2 modified GTR were very promising. Summing up, the
literature works indicate that the proper modification of ground tire rubber should be
considered auspicious for the performance of foamed PU/GTR composites. However,
more different approaches should be investigated.
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Keeping in mind the potentials benefits of the GTR introduction into a foamed flexible
polyurethane matrix, we also investigated the application of this waste as a filler in the
presented work. As suggested by the works mentioned above, to enhance the interfacial
interactions between the PU matrix and GTR, prior to the introduction, the filler was modi-
fied. Thermo-mechanical treatment in the co-rotating twin-screw extruder was applied.
Such a process is very efficient in terms of GTR surface modification [25]. The impact of
GTR treatment on the cellular structure, physical, thermal, as well as static and dynamic
mechanical performance was investigated. Moreover, for more efficient surface activation
and partial swelling of GTR particles, the two types of rapeseed oil were introduced as
additional modifiers—fresh and waste oil, obtained from the local restaurant. Typically, the
waste rapeseed oil differs from the fresh one due to the number of chemical changes occur-
ring during cooking, e.g., hydrolysis, oxidation, oligomerization, as well as the extraction of
chemical compounds from food products [26]. As a result, waste oils are characterized by
the higher acid values and lower iodine values [26]. Moreover, oxidation of oils occurring
during primary use can be confirmed by the significantly higher peroxide values.

2. Materials and Methods
2.1. Materials

The materials used in the presented study are listed in Table 1.

Table 1. The list of materials used in the presented work.

Material Producer Properties/Additional Information

GTR modification

Ground tire rubber Recykl S.A. (Śrem, Poland) Average particle size—0.6 mm

Fresh rapeseed oil Zakłady Tłuszczowe Kruszwica S.A.
(Kruszwica, Poland) Fresh, unmodified oil

Waste rapeseed oil Local restaurant (Gdańsk, Poland) Post-consumer oil obtained after frying

Polyurethane foams preparation

Rokopol®F3000 PCC Group (Brzeg Dolny, Poland) Polyether polyol, propoxylated glycerol,
hydroxyl value—53–59 mg KOH/g

Rokopol®V700 PCC Group (Brzeg Dolny, Poland) Polyether polyol, propoxylated glycerol,
hydroxyl value—225–250 mg KOH/g

Glycerol Sigma Aldrich (Poznań, Poland) Hydroxyl value—1800 mg KOH/g

SPECFLEX NF 434 M. B. Market Ltd. (Baniocha, Poland)
Polymeric

methylenediphenyl-4,4′-diisocyanate, free
isocyanate content—29.5%

PC CAT®TKA30 Performance Chemicals (Belvedere, UK) Potassium acetate catalyst

Dabco33LV Air Products (Allentown, USA)
Catalyst, 3 wt% solution of

1,4-diazabicyclo[2.2.2]octane in dipropylene
glycol

Dibutyltin dilaurate Sigma Aldrich (Poznań, Poland) Organic tin catalyst
Distilled water - Chemical blowing agent

Determination of GTR hydroxyl value

Acetone Sigma Aldrich (Poznań, Poland) Solvent
Dibutylamine Sigma Aldrich (Poznań, Poland) Analyte solution

Chlorobenzene Sigma Aldrich (Poznań, Poland) Solvent
Hydrochloric acid Sigma Aldrich (Poznań, Poland) Titrant

Toluene diisocyanate Sigma Aldrich (Poznań, Poland) Free isocyanate content—42%
3′,3′′,5′,5′′-Tetrabromophenol-sulfonphthalein Sigma Aldrich (Poznań, Poland) Indicator

2.2. Modifications of Ground Tire Rubber

Treatment of GTR was performed with an EHP 2 × 20 Sline co-rotating twin-screw
extruder from Zamak Mercator (Skawina, Poland) as described in our previous work [27].
More details are presented in Figure 1. For GTR modified with 20 phr of oils, the screw
speed of 50 rpm was the minimum speed enabling efficient modification. For samples
containing 40 phr of oils, the screw speed had to be increased to 150 rpm because of clogging
in the dosing section. For comparison, thermo-mechanically modified GTR without oil
addition was also analyzed.
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Table 2 presents the properties of modified GTR samples, including the hydroxyl
values (LOH) determined according to the method based on the modified test method for
isocyanate groups, as described in our previous works [28,29]. Hydroxyl values were calcu-
lated based on the free isocyanate group content (%NCO) in GTR:isocyanate mixtures and
the differences in %NCO between the mixture and neat isocyanate (∆NCO). For comparison,
the hydroxyl value of neat ground tire rubber applied in the presented study equaled
61.7 mg KOH/g. Moreover, the specific mechanical energy (SME) values and total energy
consumption (TEC) are presented.

Table 2. The properties of GTR samples applied in the presented work.

Sample Oil Type and
Content, phr

Screw
Speed, rpm

Motor
Load, %

SME,
kWh/kg

TEC,
kWh/kg %NCO, % ∆NCO, % LOH mg

KOH/g

TM - 50 33.0 0.053 0.160 36.3 ± 0.4 6.4 ± 0.4 41.1 ± 3.5

20FO Fresh, 20 50 21.3 0.033 0.157 37.9 ± 0.5 4.8 ± 0.5 30.8 ± 3.2

40FO Fresh, 40 150 4.6 0.008 0.165 36.7 ± 0.2 6.0 ± 0.2 38.3 ± 1.2

20WO Waste, 20 50 16.4 0.026 0.157 32.4 ± 0.1 10.3 ± 0.1 66.6 ± 0.9

40WO Waste, 40 150 4.7 0.008 0.168 29.9 ± 0.5 12.8 ± 0.5 82.3 ± 3.2

As presented in our previous works [27–29], thermo-mechanical treatment of the
ground tire rubber in twin-screw extruder may result in chemical changes on the surface
of particles, especially partial oxidation and generation of hydroxyl, formyl and carbonyl
groups. The oxidative degradation of GTR resulting in the generation of formyl and
carbonyl groups was reported by Gągol et al. [30]. Such an effect is attributed to the high
shear forces acting on the material during twin-screw extrusion and the atmosphere of the
process—air, which enables oxidation of material. Formela et al. [16] proved that even the
short treatment of GTR in the extruder can result in an appearance of hydroxyl groups on
the surface of analyzed waste material (even when the process is conducted at only 120 ◦C).
As mentioned above, the GTR samples used in the presented work were modified at a
significantly elevated temperature of 200 ◦C under the air atmosphere. Multiple research
works reported that thermal decomposition of GTR in the air begins around 200 ◦C [31–33].
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Moreover, the whole process (extrusion with specific screws configuration) generates
shear forces adding additional energy to the system. In the work of Zedler et al. [34],
research was conducted on extrusion of modified rubber. The temperature settings of
the extruder were as follows: 40/40/60/60/60/60/60/60/60/60/60 ◦C. Temperature
measurements were conducted on the extruder nozzle using a thermal imaging camera.
The obtained thermograms indicated that the temperature increased more than two times
compared to the extruder heating zone settings. This phenomenon only indicates the
significant influence of shear forces generated by appropriately selected screws segments,
on changes in the energy of the system. Therefore, thermal analysis methods conducted on
a small sample, under static mechanical conditions and the presence of inert gas, cannot be
fully compared to the actual stability of material processed in an extruder generating high
shear forces and with access to air.

Generally, thermo-mechanical treatment under proposed conditions results in oxida-
tion of rubber and generation of functional groups, including hydroxyls. Such an effect was
also noted by Zhang et al. [35], who noted significant increase in the oxygen content in GTR
after milling at ambient temperature. Similar effects were reported in other works [36,37].
As a result, the analyzed samples of GTR shown hydroxyl values exceeding 30 mg KOH/g.

2.3. Preparation of Polyurethane/Ground Tire Rubber Composite Foams

Samples were prepared on a laboratory scale by a single-step method. Introduced
filler was mixed with the applied polyols at 1000 rpm for 60 s to guarantee its proper
distribution. Then, all components were mixed for 10 s at 1800 rpm and poured into a
closed aluminum mold with dimensions of 20 × 10 × 4 cm3. All analyses were performed
after 24-hour conditioning of samples at room temperature and average humidity of 60%.
In the following sections, the neat foam without the addition of GTR was named PU. In
contrast, composite foams were named GTRX, where X indicates the type and content of
introduced GTR. Table 3 shows the formulations of prepared composite foams. All foams
were characterized by a similar level of apparent density—205 ± 6 kg/m3.

Table 3. Formulations applied during preparation of foams.

Component
Neat Foam Composite Foams

Content, wt%

F3000 32.6 26.1
V700 32.6 26.1

Glycerol 0.8 0.6
DBTDL 0.6 0.5

33LV 0.4 0.3
TKA30 0.4 0.3
Water 0.3 0.3
pMDI 32.3 25.8

GTR/modified GTR - 20.0

Isocyanate:hydroxyl ratio 1:1

2.4. Characterization Techniques

After conditioning, foamed polyurethane composites were cut into samples whose
properties were later determined following the standard procedures.

The samples’ morphology was evaluated using a scanning electron microscope (SEM)
MIRA3—produced by the Tescan (Brno, Czech Republic). The thin carbon coating with a
thickness of approximately 20 nm was deposited on samples using Jeol JEE 4B vacuum
evaporator from Jeol USA (Peabody, MA, USA). The cellular structures of foams were
analyzed using an accelerating voltage of 5 kV. The secondary electron detector was used.

The images obtained with the SEM microscopy were analyzed with ImageJ soft-
ware. Except for the average cell diameter, the following shape descriptors of cells
were determined:
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Aspect ratio (AR) calculated according to the following Equation (1):

AR = LL / LS (1)

Roundness (R) calculated according to the following Equation (2):

R = (4 · A) / (π · LL
2) (2)

where: LL and LS—the lengths of the longer and shorter axis of the fitted ellipse; A—the
area of fitted ellipse.

At least 150 cells for each sample were taken into account during analysis.
The content of open cells in foamed composites was determined using an Ultrapyc

5000 Foam gas pycnometer from Anton Paar (Graz, Austria). Following measurement
settings were applied: gas—helium; target pressure—3.0 psi; foam mode—on; measure-
ment type —corrected; flow direction—sample first; temperature control—on; target
temperature—20.0 ◦C; flow mode—monolith; cell size—medium, 45 cm3; preparation
mode—flow; time of the gas flow—0.5 min.

The thermal conductivity coefficient (λ) or prepared polyurethane foams was deter-
mined using the heat flow meter HFM 446 from Netzsch (Selb, Germany). Samples with
thickness of 4 cm were tested in the temperature range from 1 to 19 ◦C using the average
temperature of 10 ◦C.

Sol fraction content was determined as the mass difference of prepared foams before
swelling in xylene (W1) and after extraction (W2), according to the following Equation (3):

Sol fraction content = (W1 −W2) / W1 · 100% (3)

The compressive strength of studied samples was estimated following ISO 604. The
cylindric samples with dimensions of 20 mm × 20 mm (height and diameter) were mea-
sured with a slide caliper with an accuracy of 0.1 mm. The compression test was performed
on a Zwick/Roell Z020 tensile tester (Ulm, Germany) at a constant speed of 15%/min until
reaching 60% deformation.

The tensile strength of microporous polyurethane elastomers was estimated following
ISO 1798. The beam-shaped samples with 10 × 10 × 100 mm3 dimensions were measured
with a slide caliper with an accuracy of 0.1 mm. The tensile test was performed on a
Zwick/Roell tensile tester at a constant speed of 500 mm/min.

Dynamical mechanical analysis (DMA) was performed using a Q800 DMA instrument
from TA Instruments (New Castle, DE, USA) at a heating rate of 4 ◦C/min and the temper-
ature range from −100 to 150 ◦C. Samples were cylindrical-shaped, with dimensions of
10 × 12 tmm.

The thermogravimetric (TGA) analysis of GTR and composites was performed using
the TG 209 F3 apparatus from Netzsch. Samples of foams weighing approx. 10 mg were
placed in a ceramic dish. The study was conducted in an inert gas atmosphere—nitrogen
in the range from 30 to 800 ◦C with a temperature increase rate of 10 ◦C/min.

3. Results and Discussion

The cellular structure of prepared foams is presented in Figure 2. Moreover, the
parameters describing the structure are summarized in Table 4. The changes in the cellular
structure of polyurethane foams are related to the changes in the reaction mixture’s viscosity
caused by introducing solid rubber particles, as reported by Paberza et al. [38]. In their work,
the viscosity of the polyol mixture was exponentially rising with the addition of solid lignin
particles from the initial 3.0 Pa·s to 24.2 Pa·s for the 17.5 wt% filler loading. Moreover, solid
particles may act as nucleating agents in polyurethane systems [39]. Previous works [40,41]
pointed to reducing the nucleation free energy, which favors the formation of nucleation
sites and increasing the number of cells in the foams’ structure. Lee et al. [40] indicated
that the nucleating effect of solid particles depends on their size, shape, and compatibility
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with the polyurethane system, which affects the surface tension. High compatibility results
in the more significant reduction of free energy and increases the number of nucleation
sites, reducing the average particle size.

Table 4. The parameters of the cellular structure of prepared foams.

Parameter
Sample

PU GTRTM GTR20FO GTR40FO GTR20WO GTR40WO

Average cell diameter, µm 308 ± 31 257 ± 32 241 ± 34 244 ± 36 238 ± 35 220 ± 33
Cell aspect ratio 1.46 ± 0.34 1.55 ± 0.42 1.50 ± 0.41 1.56 ± 0.42 1.49 ± 0.36 1.51 ± 0.40
Cell roundness 0.73 ± 0.15 0.70 ± 0.17 0.72 ± 0.17 0.69 ± 0.17 0.72 ± 0.17 0.71 ± 0.16

Open cell content, % 84.7 ± 0.2 84.3 ± 0.3 83.4 ± 0.6 83.1 ± 0.3 83.9 ± 0.4 83.4 ± 0.3
λ coefficient, mW/(m·K) 70.0 ± 0.1 66.0 ± 1.1 67.9 ± 1.0 69.0 ± 0.8 66.4 ± 1.5 66.8 ± 1.2

It can be seen that the introduction of the ground tire rubber particles resulted in a
noticeable decrease in average cell diameter from 308 µm to 220–257 µm, depending on the
rubber treatment. Such an effect was also noted in our previous work [42]. This effect was
associated with the increase in the polyol mixture’s viscosity, which, as mentioned above,
affects the foaming kinetics [43]. For oil-modified GTR particles, the cell size reduction
was higher than for thermo-mechanically modified rubber due to the increase in surface
tension caused by the oil presence [44]. As a result, more energy was required to form and
especially grow the cells during the polymerization of the polyurethane matrix. Moreover,
the presence of oil during extrusion treatment of GTR at elevated temperature may result in
swelling of rubber particles leading to enhanced interfacial interactions with polyurethane
matrix [45].
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Except for the physical effects of GTR oil modification on the foams’ cellular structure,
the chemical interactions at the interface have to be considered. As presented in Table 2, the
applied samples of GTR were characterized by the varying hydroxyl values, pointing to
the different content of hydroxyl groups present on the rubber surface. As presented in our
previous works [27–29], the oil-assisted thermo-mechanical treatment caused changes in
the GTR surface structure. When the fresh oil was applied, the hydroxyl value was reduced,
attributed to the chemical structure of rapeseed oil, especially oleic, linoleic, α-linolenic,
palmitic, and stearic acids which are the main fatty acids present in this oil [46]. These
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acids do not contain hydroxyl groups in the structure, so they are not contributing to
the hydroxyl number [47]. As a result, the fresh rapeseed oil was only swelling the GTR
particles without introducing additional functional groups.

Nevertheless, after frying, the chemical structure of oils changes due to their hydroly-
sis, oxidation, and polymerization [26]. The first two groups of reactions may contribute to
the hydroxyl number of modified GTR. The hydrolysis results in the formation of mono-
and diglycerols, free fatty acids, and sometimes even glycerol, which was also noted in
other works [26]. These compounds contain hydroxyl groups so that they can increase
the hydroxyl value of modified GTR. Oxidation of oils may result in the generation of
carbonyl groups, noticeably less often hydroxyls. Nevertheless, it may also slightly affect
the hydroxyl number of oil [48]. Therefore, the hydroxyl values of waste oil-modified
GTR were noticeably higher compared to the other samples. As a result, the interactions
with polyurethane matrix were enhanced, which resulted in a slightly more substantial
reduction of particle size than the samples modified with fresh oil or without oil [40].

Except for the particle size reduction, the introduction of neat and modified GTR
particles caused a slight increase in cells’ aspect ratio and reduced their roundness. Such an
effect was attributed to the increased viscosity of polyol mixtures containing solid rubber
particles leading to the higher heterogeneity of the structure, as indicated by Song et al. [49].
A similar increase of cells’ anisotropy was observed in our other work [50]. The reduction
of the average cell diameter as a function of increasing polyol viscosity was also reported
by Fan et al. [51]. They attributed this effect to the limited coalescence among gas bubbles,
which were not merging during the volumetric expansion of the material [52].

Considering the open cell content, the critical parameter of cellular materials, the
influence of GTR introduction was minimal, confirming the results presented in our pre-
vious paper [42]. A slight decrease in the content of open cells can be attributed to the
above-mentioned increase of polyols’ viscosity and closing of cells due to the reduced
coalescence [53]. On the other hand, the presence of filler particles may sometimes increase
the content of open cells [54]. As a result of the combined impact of GTR particles, open
cell content in the presented samples was hardly affected. A similar phenomenon related
to the filler incorporation into flexible polyurethane foams was noted by Javni et al. [55].

The changes in the cellular structure caused by the introduction of GTR particles
into a flexible foamed polyurethane matrix impacted its thermal conductivity. Generally,
this property is rather associated with rigid polyurethane foams, which are one of the
most popular thermal insulation materials [56]. Nevertheless, flexible foams are also used,
e.g., in building applications as floor underlays, where thermal conductivity coefficient (λ)
is quite an important parameter [57]. In the case of cellular materials, thermal insulation
properties are directly associated with their morphology. According to Szycher [58], the
thermal conductivity coefficient of foamed materials can be described by the following
Equation (4):

λ = λsolid + λgas + λconvection + λradiation (4)

For analyzed materials, the value of λ coefficient attributed to solids is affected by the
introduction of GTR into the polyurethane matrix. Depending on the literature reports, the λ

value of shredded tire rubber varies between 0.100 and 0.166 W/(m·K) [59,60]. For the non-
porous polyurethane, thermal conductivity coefficient is in the range of 0.200–0.260 W/(m·K),
depending on the applied formulation [61,62]. Therefore, simple replacement of some
portion of solid polyurethane in foam should guarantee the reduction of its thermal con-
ductivity coefficient. Nevertheless, the introduction of GTR often results in the disruption
of cellular structure, which was shown in our previous papers [19,63]. Moreover, it can
be seen that the application of the oil-modified GTR resulted in higher values of thermal
conductivity coefficient compared to the sample GTRTM. Such an effect could be attributed
to the higher thermal conductivity of rapeseed oil comparing to the rubber, which is around
0.170–0.180 W/(m·K) [64].

Considering the λgas, it is directly associated with the apparent density of cellular
materials, which describes the share of solid material in a given volume of foam. Therefore,
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foams having relatively low apparent density are usually preferred for thermal insula-
tion materials. The typical apparent densities of rigid polyurethane foams or expanded
polystyrene applied as insulations range from 30–45 kg/m3 [65]. Moreover, the value of
λgas can be influenced by the selection of a proper foaming agent. According to Randall
and Lee [66], the application of conventional hydrofluorocarbon as a physical blowing
agent instead of the chemical foaming with the carbon dioxide generated in the water reac-
tion with isocyanates may reduce the λgas by around 50%. At the same time, the thermal
conductivity coefficient of CO2 is almost 40% lower than air (15.3 vs. 24.9 mW/(m·K)) [66].
Therefore, λgas, and in particular, its stability, is strongly affected by the closed cell content
in foam. When the CO2 or physical blowing agents are trapped inside closed cells, their
diffusive exchange with air is significantly slower. Nevertheless, for presented foams, the
impact of λgas on the total value of thermal conductivity coefficient is similar for all samples
due to the similar level of apparent density—205 ± 6 kg/m3.

The content of open and closed cells also influences the λconvection. The convection can
be generally described as the spontaneously occurring fluid flow caused by the combined
effects of its heterogeneity and the external factors [67]. Considering thermal conductivity,
it is attributed to the gas displacement caused by the temperature gradient in a given
volume [53]. It can be quantified with the following Equation (5):

q = h · A · ∆T (5)

where: q—the amount of heat transferred per unit time, W; h—the convective heat transfer
coefficient, W/(m2·K); A—the heat transfer area, m2; ∆T—temperature gradient implicat-
ing convection, K.

Therefore, the convection is proportionally affected by the heat transfer area, which is
depending on the content of closed and open cells inside the foam. The increasing content
of open cells significantly increases the convection area. When the high closed cell content
characterizes foams, the convective heat transfer can even be omitted [68]. As shown in
Table 4, the introduction of GTR particles into foamed polyurethane matrix caused the
decrease in open cell content from 84.7% to 83.1–84.3%. Therefore, the heat transfer area
was slightly limited, but the effect was minimal and could be neglected.

The last component of the thermal conductivity coefficient is associated with the
radiation heat transfer. According to Glicksman [62], it can account for around 20–30% of
the total heat transfer for low-density foams. Over the years, researchers tried to provide
the mathematical formula quantifying the radiative heat transfer with different concepts
related to the contribution of particular foam components, e.g., cell walls and struts [69–71].
Generally, the λradiation can be determined using the following Equations (6) and (7) [62]:

λradiation = (16 · σ · T3) / (3 · K) (6)

where:
K = 4.1 · ((fs · ρf / ρp)0.5) / d (7)

where: σ—Stefan-Boltzmann constant, 5.67·10−8 W/(m2·K4); T—temperature, K; K—
Rosseland mean extinction coefficient depending on foam geometry and material prop-
erties, cm−1; fs—polymer fraction in struts; ρf—density of foam, kg/m3; ρp—density of
polymer, kg/m3; d—cell diameter, m.

Considering the presented equations, the λradiation is proportional to the cell diameter,
so the thermal insulation performance of foam can be enhanced by reducing cell size.
The multiple experimental works confirmed such an assumption. Kurańska et al. [72]
showed that the thermal conductivity coefficient of polyurethane foam was increased by
5% when the average cross-section area of cells was increased by 5% with the closed cell
content maintained at a similar level. In other work, Randall and Lee [66] indicated that the
increase in average cell diameter from 0.25 to 0.60 mm implicated the 50% rise of foam’s
λ coefficient. In our previous works [50,53], we showed that the 24–25% drop of cell size
resulted in the λ reduction by 7–12%, depending on the applied foam formulation.
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The introduction of ground tire rubber particles into flexible polyurethane matrix
implicated the decrease in average cell diameter from 308 µm to 220–257 µm. Such an
effect is very beneficial for the thermal insulation performance of foams, as proven by
the equations mentioned above. As a result, the thermal conductivity coefficient of the
reference polyurethane foam was reduced by the incorporation of GTR, irrespectively of the
applied treatment. Observed λ changes have to be considered very beneficial because the
incorporation of 20 wt% of waste filler enables enhancement of foams’ thermal insulation
performance. It is worth mentioning that such an effect is not typical because the intro-
duction of filler causes deterioration of the thermal insulation properties of polyurethane
foams [73–75].

Table 5 presents the physico-mechanical properties of prepared polyurethane foams.
It can be seen that the introduction of GTR, irrespectively of its type, caused a significant
increase in the sol fraction content, which for the unfilled foam, equaled 2.3%. Such a low
value points to the efficient polymerization of the system and a low portion of unbound
extractives [76]. Higher sol fraction contents for composite foams are attributed to the
noticeably higher value of this parameter for GTR itself (even over 10% [34,77]), as well
as to the GTR interactions with the polyurethane matrix. The functional groups present
on the surface of rubber particles (see GTR hydroxyl values in Table 2) may interact
with isocyanates present in the polyurethane system, resulting in partially loose polyols
macromolecules [78].

Table 5. The physico-mechanical properties of prepared foams.

Parameter
Sample

PU GTRTM GTR20FO GTR40FO GTR20WO GTR40WO

Sol fraction content, % 2.3 ± 0.3 10.2 ± 0.3 16.0 ± 0.1 13.1 ± 0.2 9.4 ± 0.2 8.8 ± 0.3
Compressive strength at 50%

deformation, kPa 45.1 ± 3.8 21.6 ± 1.3 17.7 ± 0.7 22.1 ± 2.0 34.4 ± 2.9 41.3 ± 1.8

Tensile strength, kPa 230 ± 6 171 ± 11 98 ± 5 126 ± 5 185 ± 8 217 ± 14
Elongation at break, % 195 ± 4 149 ± 11 121 ± 7 145 ± 14 162 ± 13 167 ± 2

Toughness, J/dm3 208 ± 18 117 + 23 60 ± 5 85 ± 10 145 ± 16 170 ± 15
Storage modulus at 22 ◦C, kPa 1358 226 195 427 534 1333

Tan δ at 22 ◦C 0.61 0.61 0.62 0.60 0.58 0.49
Tg, ◦C 20.7 13.6 13.0 15.3 16.9 20.0

Incorporating GTR modified with the fresh rapeseed oil resulted in a more substantial
increase of the sol fraction content. It can be attributed to the chemical composition
of rapeseed oil and the lack of hydroxyl groups in the structure of fatty acids [46]. As
mentioned above, it results in the lower hydroxyl value of modified GTR compared to
thermo-mechanical treatment. The fresh oil is hardly bound to the rubber surface or
polyurethane matrix so that it can be easily removed during swelling with xylene. On the
contrary, the use of waste oil caused a slight decrease in the sol fraction content. It may
indicate the enhanced crosslinking of foams’ structure compared to the GTRTM sample.
Such an effect was probably related to the above-mentioned changes in the oil structure
during frying, such as hydrolysis, oxidation, and polymerization. Compared to the fresh
oil, the interactions with the polyurethane matrix were enhanced, so a smaller portion of
GTR and oil was removed during swelling.

Figure 3 presents the compressive performance of analyzed foams. Clearly, the in-
troduction of GTR into neat polyurethane foam caused a reduction of its compressive
strength. A similar effect was noted in our previous works [19,42]. It points to the insuf-
ficient interfacial interactions between thermo-mechanically treated GTR and PU matrix.
The application of fresh rapeseed oil as a GTR modifier resulted in a further decrease
in foams’ compressive strength, which could be associated with reducing their stiffness,
as suggested by the values of sol fraction content. Deterioration was noted despite the
small but beneficial changes in the foams’ cellular structure (see Table 4). In polyurethane
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foams, the decrease in average cell size and closing of cells is beneficial for the compressive
strength since it results from the buckling of cell walls and structure densification [79,80].
The use of waste oil improved the compressive performance of foams compared to the
GTRTM sample, which points to the effective swelling of rubber particles and activation of
their surface, enhancing the interfacial interactions.
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Interestingly, at 60% deformation, the difference in the compressive performance of
unfilled foam and composites containing GTR particles was lower. Such an effect could be
attributed to the densification of structure. For neat foam, without the solid particles, the
densification was not complete, and foam could still reduce its thickness. For composite
foams, this phenomenon occurred at lower deformations because of the difference between
the average particle size of applied GTR (~0.6 mm) and the average cell size of foams
(between 0.22 and 0.31 mm).

Considering the tensile properties, incorporation of GTR, irrespectively of its type,
caused performance deterioration. Like the compressive performance, the deterioration
suggests the insufficient strength of the interfacial interactions in prepared composites. It
was particularly pronounced when GTR was treated with the fresh rapeseed oil, despite
the drop in average cell size, which promotes the tensile strength by the facilitated stress
distribution [81]. Significant deterioration of the mechanical performance was noted
compared to the GTRTM material. Such an effect can be attributed to the noticeably
higher values of sol fraction content, which may suggest the reduced crosslink density of
the material. As mentioned above, the fresh rapeseed oil contains hardly any hydroxyl
groups, which could contribute to the crosslinking of foams, expressed by the relatively
low hydroxyl values of GTR modified with fresh oil (see Table 2) [46].

On the contrary, the modification of GTR with the waste rapeseed oil improved the
tensile performance of composite foams, attributed to the structural changes in foams.
Compared to the GTRTM foam, composites containing waste oil were characterized by
~8 and ~14% smaller cells and lower values of sol fraction content. According to the
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literature data, such changes are very beneficial for the mechanical performance of cellular
materials [79].

For a more detailed analysis of the composite foams’ mechanical performance, the
dynamic mechanical analysis was performed. It revealed that the changes in the compres-
sive and tensile performance of prepared foams were directly associated with their glass
transition. In Table 5, there are presented values of foams’ glass transition temperatures
(Tg). They were determined as the positions of peaks on the temperature plot of loss
tangent (tan δ), also called the damping factor. Polymer materials undergo significant
structural changes around the Tg, which affect their mechanical performance [82]. It can be
seen that the ambient temperature, at which the mechanical tests were conducted (22 ◦C),
is close to the Tg of prepared foams (13.0–20.7 ◦C). Figure 4 shows, on the example of
storage modulus, that the changes in the mechanical properties of foams take place in the
noticeably broader temperature range than just Tg [83]. As a result, the closeness of Tg
significantly affects the static and dynamic mechanical performance of foams. According
to the work of Hatakeyama et al. [84], the differences in the glass transition temperature of
flexible polyurethane foams in the range of 0–20 ◦C may cause the significant, even 40%,
changes of compressive strength. Presented results confirmed this phenomenon because
foams with lower Tg, hence the bigger difference between Tg and temperature of tensile
and compression tests, were characterized by the lower strength.
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Figure 5 and Table 6 present the results of thermogravimetric analysis of applied GTR
fillers. The onset of the TM sample, determined as the temperature corresponding to the
2 wt% mass loss, was 260.0 ◦C. The course of thermal decomposition of GTR was attributed
to its composition and content of natural rubber and styrene-butadiene rubber. The first
one decomposes at lower temperatures, with the maximum rate around 375–390 ◦C (Tmax1),
while the second one at higher temperatures—430–445 ◦C (Tmax2) [85].
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Table 6. The results of thermogravimetric analysis of GTR samples.

Sample T-2%, ◦C T-5%, ◦C T-10%, ◦C T-50%, ◦C Char Residue, wt% Tmax1, ◦C Tmax2, ◦C

TM 260.0 308.5 347.4 443.9 37.48 377.9 436.6
20FO 269.3 315.7 346.2 427.0 32.24 382.1 441.6
40FO 280.2 323.3 349.8 417.5 27.72 389.1 441.6
20WO 263.0 305.6 339.8 426.6 32.53 381.5 440.6
40WO 265.5 307.5 339.6 415.6 27.49 386.1 440.6

The oil modification enhanced the stability of rubber particles compared to thermo-
mechanical treatment. The introduction of the fresh rapeseed oil shifted the onset towards
higher temperatures by 9.3 and 20.2 ◦C, for 20 and 40 phr loading, respectively. The
enhancement was also noted for the waste oil application, but the shift was noticeably
lower. Such differences are related to the high stability of rapeseed oil and its partial
decomposition during the primary use in gastronomy [42]. Laza and Bereczky [86] reported
that thermal degradation of fresh rapeseed oil occurs within the temperature range of
325–500 ◦C with a maximum rate of around 440 ◦C. On the other hand, cooking of oil
causes its partial decomposition and results in lower-molecular weight compounds, which
are often characterized by lower thermal stability [26].

Figure 6 demonstrates the results of thermogravimetric analysis of prepared composite
foams. The decomposition of polyurethane foam occurs in the temperature range of
200–500 ◦C with only minor mass loss at higher temperatures, typical for the flexible
polyurethane foams [20]. Thermal stability of the reference foam, determined as the
temperature of 2 wt% mass loss, was enhanced after the introduction of GTR particles.
Only for the GTR40WO sample, the stability was maintained at a similar level. Noticeably
more significant improvement was noted for 5 wt% mass loss. It was attributed to the
higher stability of rubber particles compared to the unfilled polyurethane foam.

Generally, the decomposition of the unfilled PU foam showed five main steps, which
are associated with the segment structure of polyurethane [87]. The steps with the maxi-
mum rate at 182–194◦C (Tmax1) and 218–233 ◦C (Tmax2) can be attributed to the dissociation
of urethane bonds [88]. The presence of two peaks is related to the applied formulation of
foams and the use of two different polyether polyols and the glycerol, which led to the gen-
eration of structurally different hard segments [89]. The low magnitude of these peaks is
associated with the low value of the isocyanate:hydroxyl ratio applied during preparation
of foams and the lack of isocyanate’s excess, which could enhance the content of the hard
segment. The following signals in the temperature range of 300–420 ◦C (Tmax3 and Tmax4)
are characteristic for the decomposition of polyurethanes’ soft segments [53]. These signals
are noticeably separated for the reference foam. Similar to the hard segments, the presence
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of two peaks is attributed to the foams’ formulations. Nevertheless, the introduction of
GTR particles, especially modified with oils, caused the shifts of these peaks and their over-
lapping. For GTR20WO and GTR40WO, peak Tmax3 could not be distinguished. This effect
was due to the overlapping of peaks characteristic for the decomposition of polyurethane
soft segments and natural rubber present in the ground tire rubber particles [42]. The peak
observed in the range of 448–457 ◦C (Tmax5) can be related to the thermolysis of organic
residues from previous decomposition stages of polyurethane foam [90]. However, when
the GTR was introduced, the magnitude of this peak was significantly enhanced. It was
due to the degradation of styrene-butadiene rubber present in the structure of ground
tire rubber.
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Table 7 also presents the effect of GTR incorporation on the values of char residue.
The experimental values (Exp.) were determined by thermogravimetric analysis, while
theoretical ones (Theo.) were calculated according to the following Equation (8):

Theo. = (1 − 0.2) · Exp.PU + 0.2 · Exp.GTR (8)

where: Exp.PU—experimental char residue of unfilled reference foam; Exp.GTR—char
residue for the particular type of GTR (Table 6). The 0.2 coefficient is associated with the
content of GTR in composite foams (Table 3).

Table 7. The results of thermogravimetric analysis of polyurethane/GTR composite foams.

Sample T-2%, ◦C T-5%, ◦C T-10%, ◦C T-50%, ◦C Tmax1, ◦C Tmax2, ◦C Tmax3, ◦C Tmax4, ◦C Tmax5, ◦C
Char Residue, wt%

Exp. Theo. Difference

PU 215.0 253.5 308.2 372.5 187.7 227.6 346.7 393.4 456.8 13.2 - -
GTRTM 228.0 283.4 316.7 390.9 193.3 232.8 347.8 399.1 449.8 16.3 18.1 −1.8

GTR20FO 228.4 283.9 318.7 391.3 190.4 232.1 348.7 398.3 449.4 16.0 17.0 −1.0
GTR40FO 226.6 278.8 318.1 389.0 189.7 230.3 351.6 393.3 448.2 15.0 16.1 −1.1
GTR20WO 220.0 277.6 314.8 390.0 183.4 221.4 - 390.7 449.4 15.7 17.1 −1.4
GTR40WO 214.7 272.2 316.3 390.3 182.4 218.3 - 392.5 449.1 14.6 16.1 −1.5

It can be seen that theoretical values of char residue for composite foams are higher
than recorded experimental values. It can be attributed to the interfacial interactions, which
decreased the stability of the polyurethane matrix. As suggested by the increasing values
of sol fraction, the introduction of GTR particles, irrespectively of their type, resulted in
the presence of unbound or loose macromolecules in the material, which may affect the
stability of composites. Interestingly, the oil modification reduced the difference between
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theoretical and experimental values of char residue, which may suggest an improvement
in interfacial interactions.

4. Conclusions

The presented paper aimed to analyze the influence of the thermo-mechanical treat-
ment of ground tire rubber particles on the structure and performance of foamed PU/GTR
composites based on a flexible polyurethane matrix. Applied GTR was modified in the
reactive extrusion process. Moreover, except for the simple thermo-mechanical treatment
addition of two types of rapeseed oil was investigated, fresh and waste—obtained as a by-
product from the local restaurant. Introduction of oils into reactive extrusion of GTR caused
the noticeable changes in filler properties, e.g., in the hydroxyl value. Independently of
the treatment conditions, incorporation of modified GTR into polyurethane foams caused
the reduction in average cell size, which could be attributed to the nucleating activity
of filler and increased surface tension during foaming. The average cell diameter was
reduced by 17–28%, which beneficially affected the performance of composites. Thermal
insulation performance enhancement was noted, expressed by the 5% drop of thermal
conductivity coefficient.

Changes in the cellular structure of foams also influenced the mechanical performance
of analyzed materials. Generally, the presence of GTR particles caused deterioration of
foam’s mechanical properties, despite the cell size reduction. Nevertheless, the incorpora-
tion of oils into the reactive extrusion of GTR was very beneficial. Compared to foam filled
with thermo-mechanically treated GTR, samples containing GTR modified with waste oil
showed compressive and tensile strength higher by 59–91% and 8–27%, respectively. The
deterioration of the foams’ mechanical performance after the introduction of GTR was also
affected by the decrease in glass transition temperature, which was relatively close to the
ambient temperature during mechanical tests.

Moreover, the incorporation of ground tire rubber particles into flexible polyurethane
foam was very beneficial in terms of thermal stability. The onset of thermal decomposition,
determined as a temperature of 2 wt% mass loss, was shifted even by 13 ◦C towards higher
temperatures for the composite containing thermo-mechanically treated GTR. Such an effect
was attributed to the higher thermal stability of GTR compared to the polyurethane matrix.

In conclusion, the presented research work shows that the introduction of GTR may
be considered a promising method for the improvement of the structure and performance
of flexible polyurethane foams. Moreover, the use of the reactive extrusion process to
thermo-mechanically modifies the GTR particles may significantly strengthen the interfacial
interactions with the PU matrix, which results in beneficial changes in structure and
performance of composites.
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24. Kurańska, M.; Malewska, E.; Polaczek, K.; Prociak, A.; Kubacka, J. A Pathway toward a New Era of Open-Cell Polyurethane
Foams—Influence of Bio-Polyols Derived from Used Cooking Oil on Foams Properties. Materials 2020, 13, 5161. [CrossRef]
[PubMed]

25. Formela, K.; Cysewska, M.; Haponiuk, J.T. Thermomechanical reclaiming of ground tire rubber via extrusion at low temperature:
Efficiency and limits. J. Vinyl Addit. Techn. 2014, 22, 213–221. [CrossRef]
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