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Psoriasis is a chronic immune-mediated inflammatory skin disorder affecting children and
adults. To date no approved biomarkers for diagnosis of this disease and follow up of
patients have been translated into clinical practice. Recently, extracellular vesicles (EVs)
secreted by all cells and present in almost all biological fluids are playing a crucial role in
diagnosis and follow up of several diseases, including psoriasis. Since many psoriatic
patients show altered plasma lipid profiles and since EVs have been involved in psoriasis
pathogenesis, we studied the phospholipid profile of EVs, both microvesicles (MV) or
exosomes (Exo), derived from plasma of psoriatic patients undergoing systemic biological
treatment (secukinumab, ustekinumab, adalimumab), in comparison with EVs of untreated
patients and healthy donors (HD). EVs were evaluated by immune electronmicroscopy for
their morphology and by NanoSight for their amount and dimensions. EV phospholipid
profiling was performed by High Resolution Liquid Chromatography-Mass Spectrometry
and statistical Partial Least Squares Discriminant Analysis. Our results demonstrated that
psoriatic patients showed a higher concentration of both MV and Exo in comparison to EVs
from HD. The phospholipid profile of Exo from psoriatic patients showed increased levels
of phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol and
lysoPC compared to Exo from HD. Sphingomyelin (SM) and phosphatidylinositol (PI) are
the only phospholipid classes whose levels changed in MV. Moreover, the therapy with
ustekinumab seemed to revert the PE and PC lipid composition of circulating Exo towards
that of HD and it is the only one of the three biological drugs that did not alter SM
expression in MV. Therefore, the determination of lipid alterations of circulating EVs could
harbor useful information for the diagnosis and drug response in psoriatic patients.
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INTRODUCTION

Psoriasis is a common chronic immune-mediated
inflammatory skin disorder, affecting the skin, nails and
joints in children and adults, with an incidence in the
general population ranging from 2.0% to 8.5% (Wu et al.,
2016). The onset of a psoriatic lesion is a complex and
multicellular process that involves keratinocytes, T cells,
dendritic cells, macrophages, mast cells, endothelial cells
and neutrophils. At the same time cytokines (i.e. TNFα, IL-
17, IL-23) and growth factors initiate and sustain
inflammation in this process (Rendon and Schäkel, 2019;
Gisondi et al., 2020).

In psoriasis, biomarkers for disease prognosis and response
to treatment are needed to help clinicians to improve patient
management (Paolino et al., 2021a). Although many efforts
have been made to identify psoriasis biomarkers (such as
C-reactive protein, cytochrome-c, haptoglobin, platelet
P-selectin, TNFα, IFN-γ, IL-6, IL-8, IL-12, IL-18 and IL-
22), currently no biomarkers are used in clinical practice
(Villanova et al., 2013; Paolino et al., 2021b). In addition, it
is known that many psoriatic patients manifest altered serum
lipid profiles with increased levels of high-density lipoproteins,
apolipoprotein A1 and an augmented cardiovascular risk
(Uyanik et al., 2002; Gisondi et al., 2020).

To date, there is no a curative therapy for psoriasis and the
actual treatments for psoriasis can be divided in four main classes:
topical treatments, phototherapy, systemic and biological
therapies that improve clinical outcomes and quality of life
(Feldman and Krueger, 2005; Kelly-Sell and Gudjonsson,
2017). Multiple classes of biologics are available: TNFα
inhibitors, anti-p40 (IL-12/IL-23 antagonists), IL-17 and IL-
17R inhibitors as well as the new anti p-19 inhibitors
(selective for IL-23) (Kelly-Sell and Gudjonsson, 2017).

Extracellular vesicles (EVs) comprise microvesicles (MV),
originating from the cell membrane with a diameter ranging
from 150 to 1,000 nm, exosomes (Exo), deriving from the late
endosomal multivesicular bodies with a size ranging from 30 to
150 nm, and apoptotic bodies, characterized by a dimension
ranging from 1,000 to 5,000 nm (Caruso and Poon, 2018; van
Niel et al., 2018). EVs are released by all cell types, in both
normal and pathological conditions, and can be found in a
wide range of bodily fluids (van Niel et al., 2018). They are
composed of a lipid bilayer and carry different biological
macromolecules (i.e., proteins, lipids, carbohydrates and
nucleic acids). They play a major role in immune responses,
cancer progression and metastasis, and inflammatory diseases
(Stahl and Raposo, 2018). Recent studies indicate that EVs play
key immunomodulatory roles in skin inflammatory disorders,

including psoriasis, atopic dermatitis, lichen planus, bullous
pemphigoid, systemic lupus erythematosus, and wound
healing (Shao et al., 2020). EVs can both stimulate and
inhibit the innate and adaptive immune system (Théry
et al., 2009; Federici et al., 2020; Zhou et al., 2020) and
regarding their role in psoriasis, to date, only a few
investigations have been carried out. A study revealed that
EVs released from IFNα induced mast cells, could transfer

cytoplasmic PLA2 to neighboring CD1a-expressing cells,
which further led to the generation of neolipid antigens and
subsequent recognition by CD1a-reactive T cells (Cheung
et al., 2016). Moreover, EVs are critical mediators of
keratinocyte-neutrophil crosstalk in the pathogenesis of
psoriasis (Jiang et al., 2019; Nasiri et al., 2020). EVs derived
from psoriatic keratinocytes also transferred miR-381-3p to
CD4+ T cells, inducing Th1/Th17 polarization and promoting
psoriasis development (Jiang et al., 2021).

Different studies highlighted the potential of EVs as diagnostic
markers for psoriasis patients. The level of circulating EVs
expressing IL-17A was higher in patients with moderate-to-
severe psoriasis than in those with mild psoriasis (Jacquin-
Porretaz et al., 2019). In comparison to healthy donors (HD),
miRNAs of EVs from psoriasis patients showed an altered
expression (Pasquali et al., 2020; Wang et al., 2020).

In immune-mediated diseases the number of circulating MV
augments and this increase is particularly evident if vessels are
also affected, possibly because a large part of circulating MV
originates from platelets (Sellam et al., 2008; Baka et al., 2010;
Krajewska-Włodarczyk et al., 2019). In psoriatic patients, the
number of circulating endothelial and monocyte-derived MV
increases (Takeshita et al., 2014) and no significant reduction of
circulating endothelial-derived and platelet-derived MV was
observed in patients successfully treated with anti-IL12/23 (Ho
et al., 2016).

Lipid content of EVs has been poorly investigated with respect
to protein and RNA content, even if it is well known that EV
biogenesis requires the activation of specific lipid metabolizing
pathways that, in turn, causes the partitioning of specific lipid
classes in EVs (Ho et al., 2016; Sagini et al., 2018). The lipid cargo
of EVs is also an important determinant for the uptake and
cellular responses to target cells (Russell et al., 2019). EVs are
enriched in cholesterol, sphingomyelin (SM), ether-linked
phospholipids and lysoglycerophospholipids (lysoPL),
compared to parental cells (Buratta et al., 2017; Buratta et al.,
2021; Llorente et al., 2013; Phuyal et al., 2015). Another common
characteristic is the high level of saturated phospholipids in EVs,
compared to parental cells (Llorente et al., 2013; Lydic et al., 2015;
Sagini et al., 2018). This feature is responsible for their high
membrane stiffness, which is important to ensure stability and
delay degradation in biological fluids (Record et al., 2018).

Targeted and untargeted LC-MS approaches quantifying
bioactive lipid mediators in psoriasis patients and HD have
depicted disease-specific phenotype profiles represented by
polyunsaturated fatty acid (PUFA)-oxidized derivatives in both
skin and blood (Zeng et al., 2017; Sorokin et al., 2018). Moreover,
both pro- and anti-inflammatory eicosanoids were associated
with joint disease scores in psoriatic arthritis patients (Coras et al.,
2019).

Here, we investigated the lipid composition of two EV
subtypes, MV and Exo, derived from plasma of psoriasis-
affected patients (PSO) and HD. Furthermore, we studied the
lipid profile of EVs isolated from plasma of PSO treated with
secukinumab, ustekinumab and adalimumab monoclonal
antibodies directed versus IL-17A, IL-12 and IL-23, and TNFα,
respectively.
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MATERIALS AND METHODS

Human Subjects and Samples
All subjects with a diagnosis of psoriasis and with an age ≥18
(with or without joint involvement) were included in the
present study. Patients with an age ≤17 years, patients with
a diagnosis of a malignancy performed in the last 10 years, as
well as patients with other inflammatory and/or autoimmune
diseases were excluded from the present study. The present
study was approved by the local ethics committee with the
name of protocol: EXOPSO/2018.

The basic clinical-pathological variables (age, sex, type of
psoriasis, BMI, comorbidities, therapy in progress, how long
has psoriasis been) were reported in an anonymous file
(Supplementary Table S1).

A total of 10 blood samples (each of 6 cc) from untreated
PSO, 10 secukinumab-treated (SCK), 10 ustekinumab-treated
(USTK) and 10 adalimumab-treated (ADM) patients, were
analyzed and compared with 10 blood samples from HD.
General median age of psoriatic patients was 50.5 (ranging
between 22 and 70 years), with 27 males and 23 females. The
main associated comorbidities were hypertension in 9 cases
and hypercholesterolemia in 6 cases. General median age of
healthy donors was 31 (ranging between 24 and 36 years).

Isolation of Microvesicles and Exosomes
From Plasma
Plasma was subjected to differential centrifugation as described
before (Federici et al., 2020). Plasma, diluted 1:2 with PBS1X, was
centrifuged for 30 min at 500 × g and 45 min at 12,000 × g to
collect MV, followed by a washing step with PBS1X. Then plasma
was filtered through a 0.22-µm filter (Sartorius, Germany), and
ultracentrifuged for 2 h at 110,000 × g at 10°C to collect Exo,
which were preserved at −80°C.

NanoSight Analysis of EVs
Once isolated, the number and size of the isolatedMV and Exo were
evaluated by Nanoparticle Tracking Analysis (NTA; NanoSight
Model NS300, Malvern Instruments, NanoSight Ltd., Salisbury,
United States), using specific setting parameters for NTA capture
(Paolino et al., 2021b). Briefly: camera type (sCMOS), Laser type
Blue488, capture level 15, threshold 5, cursor gain (366) and capture
duration (60 s). Data are expressed asmean ± SEMormean ± SD, as
indicated, using GraphPad Prism, and p-values of 0.05 or less were
considered as significant. The statistical analysis was performed by
paired and unpaired Student’s t-test, as indicated.

Electron Microscopy Analysis of EVs
For electron microscopy, purified Exo and MV from 0.1 ml of
plasma were processed for scanning electron microscopy (SEM)
and transmission electron microscopy (TEM) as previously
described (Shively and Miller, 2009; Paolino et al., 2021b).

For the immunoelectron microscopy, the samples on the grids
were incubated with anti-CD81 monoclonal antibody (mAb B11,
Santa Cruz Biotechnology, Heidelberg, Germany), and with

10 nm gold-conjugated goat anti-mouse immunoglobulin G
(IgG) serum (Sigma-Aldrich, St. Louis, MO). Finally,
nanovesicles were observed with a PHILIPS EM208S
transmission electron microscope (FEI-ThermoFisher)
(Federici et al., 2020).

Lipid Analysis by High Resolution Liquid
Chromatography-Mass Spectrometry
(LC-MS)
Lipids were extracted from aliquots of Exo and MV (~30 µg
protein) as described (Matyash et al., 2008). Sample lipid profiles
were analyzed by adapting the method previously described (Bird
et al., 2011) to our LC/MS instrumentation (Agilent 1260 Infinity
UHPLC system coupled to an Agilent 6530 Q-TOF). Peak
detection, alignment, and lipid annotation were achieved using
MassHunter Profinder (Agilent B.08.00) and a homemade
adaptation of the LipidMaps database. Annotated lipids with
quality identification score >90% were semi-quantified using the
SPLASH I Lipidomix as standard reference. At the end of the
workflow, the data matrix reporting data from 124 lipids was
subjected to statistical analysis: sPLS-DA, Volcano Plot, Heatmap
and Dendrogram were carried out on the MetaboAnalyst (5.0)
web platform (Pang et al., 2021) Student’s test was applied to
determine significant differences between two groups (p < 0.05)
whereas ANOVA, followed by Tukey–Kramer post hoc test was
applied to evaluate statistical differences between multiple
treatment groups and controls.

RESULTS

Plasma-Derived MV and Exo of Psoriatic
Patients Versus HD
SEM analysis showed a major size of MV with respect to Exo and
a round morphology for both MV and Exo (Figure 1A,a,b,g,h).
TEM analysis confirmed the membranous nature of both EV sub-
types (Figure 1A,c,e,i,m). Immunoelectron microscopy
combined with positive/negative contrast method revealed the
presence of CD81 EV marker (Figure 1A,d,l,f,n). NTA analysis
confirmed bigger dimensions of MVHD and MVPSO (142.7 and
140.6 nm) as compared to ExoHD and ExoPSO (114.4 and
118.1 nm), respectively (Figure 1B), while no significative
difference in size was observed between HD and PSO samples.
Interestingly, psoriatic patients showed a higher concentration of
both MV and Exo in comparison those from HD. In particular,
theMV concentration in PSO was 10X higher with respect to HD,
and Exo was 5X higher in PSO with respect to ExoHD (Table in
Figure 1).

Lipid Profile of Circulating EVs
Comparison of Lipid Profile of MV and Exo From
Psoriatic Patient and HD
We compared the lipid profile of plasma-derived EVs, both MV
and Exo, from PSO and HD. The most abundant phospholipid
classes in MVHD were phosphatidylcholine (PC) (45 + 11% of
total PL), followed by phosphatidic acid (PA) (22 + 4.3% of total
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PL) and lysoPC (LPC) (10 + 2.1% of total PL). SM represented the
5.6 + 1.1% of total PL (Figure 2A). In Exo HD, PC represented
the main PL class (58 + 8.4% of total PL), followed by SM (22 +
5.7% of total PL) and LPC (12 + 6.4% of total PL) (Figure 2A). No
differences were observed in terms of percentage of PL classes
among the HD and PSO samples (Figure 2A,C). However, the
comparison between HD and PSO showed that ExoPSO
presented higher PL/protein ratio, compared to ExoHD,
whereas in MV no differences between the two experimental
groups were measured (Figure 2E). In agreement with literature
data, PS was not detected in our EVs samples (Sun et al., 2019;
Jakubec et al., 2020).

Volcano plot analysis demonstrated the possibility to
discriminate subtype on the basis of lipid composition. In HD,
among the 192 lipid species detected, 43.75% were elevated and
37.5% reduced in MV as compared with Exo (fold change >2 and
a corrected p-value < 0.1) (Figure 2B). Similarly, in PSO, among
the 192 lipid species detected, 42.71% were elevated and 37.5%

reduced in MV as compared with Exo (Figure 2D). These results
indicate that the lipid content of MV is significantly different
from that of Exo, both in normal and pathological samples.

Partial Least Squares Discriminant Analysis (PLS-DA) was
applied to compare the lipid profile of the four experimental
groups (MVHD, MVPSO, ExoHD, and ExoPSO) (Figure 2F).
PLS-DA score plot indicated that component 1 separated MV
from Exo, whereas component 2 separated ExoHD from ExoPSO,
but not MVHD from MVPSO (Figure 2F). Thus, MVHD and
MVPSO had a similar lipid asset, whereas ExoPSO showed a
characteristic lipid composition that accounted for its
clusterization in a separate group with respect to ExoHD.

Comparison of Lipid Profiles of EVs From Untreated
and Antibody-Treated Psoriatic Patients, and HD
The amount of each PL class relative to protein content in MV
(Figure 3A) and Exo (Figure 3B) from HD, PSO and from
patients treated with SCK, USTK or ADM is reported. In MV, the

FIGURE 1 |Morphological characterization of MV and Exo from plasma of HD and PSO. (A). Scanning electron microscopy analysis of MVHD (a) and ExoHD (b),
Bars 500 nm. Transmission electron microscopy analysis of MVHD (c) and ExoHD (e), Bars 200 nm. CD81-Immunoelectron microscopy of MVHD (d) and in ExoHD (f),
Bars 100 nm. Scanning electron microscopy analysis of MVPSO (g) and ExoPSO (h), Bars 500 nm. Transmission electron microscopy analysis of MVPSO (i) and
ExoPSO (m), Bars 200 nm. CD81-Immunoelectron microscopy of MVPSO (l) and in ExoPSO (n), Bars 100 nm. (B)Nanoparticle tracking analysis (NTA) analysis of
MVHD andMVPSO (upper panels) and ExoHD and ExoPSO (lower panels). Representative spectra are shown. Mean,mode, and particles number/ml ([]/ml) are reported
in the Table.

Frontiers in Cell and Developmental Biology | www.frontiersin.org June 2022 | Volume 10 | Article 9237694

Paolino et al. Plasma Psoriatic EVs Lipid Profile

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


amount of each PL class was comparable among the five
experimental groups, except for SM and phosphatidylinositol
(PI). Specifically, a higher content of SMwas observed inMVSCK
and MVADM, compared to the other groups. Lower levels of PI

were observed in samples from drug-treated patients, compared
with MVHD and MVPSO (Figure 3A). In Exo, we observed
higher levels of PC, PE, phosphatidylglycerol (PG) and LPC in
ExoPSO, ExoUSTK and ExoADM, compared to ExoHD.

FIGURE 2 | Statistical analysis of phospholipids detected in EVs from HD and PSO. (A) Pie charts of the percentage of each phospholipid class in MVHD and
ExoHD. (B) Volcano plot of individual lipid species in MVHD and ExoHD. Lipids in blue and red were increased and decreased in MVHD vs. ExoHD, respectively (FC > 2
and p-value < 0.1). (C) Pie charts of the percentage of each phospholipid class in MVPSO and ExoPSO. (D) Volcano plot of individual lipid species in MVPSO and
ExoPSO. Lipids in blue and red were increased and decreased in MVHD vs. ExoHD, respectively (FC > 2 and p-value < 0.1). (E) Amount of phospholipids (PL)
relative to protein content. Data are reported as mean ± S.D. (*p < 0.05, PSO vs. HD). (F) PLS-DA of lipid species from HD and PSO, both for MV and Exo. 95% ellipses
are constructed on each of the four groups. The dataset was normalised by median and scaled by Pareto algorithm.
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Notably, PC and PE levels of ExoUSTK were similar to ExoHD
(Figure 3B).

We then reported changes in the molecular species
belonging to PL classes whose levels were changed among
the five experimental groups, in MV and Exo. In Exo, we
evaluated changes in the PC and PE levels and calculated the
length and saturation degree of acyl chains. Regarding PC, we
detected three molecular species of PC-O (alkyl-
phosphatidylcholine, PC with a fatty acid at the sn-1
position linked by a ether linkage while the fatty acid at the
sn-2 position linked by an ester linkage to the glycerol moiety)
(representing ~3% of total PC), six molecular species of PC-P
(phosphatidylcholine plasmalogens, PC with a fatty acid at the
sn-1 position linked by a vinyl ether linkage while the fatty acid
at the sn-2 position linked by an ester linkage to the glycerol
moiety) (representing ~2% of total PC) and 23 species of PC
(diacyl-phosphatidylcholine) (Figure 4A). Statistical analysis
revealed that levels of seven molecular species of PC were

increased in ExoPSO, ExoSCK and ExoADM, compared with
ExoHD and ExoUSTK. Noteworthy, these differences
accounted for the greater content of PC observed in
ExoPSO that was restored by USTK treatment to levels
recapitulating ExoHD (Figure 3).

We also evaluated differences in the acyl chains length by
calculating the content of PC species with short acyl chains
whose sum composition was <36 carbons and long acyl chains
whose sum composition was >38 carbons. As shown in
Figure 4B, ExoPSO, ExoSCK and ExoADM presented
greater levels of PC containing short acyl chains. ExoPSO,
ExoSCK and ExoADM presented also higher levels of PC
containing unsaturated fatty acids (UFA), compared to
ExoHD and ExoUSTK (Figure 4C).

Regarding PE, levels of 10 out of 14 molecular species were
changed among the five experimental groups (Figure 4D). The
impact of these changes on PE properties is reported in
Figure 4E,F. Higher levels of PE species containing short,

FIGURE 3 | Phospholipid composition of EVs derived from plasma of HD, PSO and PSO treated with SCK, USTK and ADM. Lipid extracts fromMV (A) and Exo (B)
were analyzed by LC-MS. The amount of each PL class (sum of all detected species) is expressed as pg of lipids/µg of proteins. Data are reported as mean ± S.D.
Statistically significant differences (p < 0.05) resulted by one-way ANOVA and Tukey’s post-hoc analysis; columns with different letters are significantly different (i.e. a vs.
HD, b vs. PSO, c vs. SCK, d vs. USTK, e vs. ADM and π vs. all).
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long and unsaturated acyl chains were observed in ExoPSO,
ExoSCK and ExoADM, compared to ExoHD and ExoUSTK
(Figure 4E,F).

PLS-DA was applied to analyze the five Exo groups based on
the whole lipid data (Figure 5A). PLS-DA analysis displayed that
the five lipidomic datasets clustered into two main groups. Exo

FIGURE 4 |Molecular species of PC and PE detected in Exo from plasma of HD, PSO and PSO treated with SCK, USTK and ADM. Lipid extracts from Exo were
analyzed by LC/MS–MS. Panels (A) and (D) show PC and PE detected species, respectively. Data are expressed as pg of lipid species/μg of proteins. The inserted panel
expand the vertical axis to allow comparison of low abundance lipid subclasses. Panels (B) and (E) show fatty acid length in PC and PE, respectively. Data are reported
as sum of species containing short (<36 carbon atoms) and long chains (>38 carbon atoms). Panels (C) and (F) show saturation level of PC and PE, respectively.
Data are reported as sum of molecular species containing only saturated (SFA) and unsaturated (UFA) fatty acids. Data are reported as mean ± SD; p < 0.05 was
considered statistically significant by one-way ANOVA and Tukey’s post-hoc analysis; columns with different letters are significantly different (i.e. a vs. HD, b vs. PSO, c
vs. SCK, d vs. USTK, e vs. ADM and π vs. all).

FIGURE 5 |Chemometric and clustering analysis of Exo lipidome. (A) PLS-DA of five experimental groups based on the whole lipid data after median normalization
and Pareto scaling. CI 95% ellipses are shown for the five different groups. (B) Heatmap of 25 most significant (ANOVA) lipids. Lipids and samples were both ordered
using hierarchical clustering (Pearson distance). Autoscaled relative abundances of lipid species is represented by graduation of color from red (more abundant) to blue
(less abundant).
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from untreated and treated psoriatic patients were not clearly
separated from each other but were well separated from ExoHD
that clustered in a separate group (Figure 5A). The heatmap in
Figure 5B was built using the 25 lipids that were most significant
in the ANOVA test. The hierarchical analysis shows a clustering
of the ExoHD against all other samples (Exo from untreated and
treated patients). Among the 18 lipids overexpressed in ExoHD
many were free fatty acids. The remaining seven lipids
underexpressed in the ExoHD were predominantly
glycerophospholipids.

As reported in Figure 2, SM and PI are the only PL classes
whose levels changed among the 5 MV groups. SM, and its
derivative ceramide, are enriched in EV membrane and played
a role in EVs biology (Verderio et al., 2018). In MV, we observed
differences in the levels of 10 out of 12 molecular species of SM
among the five experimental groups (Figure 6), which accounted
for the higher content of SM inMVSCK andMVADM compared
to the other groups (Figure 3A).

DISCUSSION

EVs are directly involved in the pathogenesis of inflammatory
and autoimmune disorders (Wu et al., 2020), including psoriasis
(Jiang et al., 2019; Shao et al., 2020). Despite this interesting
evidence, few studies so far investigated the role of EVs in the
pathogenesis of psoriasis (Jiang et al., 2019; Pasquali et al., 2020;
Shao et al., 2020) and none of them focused on the lipid
composition of EVs isolated from plasma of psoriasis-affected
patients. It is known that there is a correlation between psoriasis
and the increased amount of circulating lipids. Dysregulation of
lipid metabolism is a pathogenetic feature of many diseases,
including cardiovascular disease, hypertension, diabetes and
Alzheimer’s diseases (Su et al., 2021) and in particular,
psoriasis (Nowowiejska et al., 2021). Aberrations of lipid
expression and metabolism, as well as lipid transporting
proteins and receptors, are frequently present in psoriatic

patients and these suffer more often from hyperlipidemia and
are prone to develop metabolic syndrome, atherosclerosis, and
thus cardiovascular disorders. (Nowowiejska et al., 2021).

In our study EVs, both MV and Exo, have been isolated from
the plasma of HD and psoriasis patients, treated or not with three
different biological drugs, i.e. monoclonal antibodies, and their
lipid profile has been evaluated. We found that in treated and
untreated psoriatic patients the amount of total circulating Exo
and MV was significantly higher compared to HD and
significative differences in size were appreciated comparing
MV versus Exo.

MV and Exo showed a different lipid distribution. Both EV
types presented similar levels of PC and LPC, but MV were
enriched in PA whereas Exo were enriched in SM (Figure 2).
Furthermore, Exo had a higher lipid/protein ratio, compared to
MV. These results may be useful to discriminate among
differently sized EV subpopulations, as the protein-based
identification of EV subtypes may sometimes be controversial
(Durcin et al., 2017), although without significant differences
between PSO and HD samples.

The comparison between EVs from psoriatic patients and HD
revealed that the most relevant differences were observed in Exo,
while for MV the only difference regarded the level of SM. In line
with this most of the studies focused on the correlation between
EVs and psoriasis on exosomes (Jiang et al., 2019; Pasquali et al.,
2020; Shao et al., 2020), which seem to be the main type of EVs
involved in the pathogenesis of the disease. However, the global
lipid profile analysis by PLS-DA indicates that MVHD and
MVPSO had a similar lipid asset, whereas ExoPSO show a
characteristic lipid composition that accounted for the
clusterization of ExoPSO and ExoHD in two separate groups
(Figure 2F). This result indicates that psoriatic patients and HD
could be distinguished on the basis of lipid composition of
plasma-derived Exo.

Furthermore, ExoPSO were characterized by higher levels of
PC and PE, compared to ExoHD. Interestingly, in Exo from
plasma of USTK-treated patients the levels of PC and PE were

FIGURE 6 |Molecular species of SM detected in MV isolated from plasma of HD, PSO and PSO treated with SCK, USTK and ADM. Lipid extracts were analysed by
LC/MS-MS. The amounts of detected SMs were expressed as pg of lipid species/μg of proteins. Data are reported as mean ± SD; p < 0.05 was considered statistically
significant by one-way ANOVA and Tukey’s post-hoc analysis; columns with different letters are significantly different (i.e. a vs. HD, b vs. PSO, c vs. SCK, d vs. USTK, e
vs. ADM and π vs. all).
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similar to the ones of ExoHD. The analysis of the molecular
species of PC and PE revealed several acyl chain rearrangements
that accounted for a greater level of short and unsaturated species
in ExoPSO, compared with ExoHD. This result is important,
taking into account the role of UFA as precursors of important
lipid mediators. Indeed, with their phospholipid content, EVs
represent a source of fatty acids that can be released by
phospholipase A (Boilard, 2018). The signaling molecules
derived from PUFA are called eicosanoids and are involved in
important biological processes, including inflammation (Record
et al., 2014).

Ustekinumab, the biological treatment that decreased the levels of
PE and PC in ExoPSO to values comparable with ExoHD, is a
monoclonal antibody that inhibits the p40 subunit common to IL-12
and IL-23, two cytokines involved in the pathogenesis of psoriasis. It
has been shown that ustekinumab induces a reduction of IFNγ, TNFα,
IL-8, IL-18, CD3+ T lymphocytes, and a reduction in the expression of
many cytokinemRNAs involved in inflammation (Toichi et al., 2006).
Most likely, ustekinumab by inhibiting the p40 subunit shared by IL-
12, a helper T cell subtype 1 (TH1) inducer, and IL-23 (which
maintains TH17 cell homeostasis) may attenuate inflammatory
pathways and modulate the release and characteristics of
circulating EVs (Poizeau et al., 2020). Further studies performed
on larger groups of patients will be necessary to evaluate whether the
same result can also be obtained with drugs that exclusively inhibit IL-
23, which were not considered in the present study.

Interestingly, MV from plasma of patients treated with
secukinumab and adalimumab were characterized by higher levels
of SM, as compared to otherMV samples (Figure 6). It is well known
that SM and its metabolites, such as ceramide and sphingosine-1-
phosphate (S1P), act as signalingmolecules, controlling a vast number
of cellular processes and sphingolipids playing important roles not
only in EVs biogenesis but also in EV activity towards target cells
(Verderio et al., 2018).

Moreover, in psoriatic patients we observed a decrease of total
ceramide and an increase of S1P serum levels, reflecting their
epidermal altered composition and metabolism. Patients with
psoriatic arthritis have higher ceramide levels than psoriasis with
skin involvement only (Myśliwiec et al., 2017).

Recently, sphingolipids have been identified among EV
components as important diagnostic and prognostic
biomarkers in cancer (Lydic et al., 2015; Skotland et al., 2017)
and inflammatory disease (Moyano et al., 2016) and sphingolipid
metabolites carried by EVs activate inflammation of macrophages
(Kakazu et al., 2016). Therefore, differences in terms of SM may
reflect an alteration of MV properties induced by modulation of
inflammatory mediators.

Our study defines biochemical composition of circulating EVs in
psoriasis and prompts the use of EV lipid cargo as possible biomarker
source for assessing and following the status of psoriasis. Consistently,
lipid content and, in particular, some lipid classes of circulating Exo
(PC and PE) and MV (SM) can be potentially considered as
determinants for the diagnosis of psoriasis, as well as means to
follow the activity of the disease. Reversion of PC and PE levels in
Exo fromPSO after ustekinumab treatment to thosemeasured in Exo
fromHD, suggests that Exo could be considered promising biomarker
candidates of therapy outcome.

Future studies with a bigger sample size will better clarify the
involvement of both Exo and MV in psoriasis. The monitoring of
psoriasis could be improved through the lipid profile analysis of
circulating EVs, correlating biochemical evidence with
clinicopathological status.
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