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Abstract:  Structural elements inserted in proteins are essential to define folding/unfolding
mechanisms and partner recognition events governing signaling processes in living organisms.
Here, we present an original approach to model the folding mechanism of these structural elements.
Our approach is based on the exploitation of local, sequence-dependent structural information
encoded in a database of three-residue fragments extracted from a large set of high-resolution
experimentally determined protein structures. The computation of conformational transitions
leading to the formation of the structural elements is formulated as a discrete path search problem
using this database. To solve this problem, we propose a heuristically-guided depth-first search
algorithm. The domain-dependent heuristic function aims at minimizing the length of the path in
terms of angular distances, while maximizing the local density of the intermediate states, which
is related to their probability of existence. We have applied the strategy to two small synthetic
polypeptides mimicking two common structural motifs in proteins. The folding mechanisms extracted
are very similar to those obtained when using traditional, computationally expensive approaches.
These results show that the proposed approach, thanks to its simplicity and computational efficiency,
is a promising research direction.

Keywords: proteins; structural elements; conformational transitions; structural database; heuristic
search algorithms

1. Introduction and Related Work

Proteins are bio-macro-molecules that perform essential functions in living organisms. They are
composed of chains of amino acid residues (in the following, we will use the word residue to refer to
an amino acid residue), also called polypeptide chains, that, in most of the cases, fold into functional
three-dimensional structures. The amino acid sequence determines the three-dimensional structure
and its stability. The sequence also determines the frequency and the transition rate between unfolded
and folded states. Understanding the mechanisms of protein folding and unfolding as a function of
the amino acid sequence is of paramount importance, giving their relevance in biological processes [1].
Furthermore, numerous diseases are related to the inability of proteins to fold correctly or to form
insoluble amyloidogenic aggregates due to mutations or metabolic deregulation [2,3].

Intensive research efforts over several decades, using both experimental and computational
approaches, have yielded important bricks of knowledge on the underlying mechanisms of protein
folding, unfolding and other conformational transitions [4-9]. Nevertheless, we still lack of a complete
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understanding of these mechanisms. Some theories about protein folding give more importance to
interactions between the protein side-chains, whereas others consider that the propensity of protein
backbone fragments to form secondary structural elements, such as a-helices, B-sheets and turns,
is the most important mechanism for protein folding. Note that, in addition to their importance in the
overall protein folding process, small structural elements may play key roles in molecular recognition
in intrinsically disordered proteins (IDPs). These elements, the so called molecular recognition
elements (MOREs), are partially folded fragments inserted into otherwise disordered chains [10,11].
MORESs recognize with high specificity their globular partners while displaying a moderate affinity,
explaining their fundamental role in signalling, metabolic regulation and homeostasis [12].

We believe that local, sequence-dependent structural preferences are essential to drive the
formation of structural elements, while other phenomena such as hydrophobic effects or electrostatic
forces help in stabilizing the overall structure. Following this hypothesis, we propose a theoretical
approach to compute conformational transitions using local structural information extracted from
experimental data. Interactions between distant residues are (explicitly) neglected for the exploration of
transition paths, with the exception of collisions that would lead to unrealistic conformations.
However, as further explained below, non-bonded interactions associated with local structural
preferences are implicitly considered, and can be propagated along the sequence thanks to the
application of constrains within the path search algorithm.

Information extracted from experimentally determined protein structures is frequently used in
computational biology. The usual usage is the prediction of the conformation of the protein side-chains,
using the so-called rotamer libraries [13], which encode the most frequent values of the side-chain
dihedral angles for each amino acid type. The construction of protein backbone structural databases
is less straightforward than for the side-chains as it requires to subdivide proteins into fragments.
The length of the fragments and considerations regarding the amino acid sequence may depend on the
specific application. Statistics about the most frequent values of the backbone dihedral angles of amino
acid types have been frequently used to explore the conformational sampling of highly-flexible proteins
or regions [14-16]. However, such minimalistic single-residue fragments neglect the effects exerted by
neighboring residues. Structural libraries involving larger fragments (usually, from 3 to 14 residues)
have been shown to be powerful tools for the prediction of probable (stable) conformations of globular
proteins and peptides [17-20]. Fragment libraries can also be used to investigate conformational
transitions in proteins. In a recent work, local moves using a fragment library were combined with
other types of structural perturbations to compute transitions between several folded states of a
protein [21]. Since the aforementioned fragment libraries were mainly conceived for protein structure
prediction, they are focused on the most probable conformations of small and medium-sized fragments.
As a consequence, they are not exhaustive enough for the study of conformational transitions.
This limitation is more evident when the length of the fragments increases. Fragments involving three
consecutive amino acid residues (called tripeptides from now on) represent a good trade-off between
sequence-dependent structural preferences and exhaustiveness. Indeed, tripeptides contain relevant
structural information [22] and are sufficiently small to capture the conformational variability of
the 20 proteinogenic amino acids in their sequence context. Recently, we showed that an extensive
database of tripeptides allows to accurately sample the conformational variability of IDPs [23]. Here,
we exploit the combination of this type of local structural information with a path search algorithm to
compute conformational transitions in small proteins and protein fragments corresponding to relevant
structural elements.

A protein cannot exhaustively explore its huge conformational space to seek transition pathways.
This idea, referred to as the Levinthal’s paradox [24,25], is widely accepted. Indeed, a protein performs
some search process to find the most efficient folding and transition pathways. We can say that the
protein follows a powerful heuristic to avoid exploring an astronomically large number of possible
pathways. This heuristic is not well understood yet, but, as mentioned above, we believe that local
sequence-dependent structural preferences play an important role in it. Our contribution investigates
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this open question, and proposes a simple, heuristically-guided search algorithm, inspired from
artificial intelligence (Al) and robotics, to compute conformational transitions. Al and robotics planning
representations and techniques have been found valuable for solving several computational biology
problems [26-28]. This paper illustrates through an original approach their effectiveness in modeling
folding mechanisms of structural elements in proteins.

The approach presented herein is very different from the ones in related work. First, the structural
information is collected and used in a different way, and secondly, the algorithmic approach is
totally different. Concretely, we use a heuristically guided depth-first algorithm, adapted from
search techniques in constraint satisfaction problems over finite sets (CSP) and in automated task
planning [29]. In our case, the state variables are the protein tripeptides, which range over finite
sets of conformations extracted from a global database. The equivalent of an action is a constrained
local change in a state variable. The algorithm relies on adjacency graphs of the state variables [30],
which are computed at preprocessing time and are essential for efficiently testing the feasibility of
transitions and for calculating the heuristic, which is based on statistical physics considerations.
Our approach tends to favor paths going through high-density states, which are the most probable
ones according to experimental observations recorded in the structural database. In other words,
if we assume that the probability of the observed states for each tripeptide follows a Boltzmann
distribution, we can say that the path search tends to follow the valleys of the free-energy landscape [31].
The search process also gives priority to short paths, which should correspond to faster transitions.
The structural preferences for a tripeptide (i.e., at the state variable level) tend to be propagated along
the sequence due to constraints imposed on the bond angles in the state transition validation, which
reinforces neighbor-dependent structural preferences encoded in the database (see Section S2 in the
Supplementary Materials for details). Thus, the path search process incorporates in an implicit way
non-local interactions along the sequence such as backbone hydrogen bonds in a-helices.

We applied our approach to two synthetic mini-proteins, Chignolin [32] and DS119 [33],
which were particularly designed to fold into well-defined structural motifs present in natural
proteins. These two molecules have been investigated in recent years using different methods [34,35].
The results reported in this paper are consistent with respect to those described in related literature,
and already show the interest of the proposed approach, which is extremely fast when compared
with currently-used computational methods based on molecular dynamics (MD) simulations [36].
Indeed, MD simulations of large-amplitude protein motions require ad-hoc computer architectures [8]
or massively-distributed computing [37]. The efficiency of our approach allows to widely investigate,
with modest computational resources, the effect of mutations on protein folding and unfolding, or on
other functionally-important conformational transitions.

2. Results and Discussion

This section presents results obtained with the proposed approach for the analysis of the folding
process of two synthetic mini-proteins, Chignolin and DS119, which were designed to fold into
structural motifs present in natural proteins. First, we present a deeper analysis for Chignolin and
two point mutants. Then, results presented for DS119 show that the approach is general and can be
applied to the investigation of different structural elements.

2.1. Chignolin

Chignolin is a synthetic polypeptide consisting of 10 residues [32]. Despite its small size,
Chignolin behaves as a macromolecular protein from structural and thermodynamic points of view:
it folds into a well-defined structure in water, and shows a cooperative thermal transition between
unfolded and folded states [38]. The folded conformation of Chignolin corresponds to a S-hairpin
motif, which can be found in many natural proteins (Figure 1d). Therefore, elucidating the folding
mechanism of Chignolin helps to understand the folding patterns of more complex proteins. This has
motivated several experimental and computational studies on Chignolin in recent years. Here,



Molecules 2019, 24, 1150 4 0f 18

we compare our results with those of Enemark et al. [34], which are based on extensive molecular
dynamics simulations, and provide detailed information at the single-residue level.
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Figure 1. The left side panel represents the structural propensities at the residue level observed from a
set of 1000 conformations randomly generated from the structural database. Each plot displays the DSSP
structural classes using the WebLogo format for (a) Chignolin, and two mutants: (b) Chignolin-P4A,
and (c) Chignolin-W9A. (d) Structural representation of Chignolin: superposition of an experimentally
determined structure (with carbon atoms in green) and the closest one in the set of 1000 sampled
conformations (with carbon atoms in orange). For clarity, only the protein backbone is represented,
using PyMOL [39].

Table 1 provides the number of conformations (i.e., number of values of state variables) contained
in our database for the eight overlapping tripeptides composing Chignolin. The search space size
is upper-bounded by [T; |D;| ~ 4 x 10?3, which is huge when compared to the extremely focused
explorations performed by our algorithm. Thanks to the search guidance of its heuristics, we observed
a manageable complexity growth, as explained in Section 3.3 and in the Supplementary Materials.

Table 1. Number of conformations (i.e., number of values of state variables) for the eight overlapping
tripeptides composing Chignolin.

Tripeptide Sequence No. of Conformations
Gly-Tyr-Asp 994
Tyr-Asp-Pro 710
Asp-Pro-Glu 1541
Pro-Glu-Thr 1030
Glu-Thr-Gly 1446
Thr-Gly-Thr 1779
Gly-Thr-Trp 545
Thr-Trp-Gly 240

In a first experiment, we assessed the ability to obtain realistic conformations of Chignolin using
the structural information encoded in our tripeptide database. We generated an ensemble of 1000
Chignolin states by randomly sampling values of the state variables one by one, in an incremental
manner, enforcing the consistency with neighbor state variables, and rejecting those leading to
collisions between atoms. Interestingly, several states in this relatively small ensemble are close
to the folded conformation of Chignolin [32]. Indeed, 240 over the 1000 sampled states have an angular
root-mean-square deviation (RMSD) distance to the folded conformation below 0.5 radian, the closest
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one being around 0.2 radians (see Figure 1d). This confirms that the most important regions of the
conformational space can be sampled by building states from the tripeptide database.

In order to better characterize the conformational ensemble, secondary structure types for each
state were identified at the single residue level using define secondary structure of proteins (DSSP) [40].
DSSP distinguishes eight types of structural classes, labeled with a letter: H for a-helix, B for -bridge,
E for strand, G for helix-3, I for helix-5, T for turn, S for bend, and “blank” (here labeled as L) for
coil/loop. We used the WebLogo tool [41] to display the structural propensities in the ensemble.
WebLogo is usually applied to analyze results of multiple sequence alignment, but it can be used in
a different context, as we did. Each logo consists of stacks of symbols, one stack for each position in
the sequence. The overall height of the stack indicates the conservation of the DSSP structural class
at that position, while the height of symbols within the stack indicates the relative frequency of each
class at that position. The results in Figure 1a clearly show the propensity of the central residues to
adopt a turn conformation. The rest of the molecule tends to be more extended, although turns are
also formed in the C-terminal region. As discussed in detail below, these turns in residues eight and
nine play a key role in the folding mechanism of Chignolin. Conversely, turns are not observed in the
N-terminal side. These observations are fully consistent with the original study [34], and show that
the states sampled using the tripeptide database are structurally relevant.

We repeated the experiment for two mutants of Chignolin: Chignolin-P4A (Pro4 replaced by Ala)
and Chignolin-W9A (Trp9 replaced by Ala). Figure 1b shows that, for Chignolin-P4A, the turn
propensity slightly decreases in the central region, and that it increases in the N-terminal side.
For Chignolin-W9A, Figure 1c shows that the propensity to form turns in the central region is
similar to that of the native Chignolin molecule. However, it decreases in the C-terminal region,
which may have consequences for the efficiency of the folding process. Overall, these observations
are very similar to the results reported in [34], which use computationally expensive molecular
dynamics simulations; they show the strong influence of single modifications in the sequence on the
conformational preferences of the molecule, and that our approach captures these perturbations.

It has been suggested that the turn in Chignolin originates in the C-terminal region, and then
propagates along the chain until reaching the middle residues [34]. This has been called the “roll-up”
mechanism. To investigate this mechanism, we selected (among the set of 1000 conformations)
15 conformations of Chignolin presenting turns in residues eight and nine, and with a relatively
extended conformation for the rest of the chain. These conformations were used as initial states
to compute folding paths, as illustrated in Figure 2. The goal state was defined as the closest
conformation to the experimental structure of Chignolin built from values contained in the tripeptide
database. These two conformations are very similar, with an angular RMSD of 0.1 radians.
The heuristically-guided depth-first search (HDFS) algorithm was applied 20 times to solve each of
these 15 problems (i.e., 300 runs in total). On average, the algorithm required around 10 s to find
folding pathways (1st column in Table 2), which is extremely fast (CPU time was measured with an
Intel® Core™ i7 processor at 2.8 GHz, using a single core (Intel, Santa Clara, CA, USA)). Intermediate
states along each path were selected with a step-size corresponding to 1/10th of its total length. The left
side panel in Figure 3 shows the structural propensities at the residue level for these intermediate states.
It can be observed that the turns in the C-terminal residues tend to disappear, while theses structural
elements appear in the middle residues. This “roll-up” mechanism can also be observed in the right
side panel in Figure 3, which represents several intermediate states along one of the folding paths.
The first frames (starting from the top) show that the curvature of the molecule, initially involving
residues eight and nine, rapidly propagates to residues six and seven. Then, residues four and five also
bend successively, and the molecule tends to form a hairpin-like structure. Finally, the two terminal
parts adopt a relatively extended conformation.
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Figure 2. Structural representation of Chignolin. (a) A set of extended conformations involving the
initial turn at the C-terminal side. (b) Folded conformation. Only the protein backbone is represented,
using PyMOL [39].

Table 2. Performance indicators of the HDFS algorithm to compute different conformational
transitions of Chignolin (top) and the mutant Chignolin-W9A (bottom). CPU time was measured with
an Intel® Core™ i7 processor at 2.8 GHz, using a single core.

Chignolin (Original Sequence)
C-ter T—=folded C-ter T—misfolded extended—folded extended—misfolded

CPU time (s) 11.1 8.7 52 35
# states 5416.4 2587.7 2800.1 849.5
# backtracks 234.6 136.6 124.6 39.2
Path length (# steps) 133.8 54.5 106.3 48.7
Path distance (rad) 8.8 51 6.0 7.0
Path density 31.9 5.5 23.3 4.5

Chignolin-W9A (Mutant)
C-ter T—=folded C-ter T—misfolded extended—folded extended—misfolded

CPU time (s) 12.2 8.8 5.6 5.1
# states 4943.6 2567.8 2317.0 2946.0
# backtracks 219.6 139.0 101.3 126.3
Path length (# steps) 140.3 51.3 103.0 125.7
Path distance (rad) 8.2 9.0 5.8 8.2
Path density 31.2 4.6 23.4 23.8

As explained in related work [38], the folding process of Chignolin may lead to misfolded
states, which are characterized by interactions between residue pairs Tyr2-Thr8 and Asp3-Gly7, rather
than Tyr2-Trp9 and Asp3-Thr8, as in the correctly folded structure. We generated a representative
model of a misfolded state, and we computed conformational transitions from initial conformations
with the C-terminal turn (C-ter T) to this state. We also computed transitions from fully-extended
conformations to folded and misfolded states. The results are summarized in the top part of Table 2.
This table provides average values (over 300 runs) for: the computing time required by the HDFS
algorithm to find a path; the number of recursions and backtracks; the number of steps in the solution
path; the length of the solution path, computed as the sum of the lengths associated to edges in the
adjacency graphs; the density of the solution paths, computed as the average of the density of all
the state variables along the path. The most meaningful numbers in this table are those associated
with the density, since they reflect the probability of existence of each pathway. Compared to the
extended —folded pathway, the C-ter T—folded pathway goes across more dense and probable regions.
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This may explain why Chignolin efficiently folds from unfolded states involving this structural feature.
In both cases, starting from C-ter T or fully-extended states, the transitions to misfolded states seem to
be much less probable. This may explain why the misfolded state of Chignolin is much less frequently
observed than the correctly folded state [42].
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Figure 3. The left side panel represents the evolution of the structural propensities at the residue
level along Chignolin folding pathway (see Figure 1 and the associated comments for additional
explanations about this representation). The right side panel shows some intermediate states along
one of the computed folding paths. Only the protein backbone is represented, using PyMOL [39].
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We repeated the experiments for the mutant Chignolin-W9A. The results are summarized in the
bottom part of Table 2. As mentioned above, the set of conformations generated for these two molecules
look structurally similar (see Figure 1 and the associated comments). The figures in Table 2 also show
a very similar behavior of the HDFS algorithm when computing transition paths for this mutant
compared to the original Chignolin. Interestingly, the main difference is observed for the density of
the path extended—misfolded. This path is significantly more favorable in the case of the mutant.
Our results complement the study of Enemark et al. [34], which suggested that the replacement of
Trp9 by Ala facilitates a “roll-back” mechanism, acting against the “roll-up” mechanism, hindering the
formation of the native turn in the middle residues. We show another possible effect of this mutation,
favoring the formation of misfolded states in competition with the native structure.

2.2. DS119

DS119 is another synthetic polypeptide, consisting of 36 amino acid residues, which was designed
to fold into a Ba S motif [33] (see last frame in Figure 4). The folding process of DS119 has been studied
using molecular dynamics simulations [35]. This previous work showed that the N-terminal side of
the central helix tends to form very quickly. Then, the C-terminal side of the helix starts to form, and
the full helix is finally stabilized. The relatively extended fragments at the two ends of the molecule
tend to come together at the end of the folding process.

To investigate the folding mechanism of DS119, we applied a similar procedure as for Chignolin.
In this case, we selected 15 relatively extended conformations, involving only the L DSSP structural
class for all the residues, from a set of 1000 randomly generated conformations using the tripeptide
database. These conformations were used as initial states for the HDFS algorithm. As final state,
we used the closest conformation to the experimentally solved structure of DS119 (Protein Data Bank
(PDB) ID: 2KI0) built from values contained in the tripeptide database. These two conformations are
very similar, with an angular RMSD of 0.06 rad. The algorithm was applied 20 times to solve each of
these 15 problems (i.e., 300 runs in total).

Figure 4 illustrates the results obtained by the HDEFS algorithm. The left side panel shows the
evolution of the structural propensities along the folding path, using logos based on DSSP classes.
The right side panel represents several intermediate states along one of the solution paths. For clarity
purposes, only a few intermediate states are shown using a “cartoon” representation of the backbone,
where the helical fragments can be easily identified. It can be observed that, starting from an extended
conformation, the protein backbone rapidly starts to bend around residues 12-13. Recall that the S
letter, for “bend”, corresponds to a highly curved protein backbone. Hydrogen bonds required to
stabilize the helical conformation are not yet identified by DSSP at this early stage. Next, curved /helical
fragments started to appear in all central residues (from residue 14 until residue 27), as well as in three
residues in the N-terminal side (residues 3-5). The central helix continues to fold, and it is almost
completely formed at the 7th intermediate frame. In the final part of the path, the extended fragments
at the two ends get close to each other, nearly forming a parallel B-sheet. This description of the folding
process strongly resembles the one reported in the literature, based on computationally-expensive
simulations [35].

Table 3 presents numbers (averaged over the 300 runs) concerning the performance of the HDFS
algorithm to compute folding paths of DS119. The required CPU time (and the number of recursions)
is only about three times the one requited to compute folding paths for Chignolin. This shows that,
despite the theoretical (worst-case) exponential complexity, in practice, the computing time scales
approximately linearly with the number of variables. This tendency has been confirmed by preliminary
tests for larger molecules (not presented in this paper). Once again, we insist that computing time
is orders of magnitude faster that traditional molecular dynamics simulation methods. The higher
density of the path compared to Chignolin can be explained by the lager number of conformations
for some of the tripeptides, particularly for those composing the middle helix. Table 4 provides the
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numbers of conformations (i.e., number of values of state variables) contained in our database for the
34 overlapping tripeptides composing DS119.
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Figure 4. The left side panel represents the evolution of the structural propensities at the residue

level along DS119 folding pathway. The right side panel shows some intermediate states along one of

the computed folding paths. The “cartoon” representation clearly shows the formation of the helix.

PyMOL [39] was used for the structural visualization.

Table 3. Performance indicators of the HDFS algorithm on DS119.

DS119: Extended—Folded

CPU time (s) 25.2
# states 70558.2
# backtracks 8210.4
Path length (# steps) 158.2
Path distance (rad) 11.3
Path density 124.4
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Table 4. Number of conformations (i.e., number of values of state variables) for the eight overlapping
tripeptides composing DS119.

Tripeptide Sequence  No. Conformations  Tripeptide Sequence = No. Conformations

Gly-Ser-Gly 3727 Lys-Lys-Leu 2286
Ser-Gly-GIn 1118 Lys-Leu-Lys 1996
Gly-GIn-Val 1294 Leu-Lys-Glu 3100
GIn-Val-Arg 607 Leu-Glu-Glu 1631
Val-Arg-Thr 970 Glu-Glu-Ala 2591
Arg-Thr-Ile 757 Glu-Ala-Lys 1514
Thr-Ile-Trp 181 Ala-Lys-Lys 1714
Ile-Trp-Val 180 Lys-Lys-Ala 1629
Trp-Val-Gly 279 Lys-Ala-Asn 1009
Val-Gly-Gly 2443 Ala-Asn-Ile 1010
Gly-Gly-Thr 2510 Asn-lle-Arg 647
Gly-Thr-Pro 1428 Ile-Arg-Val 998
Thr-Pro-Glu 1738 Arg-Val-Thr 1351
Pro-Glu-Glu 1752 Val-Thr-Phe 888
Glu-Glu-Leu 3433 Thr-Phe-Trp 151
Glu-Leu-Lys 2378 Phe-Trp-Gly 192
Leu-Lys-Lys 2528 Trp-Gly-Asp 257

3. Materials and Methods

The proposed approach relies on a large database of protein structures, represented as sequences of
partially overlapping tripeptides. As stressed above, tripeptides are the minimal structurally-relevant
units in proteins. The problem is formalized as a search in a space of tripeptide conformations for
a feasible path from an initial state to a target state of a protein. The state variables correspond to
tripeptides; their values are the conformations of tripeptides actually observed and recorded in the
database. A state variable in the sequence describing a protein shares its first two residues with its
predecessor and its last two with its successor state variables in the sequence (see details below).
A transition between two values of a state variable is feasible if it meets a consistency constraint with
respect to the predecessor and successor state variables, and if the corresponding conformation of
the protein is collision free. The search algorithm seeks a feasible path using a heuristically-guided
depth-first search schema. The heuristic function is a weighted sum of the distance between two
conformations, an estimate of the distance to the target and a density term to advantage energetically
favorable states.

We present next the construction of the structural database, then the statement of the
conformational transition problem as a discrete path search problem; we detail the proposed algorithm
and the heuristics used to solve this problem.

3.1. Structural Database

A tripeptide database was built from a large set of high-resolution experimentally-determined
protein structures. We generated this set from SCOPe (release 2.06) [43], avoiding redundancies
in protein sequence and structure. The total number of tripeptides extracted from these protein
structures is 5,630, 271. The tripeptides are characterized by their amino acid sequence. Since natural
proteins involve 20 types of amino acids, the total number of tripeptides is 20 = 8000. The database
construction process is illustrated in Figure 5a—c. All the 8000 tripeptides appear in our database.
The number of their instances ranges between 9 for the less frequent tripeptide (Cys-Cys-Trp) to 4512
for the most frequent one (Ala-Ala-Ala). The average number of instances is about 688.
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a)

C) Val

Ala fle i Ser——— Val

'\
Pro Pro—Ser-Ile
Val

Figure 5. Construction of the tripeptide database: (a) A non-redundant set of experimentally-determined
protein structures is used as input. (b) For each protein, fragments of three consecutive residues (called
tripeptides) are analyzed. (c) The structural information is stored in a database containing one record
for each tripeptide (8000 in total). (d) For each tripeptide, the conformations recorded in the database
are related with a proximity criterion and structured into an adjacency graph (the figure shows a
simplified representation of this graph for tripeptide Pro-Ser-Ile).

It is important to highlight that the database includes fragments extracted from coil regions,
which have been shown to be useful elements to model unfolded or disordered proteins [15,23].
Therefore, we assume that the structural information encoded in the database is not limited to folded
states, and that it can be useful to investigate folding processes.

We adopt a rigid geometry simplification [44], which assumes constant bond lengths and bond
angles. Indeed, the standard deviation for the bond lengths and the bond angles in our database
is two orders of magnitude smaller that their average value, and therefore, we can neglect their
variation. In addition, as usually done to simplify protein modeling, we assume that the torsion
angles corresponding to peptide bonds (i.e., the bonds connecting consecutive residues) are constant.
This is also a reasonable assumption given that this angle slightly fluctuates around a value of
0 or 7 radians (that is, the cis and trans conformations), with a standard deviation of around 0.1
radians. Therefore the only variables required to determine the conformation of a protein backbone
correspond to the ¢ and ¢ dihedral angles of each amino acid residue. The database stores these
angular values for each tripeptide extracted from the ensemble of protein structures (i.e., six angles
for each tripeptide). Figure 6 represents a protein fragment involving five residues, from which three
tripeptides are extracted. The angles defining the conformation of each residue are represented on the
corresponding bonds.
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Figure 6. Illustration of a protein fragment involving five residues. Each residue is represented
using a different colors for the carbon atoms. The backbone is represented using thicker lines.
Considering constant bond lengths, bond angles and peptide bond torsions, the protein backbone
conformation can be defined from a pair of angles (¢ and ) for each residue. The gray lines indicate
the three overlapping tripeptides composing this five residue fragment.

In this work, we do not consider an all-atom model of the protein side-chains, but a simplified
model involving a pseudo-atom for each side-chain. The pseudo-atom is centered at the position of
the B-carbon atom, and the size depends on the amino acid type, as originally proposed by Levitt [45].
Therefore, no additional variables are required to represent the side-chains.

Let X be the set of all 8000 tripeptides. An element x; € A&’ is a state variable in our representation.
Let D; be the set of all the conformations of x; recorded in our database. The conformation of x; is
characterized by the six backbone dihedral angles of the three residues in the tripeptide, denoted ¢; ;
and ¥; j, for 1 < j < 3. Although a conformation is characterized by an angular vector of 6 real numbers,
for the purpose of our search algorithm over biologically observed conformations, we consider that
the range of each state variable x; is the finite set D; of the recorded conformations in the database.
We write x; = v; for some v; € D;.

The distance d(v;, v;) between two values v; and vg is defined as the angular RMSD between the
two corresponding angular vectors. More precisely:

3
d(v;,v)) = |1/6 Z% (((Pi,j - <Pf,]')2 + (i — lpf,j)z)
i=

We also define the central distance d¢(v;,v;) with an identical formula for j = 2 solely, i.e.,
restricted to the central amino acid residue of x;. The idea is to compute a feasible path in the
conformations of a protein as a sequence of elementary transitions focused on the central residue of
each tripeptide.

These distances d and d. allows us to structure the finite range D; of each state variable as an
adjacency graph, as illustrated in Figure 5d. Its vertices are the elements in D;. There is an edge
(vi,v}) when d.(v;,v}) < 6 and d(v;,v}) < 6+ ¢, where 0 is a variable adjacency threshold and
¢ is a small constant tolerance margin. The adjacency threshold 6 represents a tradeoff between
a fully connected graph (no transition constraints between conformations) and an unconnected
one (unreachable conformations), both cases being unrealistic. We set the threshold such that the
adjacency graph of each tripeptide has a single connected component with moderate edge connectivity.
This threshold 6 is slightly different for different tripeptides, with an average value around 1.0 radian.
The value of ¢ was set to 0.35 radians in all the cases.

The vertices are also characterized by a density function defined as follows:

p(v;) =1+ |{v} | v} connected to v; and d(v;, v}) < {}|.
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The threshold ¢ has to be smaller than the adjacency threshold 0. Here, we set = 0.2 radians
for all the tripeptides. The density p is related to the probability of existence of the corresponding
conformation of the tripeptide. Considering basic principles in statistical physics (i.e., the Boltzmann
distribution), this probability depends on the energy of the state of the molecule. Thus, the most dense
regions in the adjacency graph are also the most energetically-favorable ones.

3.2. Formal Statement of the Conformation Path Finding Problem

A protein (or protein region) of interest is defined by a sequence of state variables
(x1,...,%j,...,x,), with overlaps. For example, the mini-protein Chignolin is a sequence of 10 amino
acid residues: (Gly-Tyr-Asp-Pro-Glu-Thr-Gly-Thr-Trp-Gly); it is defined with eight state variables
x1 =Gly-Tyr-Asp, xp =Tyr-Asp-Pro, ... xg =Thr-Trp-Gly. Hence, the state variables are not
independent a transition in a state variable may or may not be consistent with another transition in the
previous or following state variables in the sequence.

For a given conformational state of the protein s = ((x1 = v1),...,(x; = v;),..., (xn = vn)),
the overlap between consecutive state variables means that a tripeptide x; shares its first two residues
with its predecessors in the sequence and its last two with its successors; that is:

$i1=¢i—12=0¢i23 Pi2=¢Pi—13=Pir1,1, and ¢;3 = Pi112 = P21, 1)

and similarly for the ¢ angles.

An elementary state transition with respect to x;, from the value v; to an adjacent value vf, involves
a conformational change mainly in the central residue of x; (by construction of the adjacency graph).
This entails constraints on x;_1 and x;;1 with respect to their current values in state s. We express these
constraints as inequalities with a tolerance margin as follows:

|‘Pz{,2 —¢i—13] <€ “Pz/',z —¢ir11]| <€,

)
Wiy — il <€ |9, — il <e

where the angles for the last and first residues of x;_1 and x; 1 correspond to their current values v; 4
and v; 1. These constraints can be relaxed during the search by dynamically adjusting the value of €,
as explained below. Here, we set initially € = 0.35 radians.

Definition 1 (Feasible transition). A transition in the conformation of a protein from a state s where x; = v;
to a state s’ where x; = v} is said to be a feasible transition if and only if:

(i) the values v;_y and v;11 meet the constraints of Equation (2), and
(ii) there are no collisions between the atoms of the protein in the state s'.

A feasible path is a sequence of feasible transitions.

Let (s, (v; — ©v})) denotes the state s’ corresponding to this transition when it is feasible,
otherwise 7 is undefined.

The conformation path finding problem can be formally stated as follows: given X and the
adjacency graphs of all the state variables in a protein, and given an initial state sop and a goal state s,
the problem is to find a feasible path that transforms the protein conformation from sy into s, if there
exists such a path.

3.3. Search Algorithm

To generate a feasible path from sy to s, we rely on a heuristically-guided depth-first search in
the space []; D;, over all state variables x; in the protein. To ease the presentation, the algorithm is
stated in the pseudo-code of Figure 7 as a simple recursive nondeterministic search procedure called
HDFS. The initial call is HDFS(sy, (so) ). The nondeterministic choice (step labelled <) is a convenient
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notation meaning that the algorithm makes at this point a branching decision; it explores potentially all
possible options, expressed here as the set £, and it stops on the first path which succeeds or it returns
failure if all paths fail. A metaphor helps explain a nondeterministic specification of an algorithm:
it runs as if using a hypothetical machine able to multiply itself at each branching point into identical
copies, each copy pursuing the search in parallel until one finds a solution or all fail. The deterministic
implementation of HDFS makes at this step a heuristic choice over which it backtracks in case of
failure; if needed, this is repeated as long as an option in £ remains unexplored. The heuristic driving
this choice is detailed below.

The algorithm iterates over all tripeptides in the protein to find their feasible transitions.
For a given state variable x; = v; in s, the transition-filter procedute checks the values adjacent
to v; in graph D;. Unfeasible transitions are disregarded, as well as transitions that loop back into a
circuit of the search space. The set £ is the union of all retained transitions (v; — v}) over all state
variables. When & is empty, then s is a dead end; a backtracking is performed.

HDFS (s, Path)

if s = s¢ then return(Path - s)

E+D

for each state variable x; in s do
& « & U Transition-Filter(s, x;, Path)

if £ = @ then return(failure)

else do
Nondeterministically choose in £ a transition (v; = v}) <
s' (s, (v; = vl)
HDFS(s/, Path - s)

Transition-Filter (s, x;Path)

v; < value of x; in s
A + set of values adjacent to v; in adjacency graph D;
for each v} € A do

if y(s, (v; — v})) is undefined or

if it is a state already in Path

then remove v} from A

return(A)

Figure 7. Main procedure as a recursive nondeterministic best-first search. The choice (in step <) is
guided with the heuristic cost function used to order the set A. In the case of failure, backtracking is
performed at this step to other remaining options in the set £, which is computed incrementally.

In our more efficient and deterministic implementation of the algorithm, £ is computed
incrementally. £ starts with the transitions of a single state variable, which has feasible transitions.
£ is augmented with respect to new state variables when backtracking requires alternative options.
In our current code, the ordering of the state variables in the HDFS loop is not heuristically guided.
The effects of state variable ordering heuristics, such as the proximity to the goal or the average density
in the adjacency graph, remain to be investigated.

3.3.1. Heuristic Guidance Function

For the results presented in this paper, the search is guided though the ordering in the
transition-filter procedure of the set A of feasible values. A is ordered with the following cost function:

cost(v;,v}) = d(v;, v}) + wy x h(v}, vf) +wy/p(v)), 3)

where 4 and p are the distance and density functions defined earlier, v‘lg is the value of x; in the
goal state s¢, I is the shortest path in the transition graph to the goal, and w; and w, are weight
parameters. The first term seeks to minimize the distance between consecutive states along the path
(i.e., to maximize the continuity of the path). The second term is the sum of the distances of a minimal
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path from v/ to the goal. The third term intends to maximize the density of the states along the path,
which, as explained earlier, are the most energetically favorable ones. The weights w; and w, permit
a tuning of the three components; their proper setting remains to be investigated. Here, we simply
set w; = wy = 1. Note that 1 is a lower bound for the remaining cost from v’ to v¢, since a path
in the transition graph, minimal with respect to the distance d, relaxes the feasibility constraints of
Definition 1 and cannot be longer than a feasible path.

In order to speed up the search, a preprocessing of the adjacency graphs labels edges with their
distance d and computes for every vertex the shortest path to the goal as well as the density of every
node in each graph. This is done with a standard graph search algorithm.

The test of collision-free states is computed using a variant of the classical cell linked-list (CLL)
algorithm [46]. A pair of non-bonded (pseudo-)atoms is considered to be in collision if their distance
is less than 65% of the sum of their radii. In this work, we considered the radii values proposed by
Bondi [47] for the backbone atoms, and those proposed by Levitt [45] for the side-chains pseudo-atoms.

Note that the feasibility constraints in Equation (2) are too conservative. A more flexible definition

would also accept as feasible the transitions for which either the current values of x;_; and x;;1,
/

i+1’
the state s’ = (s, (v; — v})) involves changes in x; but also in its predecessor and successor state

or some of their respectively adjacent values v/_; and v/ ;, meet these constraints. In that case,
variables. The cost function driving the search would naturally be extended to cost(s,s’) over entire
states. Instead, we have implemented a simpler mechanism to locally relax this constraint if the
search process gets blocked: if state transitions fail f consecutive times (f = 5 in our implementation),
the tolerance value ¢ is increased to 0.7 radians. € is reset to 0.35 radians after a successful transition.
The next section shows that, even with such a simplified implementation, the proposed approach
already gives meaningful results.

3.3.2. Properties of HDFS

The algorithm is sound; that is, it returns a path which is feasible, in case of success. This is
because each transition meets Definition 1. HDFS is also complete; that is, it finds a feasible path if
one exists with respect to the transitions in the adjacency graphs of the state variables. This is the case
since in each search state s, £ is the entire set of feasible transitions over all state variables, loops are
avoided, and backtracking is systematic.

As for any backtrack search algorithm, the worst case complexity is exponential, in O(TT; | D;|).
It is possible to compute the total size of the search space for each given problem (using dynamic
programming and taking into account state variable dependencies). Nevertheless, this information
is not very useful since in practice the algorithm explores a very small fraction of the search space.
A more useful complexity model is in O(d’), where d is the depth of the search (i.e., the length of
the found path), and b is the branching factor. An upper bound on the branching factor is 7 x p,
where 1 is the length of the protein and p is the maximum degree of vertices over all adjacency graphs.
However, thanks to the search guidance of its heuristics, we observed a manageable complexity
growth. Our experiments with seven proteins, ranging in length 10 < n < 67 residues, show that b
does not grow with #; it is constant and very small, about b ~ 1.04. The overall search complexity has
a low polynomial growth in n. Furthermore, we confirmed that, as expected for a local propagation
mechanism, the computation time required for each search state is not a function of #, but a quite small
constant, of about 0.9 ms per state on a standard CPU. The Section S1 in the Supplementary Materials
details this analysis as well as a discussion contrasting the scalability of our approach with that of
MD methods.

4. Conclusions

Despite the simplicity of both the algorithm and the heuristic, the results presented in this
paper show that the proposed approach constitutes a promising new research direction towards
the identification of relevant protein folding pathways. The structural analysis of the folding
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mechanisms of Chignolin and DS119 are consistent with respect to descriptions provided in the
literature. Note however that a more detailed and quantitative comparison between the paths
obtained with other methods and trajectories obtained from MD simulations would not be very
meaningful, since the aims of both methods are different. The paths provided by our algorithm are an
approximation, from which interesting information about folding mechanisms can already be obtained,
but that should be refined (using other methods and models) to get access to accurate information
at the atomic level (as provided by MD simulations). On the other hand, our algorithm is orders of
magnitude faster than atomistic MD simulations.

Overall, the results highlight the importance of local structural preferences, which are encoded in
our tripeptide database. They also suggest that interactions between distant residues in the sequence,
even though they can be essential for stabilization of the final fold, are less important at an earlier stage
to drive the formation of structural elements.

The good results obtained with the implementation presented in this paper motivate us to continue
in this research direction. Several points remain to be further investigated. One important question is
about the possibility to include non-local interactions in the heuristic cost function. Although this does
not seem to be necessary for structural elements or small proteins, interactions between distant residues
in the sequence can be essential to study folding processes of larger molecules, or aspects related to
stability. We also plan to implement and evaluate transitions over several state variables, as well as
different heuristics for variable ordering. More sophisticated, tree-based search algorithms [29] can
improve the quality and the diversity of the solutions, particularly for large proteins. Finally, let us
mention the limitations imposed by the information contained in the structural database. Structural
information is very limited in some regions of the conformational space corresponding to states of low
probability, but which may be relevant for an accurate modeling of conformational transitions. With the
increasing number of experimentally-determined high-resolution protein structures, we expect that
more extensive and higher-quality tripeptide databases will be constructed in the future. Alternatively,
these sparsely populated transition regions can be identified using our approach and subsequently
explored using physics-based molecular models and (continuous) motion planning algorithms [48].

Supplementary Materials: The following are available online at http:/ /www.mdpi.com/1420-3049/24/6/1150/
s1: Section S1-Scalability Analysis; Section S2-Neighbor-dependent Structural Preferences.

Author Contributions: A.E., M.G. and ].C. conceived the methods; A.E. implemented the methods; P.B. and ].C.
conceived and designed the experiments; A.E. performed the experiments and analyzed the data; all the authors
wrote the paper.

Funding: This work was supported by the European Research Council under the H2020 Programme (2014-2020)
chemREPEAT [648030], and Labex EpiGenMed (ANR-10-LABX-12-01) awarded to P.B. The CBS is a member of
the French Infrastructure for Integrated Structural Biology-FRISBI (ANR-10-INSB-05).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Vendruscolo, M.; Zurdo, ].; Macphee, C.; M Dobson, C. Protein folding and misfolding: A paradigm of
self-assembly and regulation in complex biological systems. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 2003,
361, 1205-1222. [CrossRef]

2. Valastyan, ].S.; Lindquist, S. Mechanisms of protein-folding diseases at a glance. Dis. Models Mech. 2014,
7,9-14. [CrossRef]

3. Knowles, T.; Vendruscolo, M.; Dobson, C. The amyloid state and its association with protein misfolding
diseases. Structure 2014, 15, 384-396. [CrossRef]

4. Baldwin, R.L. Protein folding: Matching speed and stability. Nature 1994, 369, 183-184. [CrossRef]

5. Wolynes, P; Onuchic, J.; Thirumalai, D. Navigating the folding routes. Science 1995, 267, 1619-1620.
[CrossRef]

6.  Dobson, C.M. Protein folding and misfolding. Nature 2003, 426, 884-890. [CrossRef]


http://www.mdpi.com/1420-3049/24/6/1150/s1
http://www.mdpi.com/1420-3049/24/6/1150/s1
http://dx.doi.org/10.1098/rsta.2003.1194
http://dx.doi.org/10.1242/dmm.013474
http://dx.doi.org/10.1038/nrm3810
http://dx.doi.org/10.1038/369183a0
http://dx.doi.org/10.1126/science.7886447
http://dx.doi.org/10.1038/nature02261

Molecules 2019, 24, 1150 17 of 18

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Rose, G.D.; Fleming, PJ.; Banavar, J.R.; Maritan, A. A backbone-based theory of protein folding. Proc. Natl.
Acad. Sci. USA 2006, 103, 16623-16633. [CrossRef]

Lindorff-Larsen, K.; Piana, S.; Dror, R.O.; Shaw, D.E. How fast-folding proteins fold. = Science 2011,
334, 517-520. [CrossRef]

Best, R.B. Atomistic molecular simulations of protein folding. Curr. Opin. Struct. Biol. 2012, 22, 52-61.
[CrossRef] [PubMed]

Pancsa, R.; Fuxreiter, M. Interactions via intrinsically disordered regions: What kind of motifs? IUBMB Life
2012, 64, 513-520. [CrossRef]

Tompa, P.; Davey, N.E.; Gibson, T.J.; Babu, M.M. A Million Peptide Motifs for the Molecular Biologist.
Mol. Cell 2014, 55, 161-169. [CrossRef] [PubMed]

Tompa, P; Schad, E.; Tantos, A.; Kalmar, L. Intrinsically disordered proteins: Emerging interaction specialists.
Curr. Opin. Struct. Biol. 2015, 35, 49-59. [CrossRef]

Dunbrack, R. Rotamer libraries in the 21st century. Curr. Opin. Struct. Biol. 2002, 12, 431-440. [CrossRef]
Smith, L.].; Bolin, K.A.; Schwalbe, H.; MacArthur, M.W.; Thornton, ].M.; Dobson, C.M. Analysis of main chain
torsion angles in proteins: Prediction of NMR coupling constants for native and random coil conformations.
J. Mol. Biol. 1996, 255, 494-506. [CrossRef] [PubMed]

Jha, A.K,; Colubri, A.; Freed, K.F,; Sosnick, T.R. Statistical coil model of the unfolded state: Resolving the
reconciliation problem. Proc. Natl. Acad. Sci. USA 2005, 102, 13099-13104. [CrossRef]

Bernad¢, P; Blanchard, L.; Timmins, P.; Marion, D.; Ruigrok, R W.H.; Blackledge, M. A structural model for
unfolded proteins from residual dipolar couplings and small-angle X-ray scattering. Proc. Natl. Acad. Sci.
USA 2005, 102, 17002-17007. [CrossRef]

Kolodny, R.; Koehl, P.; Guibas, L.; Levitt, M. Small libraries of protein fragments model native protein
structures accurately. |. Mol. Biol. 2002, 323, 297-307. [CrossRef]

Rohl, C.A; Strauss, C.E.; Misura, K.M.; Baker, D. Protein structure prediction using Rosetta. In Numerical
Computer Methods, Part D; Academic Press: Cambridge, UK, 2004; Volume 383, pp. 66-93.

Baeten, L.; Reumers, J.; Tur, V.; Stricher, E; Lenaerts, T.; Serrano, L.; Rousseau, F; Schymkowitz, J.
Reconstruction of protein backbones from the BriX collection of canonical protein fragments.
PLOS Comput. Biol. 2008, 4, €1000083. [CrossRef]

Maupetit, J.; Derreumaux, P.; Tufféry, P. A fast method for large-scale De Novo peptide and miniprotein
structure prediction. J. Comput. Chem. 2010, 31, 726-738.

Molloy, K.; Shehu, A. A general, adaptive, roadmap-based algorithm for protein motion computation. IEEE
Trans. Nano Biosci. 2016, 15, 158-165. [CrossRef]

Huang, J.R.; Ozenne, V; Jensen, M.R.; Blackledge, M. Direct prediction of NMR residual dipolar couplings
from the primary sequence of unfolded proteins. Angew. Chem. Int. Ed. 2013, 52, 687-690. [CrossRef]
[PubMed]

Estafia, A.; Sibille, N.; Delaforge, E.; Vaisset, M.; Cortés, J.; Bernad6, P. Realistic ensemble models of
intrinsically disordered proteins using a structure-encoding coil database. Structure 2019, 27, 381-391.
[CrossRef] [PubMed]

Levinthal, C. How to fold graciously. Moéssbauer Spectroscopy in Biological Systems Proceedings.
In Proceedings of a meeting held at Allerton House, Chicago, IL, USA, 17-18 March 1969; pp. 22-24.
Rooman, M.; Dehouck, Y.; Kwasigroch, J.; Biot, C.; Gilis, D. What is paradoxical about Levinthal paradox?
J. Biomol. Struct. Dyn. 2003, 20, 327-329. [CrossRef]

Al-Bluwi, I.; Siméon, T.; Cortés, J. Motion planning algorithms for molecular simulations: A survey.
Comput. Sci. Rev. 2012, 6, 125-143. [CrossRef]

Gipson, B.; Hsu, D.; Kavraki, L.; Latombe, J.C. Computational models of protein kinematics and dynamics:
Beyond simulation. Ann. Rev. Anal. Chem. 2012, 5, 273-291. [CrossRef] [PubMed]

Shehu, A.; Plaku, E. A survey of computational treatments of biomolecules by robotics-inspired methods
modeling equilibrium structure and dynamic. J. Artif. Intell. Res. 2016, 57, 509-572. [CrossRef]

Ghallab, M.; Nau, D.; Traverso, P. Automated Planning: Theory and Practice; The Morgan Kaufmann Series in
Artificial Intelligence, Elsevier: Amsterdam, The Netherlands, 2004.

Richter, S.; Westphal, M. The LAMA planner: Guiding cost-based anytime planning with landmarks. J. Artif.
Intell. Res. 2010, 39, 127-177. [CrossRef]


http://dx.doi.org/10.1073/pnas.0606843103
http://dx.doi.org/10.1126/science.1208351
http://dx.doi.org/10.1016/j.sbi.2011.12.001
http://www.ncbi.nlm.nih.gov/pubmed/22257762
http://dx.doi.org/10.1002/iub.1034
http://dx.doi.org/10.1016/j.molcel.2014.05.032
http://www.ncbi.nlm.nih.gov/pubmed/25038412
http://dx.doi.org/10.1016/j.sbi.2015.08.009
http://dx.doi.org/10.1016/S0959-440X(02)00344-5
http://dx.doi.org/10.1006/jmbi.1996.0041
http://www.ncbi.nlm.nih.gov/pubmed/8568893
http://dx.doi.org/10.1073/pnas.0506078102
http://dx.doi.org/10.1073/pnas.0506202102
http://dx.doi.org/10.1016/S0022-2836(02)00942-7
http://dx.doi.org/10.1371/journal.pcbi.1000083
http://dx.doi.org/10.1109/TNB.2016.2519246
http://dx.doi.org/10.1002/anie.201206585
http://www.ncbi.nlm.nih.gov/pubmed/23192984
http://dx.doi.org/10.1016/j.str.2018.10.016
http://www.ncbi.nlm.nih.gov/pubmed/30554840
http://dx.doi.org/10.1080/07391102.2002.10506850
http://dx.doi.org/10.1016/j.cosrev.2012.07.002
http://dx.doi.org/10.1146/annurev-anchem-062011-143024
http://www.ncbi.nlm.nih.gov/pubmed/22524225
http://dx.doi.org/10.1613/jair.5040
http://dx.doi.org/10.1613/jair.2972

Molecules 2019, 24, 1150 18 of 18

31.

32.

33.

34.

35.

36.
37.

38.

39.
40.

41.

42.

43.

44.

45.

46.

47.
48.

Wales, D. Energy Landscapes: Applications to Clusters, Biomolecules and Glasses; Cambridge University Press:
Cambridge, UK, 2003.

Honda, S.; Yamasaki, K.; Sawada, Y.; Morii, H. 10 residue folded peptide designed by segment statistics.
Structure 2004, 12, 1507-1518. [CrossRef]

Liang, H.; Chen, H.; Fan, K.; Wei, P.; Guo, X;; Jin, C.; Zeng, C.; Tang, C.; Lai, L. De novo design of a faf8
Motif. Angew. Chem. Int. Ed. 2009, 48, 3301-3303. [CrossRef]

Enemark, S.; Kurniawan, N.A.; Rajagopalan, R. -Hairpin forms by rolling up from C-terminal: Topological
guidance of early folding dynamics. Sci. Rep. 2012, 2, 649. [CrossRef]

Qi, Y.; Huang, Y.; Liang, H.; Liu, Z.; Lai, L. Folding simulations of a de novo designed protein with a Saf8
fold. Biophys. J. 2010, 98, 321-329. [CrossRef] [PubMed]

Rapaport, D.C. The Art of Molecular Dynamics Simulation; Academic Press: Cambridge, MA, USA, 2007.
Snow, C.; Zagrovic, B.; Pande, V. The Trp-cage: Folding kinetics and unfolded state topology via molecular
dynamics simulations. J. Am. Chem. Soc. 2003, 124, 14548-14549. [CrossRef]

Satoh, D.; Shimizu, K.; Nakamura, S.; Terada, T. Folding free-energy landscape of a 10-residue
mini-protein, chignolin. FEBS Lett. 2006, 580, 3422-3426. [CrossRef]

The PyMOL Molecular Graphics System, Version 2.0; Schrodinger, LLC: New York, NY, USA, 2018

Kabsch, W.; Sander, C. Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded
and geometrical features. Biopolymers 1983, 22, 2577-2637. [CrossRef]

Crooks, G.E.; Hon, G.; Chandonia, ].M.; Brenner, S.E. WebLogo: a sequence logo generator. Genome Res.
2004, 14, 1188-1190. [CrossRef] [PubMed]

Kiihrova, P.; De Simone, A.; Otyepka, M.; Best, R.B. Force-field dependence of Chignolin folding and
misfolding: Comparison with experiment and redesign. Biophys. J. 2012, 102, 1897-1906. [CrossRef]

Fox, N.K,; Brenner, S.E.; Chandonia, ].M. SCOPe: Structural classification of proteins—extended, integrating
SCOP and ASTRAL data and classification of new structures. Nucleic Acids Res. 2014, 42, D304-D309.
[CrossRef]

Scott, R.A.; Scheraga, H.A. Conformational analysis of macromolecules. III. Helical structures of polyglycine
and poly-L-alanine. J. Chem. Phys. 1966, 45, 2091-2101. [CrossRef]

Levitt, M. A simplified representation of protein conformations for rapid simulation of protein folding.
J. Mol. Biol. 1976, 104, 59-107. [CrossRef]

Ruiz de Angulo, V.; Cortés, J.; Porta, ].M. Rigid-CLL: Avoiding constant-distance computations in cell
linked-lists algorithms. J. Comput. Chem. 2012, 33, 294-300. [CrossRef]

Bondi, A. Van der Waals Volumes and Radii. J. Phys. Chem. 1964, 68, 441-451. [CrossRef]

Devaurs, D.; Molloy, K.; Vaisset, M.; Shehu, A.; Siméon, T.; Cortés, J. Characterizing energy landscapes of
peptides using a combination of stochastic algorithms. IEEE Trans. NanoBiosci. 2015, 14, 545-552. [CrossRef]
[PubMed]

® (© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1016/j.str.2004.05.022
http://dx.doi.org/10.1002/anie.200805476
http://dx.doi.org/10.1038/srep00649
http://dx.doi.org/10.1016/j.bpj.2009.10.018
http://www.ncbi.nlm.nih.gov/pubmed/20338854
http://dx.doi.org/10.1021/ja028604l
http://dx.doi.org/10.1016/j.febslet.2006.05.015
http://dx.doi.org/10.1002/bip.360221211
http://dx.doi.org/10.1101/gr.849004
http://www.ncbi.nlm.nih.gov/pubmed/15173120
http://dx.doi.org/10.1016/j.bpj.2012.03.024
http://dx.doi.org/10.1093/nar/gkt1240
http://dx.doi.org/10.1063/1.1727894
http://dx.doi.org/10.1016/0022-2836(76)90004-8
http://dx.doi.org/10.1002/jcc.21974
http://dx.doi.org/10.1021/j100785a001
http://dx.doi.org/10.1109/TNB.2015.2424597
http://www.ncbi.nlm.nih.gov/pubmed/25935043
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction and Related Work
	Results and Discussion
	Chignolin
	DS119

	Materials and Methods
	Structural Database
	Formal Statement of the Conformation Path Finding Problem
	Search Algorithm
	Heuristic Guidance Function
	Properties of HDFS


	Conclusions
	References

