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Abstract

Motivation: Time-series nuclear magnetic resonance (NMR) has advanced our knowledge about metabolic dynam-
ics. Before analyzing compounds through modeling or statistical methods, chemical features need to be tracked and
quantified. However, because of peak overlap and peak shifting, the available protocols are time consuming at best
or even impossible for some regions in NMR spectra.

Results: We introduce Ridge Tracking-based Extract (RTExtract), a computer vision-based algorithm, to quantify
time-series NMR spectra. The NMR spectra of multiple time points were formulated as a 3D surface. Candidate
points were first filtered using local curvature and optima, then connected into ridges by a greedy algorithm.
Interactive steps were implemented to refine results. Among 173 simulated ridges, 115 can be tracked (RMSD <
0.001). For reproducing previous results, RTExtract took less than 2 h instead of �48 h, and two instead of seven
parameters need tuning. Multiple regions with overlapping and changing chemical shifts are accurately tracked.

Availability and implementation: Source code is freely available within Metabolomics toolbox GitHub repository
(https://github.com/artedison/Edison_Lab_Shared_Metabolomics_UGA/tree/master/metabolomics_toolbox/code/
ridge_tracking) and is implemented in MATLAB and R.

Contact: aedison@uga.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Experimental approaches have been developed in time-series
metabolic measurements by both nuclear magnetic resonance
(NMR) and mass spectrometry (Bastawrous et al., 2018; Judge
et al., 2019; Koczula et al., 2016; Link et al., 2015; Montana
et al., 2011; Tabatabaei Anaraki et al., 2018). These experimen-
tal methods provide opportunities to understand metabolic dy-
namics, including metabolic changes under variation in carbon
sources or oxygen levels (Judge et al., 2019; Link et al., 2014,
2015). Among existing approaches, continuous in vivo monitor-
ing of metabolism by NMR (CIVM-NMR) provided high time
resolution, in vivo measurements of metabolites in Neurospora
crassa under aerobic and anaerobic conditions (Judge et al.,
2019). These measurements covered a large proportion of path-
ways in central metabolism, and interesting dynamics in com-
pound concentration were observed.

NMR provides a highly reproducible way to identify and quan-
tify compounds. In an NMR spectrum, different metabolites are

represented by different peaks (features), and peak height (intensity)
is proportional to compound concentration, when peak shape does
not change. Peak resonance frequency is sensitive to the local elec-
tronic structure and some environmental variables. Resonance fre-
quency is reported as chemical shift, d, which is derived by dividing
the frequency in Hz by the spectrometer frequency in MHz and thus
has units of parts per million (ppm). The dependence on local elec-
tronic structure allows for reliable compound identification.
Additionally, some metabolites are sensitive to changes in the local
chemical environment (e.g. pH or metal ion concentration) and sys-
tematically change their chemical shift, providing a useful way to
measure these environmental factors (Takis et al., 2017; Tredwell
et al., 2016).

Metabolism yields changes in metabolite concentration and local
pH, resulting in NMR peak intensity and chemical shift changes.
These changes not only provide important information about meta-
bolic dynamics but also complicate feature extraction. Moreover,
peaks in NMR spectra often overlap, which affects both compound
annotation and quantification. The combination of systematic
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chemical shift, overlap and amplitude changes makes peak tracking
and quantification a difficult problem. A practical, stable computa-
tional approach is needed to track and quantify peaks over time, re-
gardless of overlap, amplitude and chemical shift changes.

Traditional alignment-based methods are popular for processing
NMR spectra from different samples and aligning shifting peaks.
However, these methods often introduce artifacts and are unreliable
for the regions where peaks cross (Csenki et al., 2007; Vu and
Laukens, 2013). In CIVM-NMR data, the pattern of peak shifting is
less noisy and more continuous than in discrete extracted samples
by traditional methods. These properties provide new information
for quantifying crossing peaks as discussed below.

Multiple methods have been implemented to track peaks in time-
series NMR spectra. The TSATool can track a peak by peak picking
and a predefined function describing shifting trajectory (Koczula
et al., 2016; Ludwig and Günther, 2011). It was used to track NMR
peaks in leukemia cells and interesting hypoxia metabolic response
was observed. This method, though capable of tracking individual
peaks, does not provide a general solution for quantifying multiple
peaks efficiently. In our initial CIVM-NMR study, a better frame-
work for multiple peak tracking was introduced. Peak tracking was
achieved by a smoothing filter to reduce noise (filtering step) and
hierarchical clustering (connection step) to connect candidate peaks
(Judge et al., 2019). While this method tracked peaks with chemical
shift variation, substantial manual effort was still needed in param-
eter tuning to accommodate different spectral regions. For instance,
the proper scaling factor for the extent of chemical shift variation
and the number of expected clusters were crucial parameters but dif-
ficult to optimize. About 48 h of work were needed for the original
CIVM-NMR quantification, which can be a significant bottleneck
and cost (Judge et al., 2019). Additionally, none of the aforemen-
tioned methods can deal with crossing or severely overlapped peaks.

Computer vision methods have been adapted to solve other spec-
troscopy (Klukowski et al., 2015, 2018) and biological object track-
ing problems (Steger, 1998; Tinevez et al., 2017). It can also be
implemented here to promote efficiency. The steps of both filtering
candidate points and their subsequent connection can be improved
by treating NMR peak extraction as a ridge tracking problem.
Time-series NMR data can be viewed as a 2D matrix (or a 3D sur-
face if we treat matrix elements as height) with each row being a
spectrum at one time point and each column being the intensity of a
particular resonance frequency across time. As the same peaks
change continuously through time, they can be conceptualized as
surface ridges, for which efficient detection algorithms exist (Suk
and Bhandarkar, 1992). Surface segmentation techniques have been
implemented in computer vision to classify 3D surface points based
on their local curvature into qualitative surface types: inter alia,
ridge, peak and valley (Supplementary Fig. S1) (Besl and Jain, 1986,
1988; Suk and Bhandarkar, 1992).

In Ridge Tracking-based Extract (RTExtract), to filter candidate
peak points, we combined ridge classification with other informa-
tion such as local maxima. This combination of multiple filters pro-
vided cleaner results with fewer false positives, and tuning
parameters were fewer and more intuitive. Candidate points were
then connected by a 2-step greedy method, which is composed of
simple local optimal connections without global evaluations; this is
possible because of the better filter on candidate points.
Additionally, manual refinement steps were introduced to expand
flexibility in tracking and increase tracking accuracy.

In this article, we present our new method (RTExtract) to extract
and quantify time-series NMR spectra. We simulated time-series
NMR data specifically presenting the challenges that limited previ-
ous methods. We also conducted a direct comparison of our previ-
ous method and RTExtract on experimental datasets (Judge et al.,
2019) and found that RTExtract was faster and easier than our pre-
vious approach. Previous tracking results were reproduced in less
than 2 h instead of �48 h. Additionally, we were able to track com-
plex spectral regions, such as those with high amounts of overlap,
that were impossible with previous published methods. RTExtract
therefore significantly expands the utility of the rich data collected
in CIVM-NMR and accelerates its analysis. Furthermore, we show

that it can be applied to other time series NMR methods such as pH
titration analysis (Brockerman et al., 2019; Edison et al., 1999;

Joshi et al., 2008; Liebeke et al., 2013; Zachariah et al., 2001).

2 Materials and methods

2.1 Ridge point classification
Local curvature was used to classify ridge points and functions as

one of the filters for candidate points. Including a ridge point filter
with local optima filters reduced noise levels in selecting candidate
points and increased accuracy in ridge tracking. The following sec-

tion describes the ridge point filter.
For each point on the 3D surface (Fig. 1), a normal vector (N)

can be defined. All planes that contain N (the normal planes) will
intersect the 3D surface along a curve, and for each such curve at

the point of interest, the curvature can be computed. The maximum
and minimum curvature values, denoted by j1 and j2, respectively,
correspond to two mutually orthogonal orientations of the normal

planes and are referred to as the principle curvatures of the 3D sur-
face at that point. From j1 and j2, the Gaussian curvature (K) and

mean curvature (H) are defined [Equation (1) and (2) and Fig. 1]
(Besl and Jain, 1986, 1988; Suk and Bhandarkar, 1992). The curva-
tures H and K can be used to classify 3D surface points locally into

qualitative types, including, inter alia, peak, ridge and valley.
Specifically, when K � 0 and H < 0, the surface is classified as a
ridge, and the central point of the surface is the candidate point

(Supplementary Fig. S1).

K ¼ j1j2 [1]

H ¼ j1þj2

2
[2]

As an alternative to Equations (1) and (2), the values of H and K can

also be derived through the fundamental form matrices G and B,
which provide a practical computation process (Stoker, 1969). Let
z ¼ f ðx; yÞ be the surface and X ¼ ðx; y; f ðx; yÞÞ be a point on it. The

first fundamental form G of the surface and the second fundamental
form B of the surface can be computed from partial derivatives (e.g.

Xx ¼ @X
@x) and the unit surface normal vector (n) [Equations (3), (4),

(5)] (Suk and Bhandarkar, 1992).

G ¼ Xx �Xx Xx �Xy

Xy �Xx Xy �Xy

� �
[3]

Fig. 1. Illustration of the concept of H and K curvatures. N is the normal vector,

and the curve is one of the intersecting curves. The two principal curvatures, j1 and

j2, correspond to the two vectors. Gaussian curvature (K) and mean curvature (H)

are calculated by j1 and j2. For the ridge surface shown here, j2 < 0 and j1 � 0

which results in H < 0 and K � 0. Computation of H and K curvature is in

Section 2.1. Other surface types are illustrated in Supplementary Figure S1
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B ¼ n �Xxx n �Xxy

n �Xxy n �Xyy

� �
[4]

n ¼ Xx �Xy

k Xx �Xy k
[5]

We use a discrete biorthogonal second-order Chebychev polyno-
mial with the interaction term ignored to approximate the local 3D
surface within a 7 by 7 window (Besl and Jain, 1986; Haralick et al.,
1983). Using biorthogonal polynomials instead of a more general
fitting process increased computational speed. As the surface of
interest was large (e.g. �50 spectra �35 000 points for each spec-
trum in our experimental dataset) (Judge et al., 2019), this approxi-
mation was necessary to incorporate real-time analysis input within
the workflow (wait time < 5 s). From the biorthogonal polynomial
approximation, the first- and second-order derivatives, the funda-
mental forms and the curvatures (H and K) were computed in order
(Suk and Bhandarkar, 1992).

Multiple surface types were generated from a second-order poly-
nomial with the interaction term in a 101 � 101 window
(Equation [6] and Supplementary Fig. S1). The parameters A, B and
C in Equation [6] were varied to produce different surface types,
including saddle ridge, minimal surface, saddle valley, ridge, flat sur-
face, valley, peak and pit. The curvatures H and K were computed
for the central point in the window to check with the expected val-
ues. The expected H and K curvatures were derived based on
Equation [6] and computed with Equations [7] and [8].

Z ¼ AX2 þ BXY þCY2 [6]

H ¼ Aþ C [7]

K ¼ 4AC� B2 [8]

2.2 Feature quantification by ridge tracking
The entire workflow of RTExtract is presented in Figure 2. The
steps include filtering candidate points, connecting candidate points
into initial ridges, ridge refinement and manual ridge selection.

The tested experimental datasets contain �50 spectra acquired
at different time points (�11 h), and each of them comprised
�35 000 points in chemical shift resolution. The original time-series
datasets were collected with finer time resolution, and the averaged
(denoised) datasets were used to evaluate RTExtract, identical to
our original study (Judge et al., 2019). In NMR spectra, even a small
region can exhibit high complexity, and peaks of interest also differ
considerably from each other in intensity (Fig. 2A, green and blue
boxes). A region of interest (ROI) (ppm [1.3, 1.35] (Orange box in
Fig. 2A) was selected as an example to illustrate the computational
pipeline (Fig. 2B–E). The ROI is presented as a surface, in which dif-
ferent intensities can be visualized as different colors like a topo-
graphic map (Fig. 2B). Each row of the surface matrix is a single
spectrum acquired at one time point. To filter candidate points, in-
formation from curvature, local maxima and a controlled number
(Nmax) of global maxima were combined (Fig. 2C). Local maxima
are defined for each spectrum and several local maxima (including
true peaks and noise) exist in a realistic NMR spectrum. Points on
the surface were classified as ridge points (Set SR) if they satisfied
the curvature criteria in Equation (9) in the 7 by 7 window, for
which no changes in the thresholds (1 and 0) were needed to accom-
modate different spectral regions. Besides ridge points, candidate
points (global maxima) were also supplied through Nmax (the num-
ber of highest local maxima to add for each spectrum), which define
the set SGðNmaxÞ. For each selected ROI, Nmax more local maximal
points were added as candidate points for each spectrum from high
to low in intensity. These candidate points were then intersected
with local maxima (set SL) to filter out points which did not corres-
pond to true peaks. The combination of the three criteria
(ðSR [ SGðNmaxÞÞ \ SL) helped identify most ridges and improved
accuracy.

jKj < 1

H < 0 [9]

A two-step greedy connection procedure was implemented to con-
nect candidate points into ridges for quantifying individual peaks
through time (Fig. 2D). This procedure assumes that chemical shift
variation of peaks at nearby time points is local and continuous,
which is typically the case in time-series measurements. First, points
adjacent in time and with the closest chemical shift distance within
Lgap (largest step size in chemical shift dimension) were connected
into segments. Second, these segments were connected into ridges to
cover the entire time-range for the peak. The segment connection was
based on the shortest distance and a user-adjustable threshold on
angle (� 60� default) between them. The angle threshold ensured
smooth shift pattern in ridges. The order of the segment connection
was ranked from high to low based on their average intensity.

In the ridge tracking process, only the parameters Nmax and Lgap

required tuning. The remaining parameters in the program required
no modification for the simulated and experimental datasets we
tested. Choices for Nmax and Lgap values were also intuitive. In the
majority of cases, we recommend the same small Lgap for most
regions. The parameter Lgap can be increased when there is peak
shifting and can be decreased when there are peaks that are close to
each other. For Nmax, we recommend using Nmax¼1 plus the num-
ber of ridges expected but not yet tracked. The values used in the
script (Nmax ¼ 1, Lgap ¼ 10) can be used as an initial guess for other
datasets (Supplementary File S1). More details in parameter tuning
for RTExtract and the previous method (Judge et al., 2019) are
described in Supplementary Method S3.

2.3 Refinement of the tracking results
While most peaks can be tracked without refinement, in some cases,
the tracking is imperfect, which can be solved in the refinement step
(Fig. 2E). Chemical expertise adds value to this step, especially in
regions with a low signal-to-noise ratio (SNR). Besides removing short
ridges (default minimum ridge length is 5 time points), the refinement
steps also include retracking for small regions, manual ridge selection,
and removal of imperfect ridge ends (Supplementary File S1).

When multiple peaks overlap and change frequency, the greedy
connection method (Section 2.2) had difficulty deciding which direc-
tion to continue through peak crossing. This was ameliorated by
local retracking. In retracking, we imposed a more stringent con-
straint that the peaks tend to maintain their original directions when
they cross. For each time point, a small search window (length 5) for
connecting next candidate points was centered at the linear extrapo-
lation of previous (last 5 time points) chemical shift values. That is,
ridges are assumed to be locally linear, which is a reasonable con-
straint locally. In the global tracking process, however, there are in-
deed rapid changes in chemical shift, so in this case, the stringent
constraint is not imposed. Combining different procedures for glo-
bal and local tracking increases flexibility when necessary.

The automatic ridge tracking procedure often generates false
positives (Supplementary File S1 and Fig2E) and these false ridges
can be easily distinguished by the analyst. Hence, the interactive
step (manual ridge selection) boosted performance by allowing ana-
lysts to select peaks with high confidence according to their know-
ledge. Moreover, compound quantification can also be improved by
selecting peaks with good peak shapes, minimal overlap and high
SNR. The user can also record the annotated compound name and
indicate whether the tracked peaks should be used for quantification
in later steps.

When the peak intensity decreases to near 0, the ridge tracking
sometimes extends to noisy regions with no peak for a few time
points. These imperfect ridge ends can also be removed by the ridge
end removal interactive step.

The feature quantification workflow provides an interface to
walk the user through ridge tracking, retracking for overlapping
regions, manual ridge picking and manual end removal. The user
can decide to apply certain steps depending on their needs. All infor-
mation related to the tracking process, both explicit (parameter
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choices) and implicit (manual tuning records), is logged in the data
structure for documentation and reproducibility. The manual refine-
ment process is easy to use and no laborious peak picking is needed.
Subsequently, peak intensity and chemical shift can be plotted
through time (Fig. 2F). More details can be found in the MATLAB
tutorial (Supplementary File S3).

2.4 Feature mapping and quantification
Tracked ridge features need to be matched to compounds and quan-
tified. In the simulated spectra, after ridge tracking, the time-series

data for each peak were automatically matched to compounds by
differences in chemical shift. The difference (D) was evaluated using
Equation (10), and only the pairs with the smallest difference for all
ridges and all compound peaks were selected as the final matches. In
Equation (10), X is a set of time points overlapping between the
simulated compound peaks and the tracked ridge peaks, and L is
the size of the set X. The variables vcompd

ppm (simulated compound
peak) and vridge

ppm (tracked ridge peak) are the corresponding chemical
shift vectors within X. D is the sum of the squared differences be-
tween extracted and simulated chemical shifts within the

Fig. 2. Illustration of the RTExtract algorithm. The algorithm is presented based on an example time-series NMR dataset, which was measured under aerobic conditions (A)

(Judge et al., 2019). The stack spectral plot (A) shows changes of whole NMR spectra (X-axis chemical shift d) through time (Y-axis), and each time point is distinguished by a

different line color as in all stack spectral plot in this article. Two regions (ppm [5.5, 8.5] and [1.3, 2.2]) are expanded to show spectral complexity. (B) A column slice (ppm

[1.30, 1.35], indicated as orange box and arrow in (A) is chosen as show case for RTExtract (B–F). H and K curvatures were computed based on the 7 by 7 window (B) around

each point, which was used to define ridge points (H< 0 and jKj < 1). (C) To form candidate points (red points), these ridge points are intersected with local maxima and

combined with the first Nmax global maximal points for each spectrum. (D) These points were connected in two steps by a greedy method to form ridges (red line). The first

step was based on chemical shift distance (Lgap) between points, and the second step was based on distance and angles. (E) Ridges were refined and manually selected for fea-

ture quantification. For the red ridge in (E), intensity and chemical shift (d) were plotted against time (F). The intensity is measured in arbitrary units (AUs), time is measured in

hours, and chemical shift (d) is measured in ppm. Details on the RTExtract algorithm and tuning parameters can be found in Sections 2.1 and 2.2
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overlapping time range and is normalized by the range size (L).
Compounds were quantified by peak intensities normalized by the
intensity of DSS peak (3-(Trimethylsilyl)-1-propanesulfonic acid so-
dium salt, a chemical shift reference and intensity internal standard).
We also computed RMSD (Root Mean Square Deviation) between
simulated and extracted chemical shift (dsim; i and dex;i, N is the
length of the ridge) for each ridge [Equation (11)]. The annotation
and quantification of the experimental datasets follows our pub-
lished methods (Judge et al., 2019). Intensity is chosen for quantifi-
cation for simplicity and peak shape does not change for both
experimental and simulated spectra.

D ¼ 1

L

XX
i

vcompd
ppm;i � vridge

ppm;i

� �2

[10]

RMSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

dsim;i � dex;ið Þ2
vuut [11]

2.5 Data and software
Programs were written in MATLAB and R. They are shared through
the Edison lab metabolomics toolbox GitHub repository (https://
github.com/artedison/Edison_Lab_Shared_Metabolomics_UGA/tree/
master/metabolomics_toolbox/code/ridge_tracking). The example
experimental data can be found in Metabolomics Workbench
(https://www.metabolomicsworkbench.org PR000738) and other
used data can be found in Supplementary Data. We also provide a tu-
torial on the workflow (Supplement File S1).

The programs were extensively run and tested in MATLAB
2018b and R (RStudio Version 1.1.456 and R Version 3.5.1) on a
macOS (Mojave 10.14.5) system.

3 Results

3.1 Comparison of simulated and experimental time-

series NMR spectra
By their very nature, experimental datasets cannot be used to unam-
biguously validate the results of an algorithm such as RTExtract, es-
pecially in regions with overlap and noise. Therefore, we used
simulated datasets for method evaluation. We first briefly evaluate
the complexity of both dataset and how this affects ridge tracking.
Complexity in time-series NMR spectra was evaluated in SNR, peak
intensity, and chemical shift variation (Supplementary Table S1 and
Supplementary Method S2). Besides the SNR value in the main
simulation, multiple SNR levels were tested, and the workflow can
still track ridges accurately in lower SNR levels (Supplementary Fig.
S2A–D). The peak in was tracked automatically for SNR 	 99:24
(Supplementary Fig. S2A–C) and needed some manual tuning for
SNR ¼ 19:97 (Supplementary Fig. S2D). In practice, most peaks in
the experimental spectra possessed good enough SNR for tracking if
they were visible in a stack plot. As an example, the valine multiplet
centered at ppm 2.267 had low SNR, and 6 peaks of the multiplet
could still be tracked (Supplementary Fig. S2E). The ridge tracking
method had robust performance under a large range of different
SNRs.

For the complexity metrics in variation of intensity (Cscale and
Cdynamics) and chemical shift (Cshift), the values are similar between
experimental and simulated datasets (Supplementary Tables S1 and
S2). We note that using our metrics, the aerobic sample is more com-
plex than the anaerobic sample, in agreement with our original
qualitative conclusion (Judge et al., 2019).

3.2 Performance evaluation of ridge tracking on the

simulated datasets
RTExtract was first tested on the simulated datasets (Supplementary
Fig. S3 and Supplementary Method S1). Time-series NMR spectra
were simulated with known concentrations and chemical shifts

(simulated value), which were used to evaluate the ridge tracking re-
sult (extracted value). Extractions were evaluated by RMSD in
chemical shift and most peaks were tracked accurately (low RMSD)
in simulated datasets by both RTExtract and the previous method
(Supplementary Table 2 and Supplementary Fig. S4).

We simulated a mixture of 15 metabolites, which yielded a pos-
sible 173 ridges with all the multiplets (Supplementary Method S1).
Of these 173 potential ridges, 58 were essentially overlapped in the
final simulations, allowing for 115 distinct ridges for analysis. Of
these, 61 had some overlap and 54 were without overlap. We plot-
ted extracted concentrations ( C½ 
ex) against simulated concentrations
( C½ 
sim) and observed that peaks without overlap were all near the
diagonal (Fig. 3A). Small differences in intensity from the line
broadening function created small deviations from the slope of 1.
Nearly half of the ridges were not overlapped and could be accurate-
ly quantified.

For peaks with overlap, quantification was affected. For ex-
ample, the alanine Ha peak (peak 1 in Fig. 3A–C), C½ 
ex was overes-
timated with a linear curve. Alanine peaks are overlapped with
glycerol peaks, leading to inaccurate quantification for both metab-
olites (peaks 1 and 2 in Fig. 3A–C). Overlaps with glycerol also
caused quantification of the ethanol peak to change in the opposite
direction (peak 4 in Fig. 3A–C). In this case, the intensity variation
of the small side peak from ethanol is dominated by the variation in
glycerol peak.

Besides intensity estimation, overlap can affect chemical shift
(e.g. peak 3 of serine in Fig. 3A–C). In this overlapping region, the
uridine concentration increased through time, and serine concentra-
tion decreased. This resulted in the green line 3 in Figure 3A–B,
which had a superposition of increasing and decreasing intensities.
This kind of continuous shift between two features not only caused
incorrect quantification but also an incorrect chemical shift vari-
ation. Even though neither uridine nor serine had clear peak shifts
for the pH range considered ([4.0, 6.0]), the overlapped peak shifted
smoothly. Through the changes of relative intensities of the two
peaks, the chemical shift of the overlapped peak changed.

When peaks are separated enough to be distinguishable, ridge
tracking is often accurate in chemical shift estimation (Fig. 3D). For
the acetate peak, the concentration ( C½ 
ex) was over-estimated in the
overlapped region (Fig. 3E), but the chemical shift (dex) was esti-
mated accurately (Fig. 3F). Both peaks could be tracked for the en-
tire range through the overlapped region, and the relative intensity
between the two overlapping peaks did not affect tracking capabil-
ity. Comparison of extracted and simulated values in concentration
and chemical shift for more compounds can be found in
Supplementary Figures S5 and S6.

3.3 Performance evaluation of ridge tracking on the

experimental datasets
The ridge tracking method was next tested on experimental datasets
and compared with the approach used in the initial CIVM publica-
tion (Judge et al., 2019). We first assessed the agreement on quanti-
fication of regions without much overlap (Fig. 4 and Supplementary
Fig. S7). For quantification under aerobic and anaerobic conditions,
the residuals between the two methods were close to zero for most
compounds (19/22, Supplementary Fig. S7), and RTExtract repro-
duced the earlier results with much less time and manual input. The
few differences were attributed to how negative values were dealt
with between the two methods in computing Mean Scaled Ridge
Intensity (Fig. 4 and Supplementary Fig. S7). In RTExtract, time-
series data with negative intensities are shifted to positive first,
which was not done in the original publication (Judge et al., 2019).

RTExtract also worked for more complex regions that were dif-
ficult for the previous method (Fig. 5 and Supplementary Fig. S8)
(Judge et al., 2019). The complex regions contained different
degrees of overlap and/or peak shifting. When two peaks are closely
overlapped with each other, the original method often produced
tracking results that ‘jumped’ between the two (e.g. Fig. 5A and
Supplementary Fig. S8). In RTExtract, these peaks were tracked
with no jumps, resulting in fewer errors in chemical shift and
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Fig. 3. Evaluation of the RTExtract algorithm on simulated datasets. (A) Compound quantification for all ridge points was plotted. For each ridge peak, extracted compound

concentrations normalized to DSS (Y-axis, C½ 
ex) were plotted against simulated compound concentration (X-axis, C½ 
sim). The black diagonal represents perfect quantification

and its slope is 1. Four overlapped peaks mapped to four compounds [1: alanine (blue); 2: glycerol (pink); 3: serine (green); 4: ethanol (purple)] were selected as examples (A–

C). All other ridge overlapped peaks are in gray. (B) In the stack spectra, one spectrum was highlight in black, which was then decomposed into compound peaks involved in

the overlap (C). In (C), the black line is the full simulated spectrum with all the compound peaks. (D) The acetate peak was simulated with chemical shift variation under differ-

ent pH conditions and overlapped with another peak. (E) The extracted concentrations ( C½ 
ex) were plotted against simulated concentrations ( C½ 
sim). (F) Extracted chemical

shifts (dex) were plotted against simulated chemical shift (dsim). Performance of concentration and chemical shift estimation with more compounds can be found in

Supplementary Figures S5 and S6. Compound concentration was simulated with arbitrary unit (AU) and chemical shift d was evaluated in ppm

Fig. 4. Reproduction of compound quantification results from our previous method.

In each plot, the X-axes indicate time, and the Y-axes indicates Mean Scaled Ridge

Intensity. Red curves are from aerobic datasets, and blue curves are from anaerobic

datasets. Details in computing Mean Scaled Ridge Intensity can be found in the pre-

vious publication (Judge et al., 2019). Each row indicates quantification for one

compound, including the previous, the RTExtract methods and residuals (differen-

ces between the quantifications by the two methods). Comparison for more com-

pounds can be found in Supplementary Figure S7

Fig. 5. Evaluation of RTExtract on complex overlapping regions on the experimen-

tal datasets. Two ROIs (A–B) were selected as examples. Peaks in these ROIs can be

precisely tracked, and the parts that are problematic in the previous method are

indicated with stars. The middle six peaks in B are annotated to glutamate.

Different point colors indicate different tracked peaks. Performance of the algorithm

for less complex regions is in Figure 4 and Supplementary Figure S7. More example

results from RTExtract and comparison with the previous method are in

Supplementary Figure S8. Tracking for B is given as an example in Supplementary

File S1
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intensity estimation. Parameter tuning, particularly in complex
regions, was difficult in the original publication but is much easier
in RTExtract. The glutamate region (ppm [2.3, 2.44], Fig. 5B) was
another difficult case, in which the six peaks from glutamate shifted
with pH and overlap with an unknown peak (yellow). By the previ-
ous method, only a small side peak in the multiplet was tracked for
glutamate, so the quantification had a low SNR (Judge et al., 2019).
By RTExtract, all the six glutamate peaks in the multiplet could be
tracked with the retracking approach.

4 Discussion

RTExtract, a computer vision-based approach is introduced in this
article to quantify time-series NMR spectra. RTExtract takes less
time and exhibits better performance on complex regions than our
original, less automated, approach (Judge et al., 2019). It provides a
more practical way to process time-series NMR spectra and analyze
in vivo metabolic dynamics of an organism.

RTExtract is an improvement from multiple perspectives. First,
we reduced the number of tuning parameters from seven to two,
which reduces the interactive time and is more intuitive to optimize.
Second, the refinement steps allow fine-tuning of the ridge tracking
process and easily remove imperfect regions. Instead of exploring a
huge parameter space, the user can fix the imperfect regions through
simple manual steps. With these two improvements, the published
results can be replicated within 2 h by RTExtract instead of �48 h
by the original method (Judge et al., 2019). Finally, RTExtract is
also capable of dealing with more complex regions, especially with
peak overlap and peak shifting (Fig. 5 and Supplementary Fig. S8).
It is now possible to track most peaks in these difficult regions, with-
out merging multiple peaks into one. Subsequently, more tracked
features can be used for downstream modeling and statistical analy-
ses. We also see that when two peaks are highly overlapped and
their concentrations change in opposite way, the overlapped peak
might seem to change in chemical shift (Fig. 3B peak 3). This could
be mistaken for chemical shift change due to pH variation and seems
to also occur on the glucose peaks (ppm region [5.2, 5.26]) under
the aerobic condition in experimental datasets (Judge et al., 2019).

We still offer the option of manual interaction in the workflow,
which helps produce accurate results but still requires expertise,
time and manual effort. Future versions of the workflow will incorp-
orate statistical filters accompanied by higher degrees of automa-
tion. A clustering-based method can be implemented to remove
artifact ridges, which are characterized by random changes in inten-
sity and chemical shift. Implementing this step might fully remove
the manual procedure and make the full process much faster.

The RTExtract can also combine with spectral deconvolution for
overlapping feature quantification. From RTExtract, chemical shift
and intensity of individual overlapping peaks can be obtained and
subsequently fed into the deconvolution methods. Based on the in-
formation of intensity and chemical shift, a Bayesian-based decon-
volution approach can compute the underlying peak intensity (Hao
et al., 2014; Krishnamurthy, 2013).

In principle, as long as peaks are changing in a continuous man-
ner, they can be tracked by RTExtract. The experimental data tested
in this article is from the CIVM method (Judge et al., 2019), and
provides dense, continuous, time-series measurements. Other time-
series NMR methods, such as flow NMR and in vitro sampling
from NMR can also provide proper candidate measurements (Foley
et al., 2014). Possible applications go beyond time-series measure-
ments as long as the continuity constraint is met between neighbor-
ing spectra. For example, we used RTExtract to track peaks in a
citrate pH titration experiment, fit the Henderson–Hasselbalch
equation for the chemical shift changes under different pH, and esti-
mate pKa (Supplementary Fig. S9) (Edison et al., 1999; Szakacs
et al., 2004; Tredwell et al., 2016; Zachariah et al., 2001). Likely,
similar peaks could be tracked in pH or ligand-binding titrations of
proteins (Brockerman et al., 2019; Joshi et al., 2008). A preprocess-
ing by chemical shift sorting can even make independent samples of
urine data accessible to RTExtract (Liebeke et al., 2013).

5 Conclusion

RTExtract is introduced in this article to quantify dense time-series
NMR spectra by ridge tracking. It is faster, easier to use, and can
deal with more complex regions than previously published methods.
The extraction is accurate even in complex overlapping regions. As
the ridge tracking method relies on the continuity of peaks at neigh-
boring spectra, it can be further applied to other suitable data types.
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