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Primary hemophagocytic lymphohistiocytosis (HLH) is a life-threatening disease of hyper-
inflammation resulting from immune dysregulation due to inherited defects in the cytolytic
machinery of natural killer andT cells. In humans, mutations in seven genes encoding pro-
teins involved in cytolytic effector functions have so far been identified that predispose
to HLH. However, although most affected patients develop HLH eventually, disease onset
and severity are highly variable. Due to the genetic heterogeneity and variable time and
nature of disease triggers, the immunological basis of these variations in HLH progression
is incompletely understood. Several murine models of primary HLH have been established
allowing to study HLH pathogenesis under more defined conditions. Here we directly
compare the clinical HLH phenotype in six HLH-prone mouse strains with defects in the
granule-dependent cytotoxic pathway. A severity gradient of HLH manifestations could be
identified that is defined by the genetically determined residual lytic activity of cytotoxic
T lymphocytes (CTL) and their ability to control lymphocytic choriomeningitis virus, which
was used as a trigger for disease induction. Importantly, analysis of cohorts of HLH patients
with severe bi-allelic mutations in the corresponding genes yielded a similar severity gra-
dient in human HLH as reflected by the age at disease onset. Our findings define HLH as
a threshold disease determined by subtle differences in the residual lytic activity of CTL.

Keywords: cytotoxicity, hemophagocytic lymphohistiocytosis, inflammation, CTL, virus persistence, antigen
persistence

INTRODUCTION
Primary hemophagocytic lymphohistiocytosis (HLH) is a rare
life-threatening syndrome of hyperinflammation due to genetic
defects in the perforin-dependent granule exocytosis pathway of
natural killer (NK) and T cells (1–4). The HLH syndrome is char-
acterized by uncontrolled inflammatory and immunopathological
processes in various tissues as a result of infiltrating, excessively
activated T cells, NK cells, and macrophages, accompanied by
a massive cytokine production (IFN-γ, TNF, IL-6, IL-18) (5–7).
Due to this loss in immune homeostasis, HLH patients present
with prolonged fever, hepatosplenomegaly, severe cytopenia, and
frequently with neurologic manifestations. In addition, elevated
serum levels of ferritin, triglycerides, soluble CD25 (IL-2 recep-
tor α chain), and liver enzymes, as well as hemophagocytosis in
various tissues and reduced cytolytic activity of lymphocytes are
characteristic criteria for HLH (Table 1) (8). Typically, patients
with primary HLH develop disease in early childhood with a poor
prognosis in the absence of therapeutic intervention (9–11).

Traditionally, “familial HLH” (FHL) has been defined as a
genetic disease, in which the predisposition to HLH is the
dominant feature (PERFORIN deficiency, MUNC13-4 deficiency,
SYNTAXIN-11 deficiency, and MUNC18-2 deficiency) (12–17),

while“immunodeficiencies with albinism”(Chediak–Higashi syn-
drome (CHS) or LYST deficiency, Griscelli syndrome type 2 (GS2)
or RAB27A deficiency, and Hermansky–Pudlak syndrome type 2
(HPS2) or AP3b1 deficiency) (18–22) combine this predisposi-
tion with clinical manifestations of albinism and variable degrees
of other immune cell and platelet dysfunction (23–28). From a
pathophysiological viewpoint, this distinction is arbitrary. First,
all genes mutated in these two groups of conditions are criti-
cally involved in the biogenesis, intracellular transport, release,
and function of perforin-containing lytic granules of NK and
T cells (1). Second, it becomes increasingly obvious that defects
in platelets and other immune cells such as neutrophils or mast
cells are also observed in diseases currently classified as FHL (29–
33). Because the genetic predisposition to HLH is the dominant
life-threatening clinical feature in all of these diseases, we pre-
fer to classify them collectively as familial HLH syndromes (FHL
syndromes).

While the overall pattern of clinical manifestations of HLH in
patients with the different FHL syndromes is quite characteris-
tic, onset of disease, severity of clinical symptoms, and duration
of disease-free remission periods are highly variable (31, 34–36).
This depends not only on the affected gene, but also on the nature
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Table 1 | Diagnostic criteria for HLH.

Fever

Cytopenia in at least two cell lineages

Hyperferritinemia

High sCD25 (sIL-2Rα) concentration

Hypertriglyceridemia and/or hypofibrinogenemia

Splenomegaly

Hemophagocytosis

Low/absent natural killer (NK) cell cytotoxicity

of the mutation (null or hypomorphic) and the time point and
nature of exposure to predominantly infectious triggers that can
elicit HLH in predisposed individuals. In addition, in >60% of
patients with FHL syndromes, no clear trigger for HLH can be
identified and it is still a matter of debate whether an exogenous
trigger is needed for disease induction at all (37–40). This vari-
ability makes it difficult to define the a priori risk of an individual
patient to develop HLH in the different human FHL syndromes.
A study of additional functional parameters may help to improve
the predictability of HLH progression. For example, it is so far not
clear, in what hierarchy the dysfunction of the different affected
proteins becomes limiting for in vivo cytotoxicity.

In this context, animal models of FHL syndromes have proven
useful to analyze the pathogenesis of HLH under more defined
conditions. In 2004, Jordan et al. reported that following lympho-
cytic choriomeningitis virus (LCMV) infection as initial trigger,
perforin-deficient (PKO) mice develop the full clinical picture of
HLH as it is described for FHL2 patients (41). It was demon-
strated that hyperactive cytotoxic T lymphocytes (CTL) and high
levels of IFN-γ are the driving force behind the development of
fatal HLH in PKO mice. Non-fatal HLH was observed after LCMV
infection of Jinx mice (model for FHL3) (42), STX-11-deficient
mice (model for FHL4) (43, 44), ashen mice (model for GS2)
(45), souris mice (model for CHS) (46), and pearl mice (model
for HPS2) (20). Although some of these strains were compared
directly in these publications, the different mouse models were
not analyzed in parallel under identical experimental conditions
with standardized immunological and clinical criteria for HLH.
Therefore, the relative risk for HLH development in these models
in relation to the individual genetic defect and its consequences
for cytotoxicity have not been fully defined. Moreover, the role of
virus control and a potential contribution of the various proteins
in processes other than cytotoxicity to the pathogenesis of HLH
remain controversial.

In the present study we therefore performed a comprehen-
sive comparative analysis of the clinical and immunological HLH
phenotype in six different mouse models of FHL syndromes. In
addition, recently published results on HLH severity (as deter-
mined by age at onset of HLH) in patients with FHL syndromes
due to severe bi-allelic mutations were extended to additional
genetic conditions (44). We discuss our results in the context of
the overall value of LCMV-induced HLH in various murine cyto-
toxicity mutants for the understanding of human FHL syndromes
and point out some key questions to be addressed in human and
mouse models in the future.

RESULTS
HLH SEVERITY DIFFERS IN VARIOUS MOUSE MODELS OF FHL
SYNDROMES
To analyze the impact of different defects in the cytotoxicity
pathway of T and NK cells on HLH development, we assessed
HLH parameters following intravenous LCMV infection in six
established and previously described HLH-prone mouse mod-
els under identical experimental conditions with standardized
read-out systems. The following mouse strains were used in this
study: two mouse models for CHS carrying different mutations
in the Lyst gene – beige and souris mice – (46), one mouse
model for HPS2 deficient in AP-3 – pearl mice – (20), a Rab27a-
deficient mouse model for GS2 – ashen mice – (45), one model for
familial hemophagocytic lymphohistiocytosis (FHL) 2 deficient
in perforin – PKO mice – (41, 47), and one model for FHL4 defi-
cient in syntaxin-11 – STX-11KO mice – (43, 44). As previously
described, none of these mutant mouse strains develop disease
spontaneously. Infection with LCMV was used to induce disease.

Following LCMV infection, mice were weighed and ear tem-
perature was taken daily. Mice were analyzed either at day 8 or at
day 12 after infection and all eight criteria (Table 1) defined by
the HLH study group of the Histiocyte Society for the diagnostic
evaluation of patients with suspected HLH were determined (8).
A drop in ear temperature due to circulatory centralization was
taken as an equivalent of fever in humans. In addition, we mea-
sured lactate dehydrogenase (LDH) and glutamate dehydrogenase
(GLDH) reflecting liver damage and IFN-γ serum levels, which
have been shown to correlate well with HLH activity in mice (41,
48). Weight loss as a rough, but easily accessible measure of dis-
ease revealed a clear hierarchy of HLH severity in the six mutant
mouse strains (Figure 1). While there was no weight loss in wild-
type and beige mice, weight loss was transient until day 8 in pearl
mice, progressive but moderate in souris mice and equally severe
in STX-11KO, ashen, and PKO mice.

A similar hierarchy of disease severity was observed, when the
formal diagnostic HLH criteria were evaluated on day 12 (Table 2).
LCMV infection of wild-type mice led to splenomegaly and rare
hemophagocytosis, but the other HLH criteria were not fulfilled.
Beige mice, carrying a hypomorphic mutation in the lyst gene,
in addition had low NK cell cytotoxicity, but no other HLH fea-
tures (Table 2). Pearl mice in addition had cytopenia, elevated
ferritin, liver enzymes, and IFN-γ and thus fulfilled 5/8 diagnostic
criteria at day 8 after infection (Table A1 in Appendix), but – as
reported – disease was transient and the criteria were not fulfilled at
day 12 (Table 2). All other strains fulfilled 7/8 (apart from elevated
triglycerides) or 8/8 diagnostic criteria at day 12 and additionally
had elevated liver enzymes and IFN-γ levels, which were more
pronounced at day 8 after infection. Nevertheless, some notable
differences were observed: first, the drop in temperature and alter-
ations in hemoglobin, ferritin, sCD25, and triglycerides were less
severe in souris mice than in the other three mouse strains – STX-
11KO, ashen, PKO – although IFN-γ levels were similar or even
higher. Second, alterations in platelet counts, ferritin, and sCD25
were less pronounced in STX-11KO than in ashen or PKO mice.
Third, levels of ferritin and IFN-γ on day 8 after infection were
higher in PKO than in ashen mice. Finally, previous experiments
assessing survival beyond day 12 have shown that disease is usually
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Jessen et al. Graded cytotoxicity defects and HLH severity

FIGURE 1 | Degree of weight loss after LCMV infection of different
HLH-prone mouse models depends on the affected gene. Mice were
infected with 200 pfu LCMV i.v. Percent weight loss of initial body weight is
depicted over the course of 12 days. Body weight of mutant mice (beige,

pearl, souris, STX-11KO, ashen/filled circles) in comparison with wild-type
(open circle) and PKO (open triangle) mice are shown. The graph depicted on
the lower right illustrates a direct comparison of body weight loss of all
mouse groups on day 12 after LCMV infection.

lethal in PKO mice, sometimes lethal in ashen mice and not
lethal in any of the other investigated mutant mouse strains (data
not shown). Overall, HLH severity as assessed by weight loss,
survival, and HLH criteria showed the following hierarchy: wild-
type < beige (no HLH) < pearl (transient HLH) < souris < STX-
11KO < ashen < PKO (full HLH).

DISEASE DEVELOPMENT IN HLH MOUSE MODELS CORRELATES WITH
VIRUS PERSISTENCE
A comparison of virus titers in the spleen of the different HLH-
prone mouse strains confirmed that virus persistence is one of
the key characteristics of HLH development. Mice that showed
no signs of disease such as wild-type and beige mice were able
to reduce virus titers until day 8 and no virus was detectable at
day 12 (Figure 2). In pearl mice, the transient HLH at day 8 was
associated with a delay in virus control at this time point. When
these mice recovered eventually, virus elimination was achieved.
All of the mice fulfilling the criteria of HLH – irrespective of dis-
ease severity – failed to reduce or eliminate the virus until day 12
(Figure 2) and were persistently infected with similar titers in the
spleen. Thus, virus persistence appears to be a prerequisite for the
development of HLH in the various mouse models of impaired
cytotoxicity, but disease severity does not correlate with titers of
persisting virus.

GRADED DEFECTS IN CTL CYTOTOXICITY DETERMINE OUTCOME OF
DISEASE
As extensively discussed before (47,49–53), the cytotoxicity of CD8
T cells is the major factor in virus control following LCMV infec-
tion and the major determinant in preventing HLH development
(41, 43, 45). Here, we directly compared CTL degranulation and
CTL cytotoxicity in the six different HLH-prone mouse strains
on day 8 after LCMV infection. First, we analyzed the degranula-
tion capacity of virus-specific CTL in the different mouse strains
by quantifying the expression of CD107a on IFN-γ positive CTL

upon antigen-specific in vitro stimulation with gp33 peptide, the
immunodominant epitope of LCMV. CTL from the four mutant
mouse strains that developed the full picture of HLH – souris,
STX-11KO, ashen, PKO – continuously produced high levels of
IFN-γ even in the absence of stimulation (Figure 3A, upper panel),
while this was not the case in the other strains. Interestingly, the
grade of ex vivo IFN-γ expression of CTL correlated very well with
IFN-γ levels in serum and disease severity (Figure 3C). In con-
trast, the grade of the degranulation defect did not completely
reflect the observations on disease severity. The degranulation
defect was more pronounced in beige (no HLH) than in pearl
mice (transient HLH) and no difference could be found in the
degranulation defect between STX-11KO and ashen mice. Unex-
pectedly, a mild reduction in degranulation was also observed in
PKO mice (Figure 3B), although a role for perforin in the process
of granule exocytosis has so far not been described. Analyzing the
ex vivo cytolytic activities of CTL from the different mouse strains
revealed a graded impairment of cytotoxicity from beige to PKO
CTL that perfectly reflected distinct disease severity (Figure 3D).
In addition, as reported previously, the cytotoxicity defect was
more pronounced in PKO than in ashen or STX-11KO mice.

In a next step, we functionally evaluated the cytotoxic activity
of CTL derived from the different HLH-prone mouse strains in an
in vivo assay of virus control (50). For this, CTL were adoptively
transfered into wild-type mice that had been infected with LCMV
10 h previously (Figure 4). In this assay, CTL from wild-type mice
eliminated the virus from the spleen within 18 h, while CTL from
the four strains that developed the full picture of HLH – souris,
STX-11KO, ashen, PKO – had no impact on viral titers and failed
to clear LCMV. Despite a more pronounced defect in degranula-
tion – but not in cytotoxicity – beige CTL cleared the virus, while
pearl CTL had an intermediate effect on virus clearance. Taken
together, when CTL from the different HLH-prone mice failed
to eliminate LCMV in this short-term protection assay, the mice
developed HLH independent from their residual cytolytic activity
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FIGURE 2 | Virus control following LCMV infection differs between
various HLH-prone mouse models. Mice were infected with 200 pfu
LCMV i.v. On day 8 and day 12 after LCMV infection, viral titers in spleen of
beige, pearl, souris, STX-11KO, and ashen mice (filled circle) in comparison
to wild-type (open circle) and PKO (open triangle) mice were determined.

as determined in a 51Cr-release assay in vitro (Figure 3D). Thus,
this in vivo virus protection assay is a better correlate for HLH sus-
ceptibility than cytolytic activity of CTL measured in vitro, since
it translates a gradient of impaired cytotoxicity into the clinically
observed “yes-no” decision for the development of HLH.

HLH DISEASE SEVERITY IN PATIENTS WITH FHL SYNDROMES
To assess how these observations in the murine cytotoxicity
mutants relate to human patients, we intended to determine HLH
disease severity in cohorts of patients carrying the respective muta-
tions. Disease severity in humans is, however, not only determined
by the affected gene, but also by the nature of the mutation (com-
plete vs. partial loss-of function), genomic heterogeneity, and
environmental factors including infections. Since disease sever-
ity in human cytotoxicity mutants correlates with the age at onset
of HLH (54, 55), we used this as a surrogate parameter. To control
in part for the nature of the mutation, we selected only patients

FIGURE 3 | CytotoxicT lymphocytes degranulation and cytotoxicity
are differently impaired in various HLH-prone mouse models. Mice
were infected with 200 pfu LCMV i.v. On day 8 after LCMV infection,
spleen cells of mutant mice (beige, pearl, souris, STX-11KO, ashen/filled
circles) and wild-type (open circle) and PKO (open triangle) mice were
restimulated with gp33 peptide or were left in medium without peptide.
Surface expression of CD107a of IFN-γ+CD8+ T cells was determined

by flow cytometry as illustrated by (A) representative FACS plots.
(B) Percentage of CD107a expressing IFN-γ+CD8+ T cells after
restimulation with gp33 peptide. (C) Correlation of percentage of CTL
expressing IFN-γ without restimulation ex vivo with the IFN-γ levels in
sera of the various HLH-prone mutant mice. (D) CTL cytotoxicity was
determined in a 51Cr-release assay by using LCMV-infected MC57 target
cells.
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with predicted severe impairment of protein expression due to a
null mutation, a large gene deletion, the introduction of a stop
codon or a frame shift mutations leading to a stop codon in the
corresponding genes. We recently published data on patients with
severe bi-allelic mutations in the PERFORIN, the SYNTAXIN-11,
and the RAB27A genes (44). For this study we added observations
in a cohort of patients with mutations in the LYST gene that was
identified from the literature. Since only one HPS2 patient with
an AP3b1 mutation has been reported to have developed the full
picture of HLH (at 5 years of age) (19), we did not include this
group of HPS2 patients in our analysis.

As expected from our previous study, although there was
a high variability in the age at onset for all four dis-
eases, significant differences could be demonstrated between
the different cohorts (Figures 5A,B). The mean age of HLH

FIGURE 4 | Subtle differences in CTL cytotoxicity of various HLH-prone
mouse models determine virus control. On day 8 after 200 pfu of LCMV
infection, splenic CD8+ T cells of mutant mice (beige, pearl, souris,
STX-11KO, ashen/filled circles), wild-type (open circle), and PKO (open
triangle) mice were MACS purified and 2×106 of MACS purified CD8+ T
cells were transferred into wild-type C57BL/6 mice that had been infected
with 104 pfu LCMV 10 h before. After 18 h of CD8+ T cell transfer, viral titers
in spleen were determined (nil: infected wild-type C57BL/6 without cell
transfer).

onset was 3.4± 5 months in PERFORIN -deficient patients,
13.4± 19 months in RAB27A-deficient patients, 27.3± 37 months
in SYNTAXIN-11-deficient patients and 37.7± 41.9 months in
LYST -deficient patients. Thus, this analysis reveals a gradient of
HLH severity in humans that is identical to the mouse models:
HPS2 < CHS < FHL4 < GS2 < FHL2.

DISCUSSION
This study provides a comprehensive comparative analysis of HLH
disease severity in mice and humans with mutations in different
genes involved in cellular cytotoxicity. While the study builds on
a number of previously published observations comparing indi-
vidual strains of mice or patient cohorts, it is the first study to
directly compare a large number of mutant mouse strains, in
which HLH is induced and assessed with a single experimen-
tal protocol. Notably, we related the clinical HLH symptoms not
only to the affected gene, but also to immunobiological parame-
ters such as the degree of the degranulation/cytotoxicity defect of
T cells and the ability to provide control of the triggering viral
infection.

The overall result is a clear hierarchy of HLH severity among
the different genetic defects predisposing to HLH that is surpris-
ingly consistent between humans and mice. This is an impor-
tant validation of using LCMV infection of murine cytotoxicity
mutants for the study of human genetic defects in cytotoxicity
and FHL development. While beige mice did not develop HLH
upon LCMV infection, pearl mice showed transient HLH and
souris, STX-11KO, ashen, and PKO mice exhibited the full pic-
ture of the disease. Moreover, among the latter four strains a
gradient of disease severity could be established when consider-
ing the individual HLH associated parameters (Table 2). Souris
mice had the least weight loss and drop in temperature, while PKO
mice had the most severe and frequently lethal HLH progression
(Figure 1). Finally,we could confirm our previous observation that
the disease course was more severe in ashen (GS2) than in STX-
11KO (FHL4) mice. Thus, the gradient of HLH severity in mice

FIGURE 5 | Delayed HLH onset in patients with SYNTAXIN-11 and
LYST deficiency compared with RAB27A- and PRF1-deficient
patients. (A) Cumulative incidence and (B) age at onset of HLH in FHL2
(PRF1 deficiency, gray circles; n=72), GS2 (RAB27A deficiency, gray
triangles; n=61), FHL4 (STX11 deficiency, open squares; n= 30), and CHS
(LYST deficiency, black squares; n=21) patients carrying null bi-allelic
mutations, as detailed inTable 3. The incidence of HLH was analyzed with

a log-rank test; *p < 0.05 for FHL4 vs. GS2 patients; ***p < 0.001 for GS2
vs. CHS patients; ****p < 0.0001 for FHL2 vs. GS2, FHL2 vs. FHL4 and
FHL2 vs. CHS; ND=no statistical differences were observed between
FHL4 vs. CHS patients. The onset of HLH was analyzed with a one-way
ANOVA. *p < 0.05; ***p < 0.001; ***p < 0.0001. Mutations in PRF1,
RAB27A, and STX11 are detailed in Ref. (44), and mutations in CHS1/LYST
are detailed inTable 3.
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was: wild-type < HPS2 < CHS < FHL4 < GS2 < FHL2 (Figure 6).
Interestingly, the parameters best reflecting this gradient were fer-
ritin and sCD25, while IFN-γ serum levels did not correlate as
good, at least when analyzed at day 12 post infection.

In humans, disease severity as assessed by age at onset of HLH
followed exactly the same pattern. However, in all cohorts, there
were patients who developed HLH in the first months of life, con-
firming that the affected gene cannot predict disease onset in the
individual patient. The different ages at onset probably rather
reflect the likelihood of loosing control of perforin-mediated
immune homeostasis in response to triggers of different intensity
that are encountered by all children.

As expected, none of the mouse strains developed disease spon-
taneously. Infection with LCMV was required to trigger disease,
while other infections including respiratory syncytical virus (RSV)
and pneumonia virus of mice (PVM) failed to induce disease,
even in the most severe mutant lacking perforin (unpublished
observations). Of note, mouse cytomegalovirus (MCMV) is able
to induce HLH in PKO (56, 57), but not in jinx mice (42).
No data on HLH are so far available for the other HLH-prone
mouse strains, although a higher susceptibility of beige mice to
MCMV infection has been reported (58). The potency of LCMV
to induce HLH might in part be explained by the fact that it infects
antigen-presenting cells such as dendritic cells (63), leading to
direct stimulation of the T cell response without the need for
cross-presentation. This contributes to the fact that it is a better
stimulator of CD8 T cell responses in the mouse than any of the
other infections. Of note, this is a property that is also shared by
EBV infection in humans, where infected B cells can also serve
as APC and will lead to prolonged antigenic stimulation, if they
are not eliminated by NK or T cells (64). Overall, a very potent
CTL stimulation is required to provoke the impaired immune
homeostasis characteristic of HLH in mice. This is in apparent
contrast to early-onset HLH in patients with cytotoxicity defects,
where in the majority of cases no pathogen trigger can be identi-
fied. This could reflect variable and incomplete infectious disease
work-up of the patients, which may not only relate to known
infections, but could also point to a role for so far unknown novel
viruses. Alternatively, it may indicate that in humans, different
from mice, perforin-mediated cytotoxicity also plays a role in T
cell homeostasis under resting conditions, as it is described for
the Fas/FasL pathway (65, 66). Thus, T cell–T cell interactions
or T/NK cell–APC interactions involving perforin could be rele-
vant for maintaining immune homeostasis even in the absence of
infections or other obvious immune stimulations (67–73). Further
research in HLH patients will be needed to address this important
issue, since treatment of a triggering infection can be an important
component of successful therapy for HLH (37, 74, 75).

What then is the role of the virus in the murine disease models?
Our data and previous experiments suggest that it is not just a
trigger of a pathogenetic sequence that – once initiated – becomes
self-perpetuating and independent of the virus. This is probably
best illustrated by the phenotype of pearl mice. Within the first
8 days after infection, these mice could not control virus replica-
tion and developed HLH symptoms. However, virus elimination
was eventually achieved and this led to full recovery from HLH
symptoms. Complementary to these findings, chronic antigen

application (gp33 peptide injections in 12 h intervals) induced
HLH-like symptoms in LCMV-infected wild-type mice indicating
the critical role of antigen persistence and prolonged antigen pre-
sentation for disease development (41). Thus, persistence of cells
presenting viral antigen (usually in the context of persisting virus)
is the decisive factor for HLH induction in all animal models stud-
ied so far. A previous study has suggested that perforin may have an
immunomodulatory function that is independent from its role in
the clearance of virus and killing of APCs presenting viral antigen,
but related to a role of perforin in modulating antigen presenta-
tion by DC (76). In this view, HLH development is not dependent
on virus persistence per se but determined by an enhanced antigen
presentation in the context of perforin deficiency. Further exper-
iments are needed to decide whether it is possible to functionally
separate antigen persistence from enhanced antigen presentation
in this context.

While virus/antigen persistence was associated with perpetu-
ated disease in all HLH-prone mouse strains analyzed, various
factors may determine the hierarchy of disease severity in mice
with different genetic defects in cellular cytotoxicity. First, early
virus control based on differences in residual cytotoxic activity of
T and NK cells may be an important factor in determining the
severity of initial disease manifestation. The graded virus load in
the spleen at day 8 after infection paralleled very well HLH severity
in beige, pearl, souris, and STX-11KO mice. However, differences
in splenic virus titers on day 8 could not explain the different
HLH severity in STX-11KO, ashen, and PKO mice. Thus, a so far
unsolved question is why differences in HLH severity are observed
in these mice, although all of them exhibited virus persistence,
which should lead to the same extent of chronic T cell stim-
ulation by presented viral antigens. Early virus spread to other,
non-lymphoid organs could be an important factor determining
HLH severity. Differences in the spread of virus to key organs like
the liver or the brain with subsequent recruitment of highly acti-
vated CTL may explain the fact that PKO mice die, while the other
mutant mouse strains survive (77). Analysis of the early kinetics of
virus spread to other organs may help to resolve this issue. Second,
differences in the residual cytotoxic activity may not only affect
early virus control and spread, but additionally influence effec-
tor cell homeostasis via a more or less efficient killing of distinct
APC populations. The elimination of certain APC populations
may critically determine the activation status and survival of the
hyperreactive T cells and act as a rheostat to limit T cell responses
(73, 78–81). As recently demonstrated, the elimination of a rare,
antigen-presenting DC population by CD8 T cells in a negative
feedback loop critically determines the magnitude of the T cell
response in a perforin-dependent way after LCMV infection (82).
Third, the proteins affected in the various cytotoxicity mutants are
involved in different steps of lysosomal trafficking [as discussed for
syntaxin-11 and Rab27a (26, 44)], which could also contribute to
the quality of antigen presentation and hence indirectly determine
T cell activity and HLH progression. This may also be the case
for AP3b1 known to regulate several processes involved in anti-
gen recognition/processing/presentation, i.e., CD1b presentation
of phagocytosed antigens and TLR recruitment to phagosome (83,
84). Along the same line, defects in proteins involved in perforin-
mediated cytotoxicity may have additional functions in other
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immune cell types like platelets, neutrophils, and mast cells, which
can be relevant for LCMV specific immune responses and thus
modulate HLH pathogenesis (33, 85, 86). Fourth, different sus-
ceptibility to T cell exhaustion in the various cytotoxicity mutants
can modify HLH progression and determine survival. As recently
demonstrated, effector T cells chronically exposed to antigenic
stimulation showed a variable extent of exhaustive differentiation
in different HLH-prone mouse strains. Initially, STX-11KO mice
developed all diagnostic symptoms of HLH after LCMV infection
comparable to PKO mice. However, in STX-11KO mice with more
extensive T cell exhaustion the HLH disease course was attenu-
ated and the mice survived, whereas PKO mice developed lethal
HLH (43). T cell exhaustion in STX-11KO mice was character-
ized by sustained expression of inhibitory receptors, step-wise
loss of effector functions, and finally deletion of the disease-
mediating T cells. Thus, T cell exhaustion can be an important
disease-modifying parameter in HLH.

In summary, following a defined viral stimulus, the degree of
impairment of CTL cytotoxicity was the best predictor of HLH
development in the described animal models, but other host
factors contributed. HLH appeared to be a threshold disease. Up

to a certain degree of impaired cytotoxicity, disease was mild and
transient, but resolved once the delayed virus control had been
achieved. However, subtle differences in CTL cytotoxicity allowing
the establishment of viral persistence led to the full picture of HLH
and persistent disease (Figure 6A). Thus, the graded differences
in cytotoxicity translated into a “yes-no” phenotype (Figure 6B)
with respect to HLH. In HLH patients it is still a matter of debate
to which extent CTL or NK cells contribute to disease induction.
Hence, this concept may apply in a more general form to cytotoxic
lymphocytes. Depending on the initial trigger CTL and/or NK
cells may play the critical role in HLH induction and progression.
While restoration of cytotoxicity and virus control appear to be key
variables in the causal treatment of the disease, a further investiga-
tion of these factors in humans and mice may point to additional
treatment approaches for this highly aggressive syndrome.

MATERIALS AND METHODS
PATIENTS
All patients with FHL or GS2 diagnosis were previously reported
[summarized in Ref. (44)]. Patients with CHS diagnosis were
previously published (as referenced in Table 3).

FIGURE 6 | Impact of various genetic defects on threshold of HLH development. (A) Differences in CTL cytotoxicity and their impact on LCMV control
determine whether or not HLH develops. (B) Pronounced impairment of CTL cytotoxicity results in loss of virus control and development of HLH.
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Table 3 | Genotype and age at HLH onset of previously published patients carrying severe bi-allelic mutations in CHS1/LYST .

LYST mutations Predicted effect n HLH onset (months) Reference

c.2620delT p.F874Ffs25X 1 66 Certain et al. (59)

c.C3310T p.R1104X 1 30 Certain et al. (59)

c.7555delT p.Y2519Ifs9X 1 168 Certain et al. (59)

c.del7060-7066 p.delL2354_D2356Mfs15X 1 19 Certain et al. (59)

c.5317delA*/c.9228+10bp ins* p.R1773Dfs12X*/p.H3076Hfs8X* 1 16 Certain et al. (59)

c.del9106-9161 p.delG3036_S3054Gfs15X 1 24 Certain et al. (59)

c.9590delA p.Y3197Lfs61X 1 12 Certain et al. (59)

c.5004delA p.G1668Gfs28X 1 12 Scherber et al. (60)

c.5519delC p.S1840Yfs1X 1 108 Scherber et al. (60)

c.9590delA p.Y3197Lfs61X 1 3 Scherber et al. (60)

c.3622C >T*/c.11002G >T* p.Q1208X*/E3668X* 1 16 Scherber et al. (60)

c.5506C >T p.R1836X 1 48 Kaya et al. (61)

c.5506C >T p.R1836X 1 4 Kaya et al. (61)

IVS24 c.7060-1G >A Exon25fsX 1 4 Jessen et al. (46)

c.10551_10552del2 p.Y3517X 1 5 Jessen et al. (46)

c.5506C >T p.R1836X 1 4 Jessen et al. (46)

c.2374_2375 delGA p.D792FX6 1 96 Jessen et al. (46)

c.4508C > G p.S1483X 1 48 Jessen et al. (46)

c.4508C > G p.S1483X 1 36 Jessen et al. (46)

c.5506C >T p.R1836X 1 48 Jessen et al. (46)

10395delA p.K3465Kfs2X 1 24 Karim et al. (62)

All of the selected genetic anomalies were either large deletion, null mutations, introduce a stop codon or affect the first base of an intron predicted to induce a

frameshift, and a consecutive stop codon.

*Heterozygous mutations; n=number of patients.

MICE AND VIRUS
C57BL/6 (wild-type, wt) mice were purchased from Charles River
Laboratories (Sulzfeld, Germany). C57BL/6J-LystbgJ/J (beigeJ;
stock no. 000629) and B6Pin.C3-Ap3b1pe/J (pearl, stock no.
003215) mice were purchased from the Jackson Laboratory (Bar
Harbor, USA), and C57BL/6-Lystbg-Btlr/Mmcd (souris; stock no.
010470-UCD) mice originally generated by Dr. B. Beutler and
colleagues (Scripps Research Institute, La Jolla, CA, USA) were
obtained from the Mutant Mouse Regional Resource Center
(University of California, Davis, CA, USA). Syntaxin-11-deficient
(STX-11KO) mice were generated by Dr. U. zur Stadt (Ham-
burg) on a C57BL/6 background by deletion of the only coding
exon. C3H/HeSn-Rab27aash/J mice were purchased from the Jack-
son Laboratory and backcrossed to the C57BL/6 background for
10 generations (C57BL/6J-Rab27aash/j; ashen). Perforin-deficient
C57BL/6-Prf1tm1Sdz (PKO) mice were obtained from Dr. H.
Hengartner (Zurich). Mice were kept under specific pathogen-
free conditions. All mouse experiments were approved by the
Regierungspraesidium Freiburg. The lymphocytic choriomenin-
gitis virus WE (LCMV-WE) was grown on MC57G fibroblasts
and stored at −80°C until use. Mice were injected intravenously
with 200 pfu (plaque forming units). To quantify virus in organs
from infected mice a focus forming assay was used as described
(87). Temperatures were obtained using a digital infrared ear
thermometer (Braun, ThermoScan type 6022).

HLH BIOMARKERS IN MICE
Blood counts were determined by a Sysmex KX-21 hematology
analyzer. Serum levels of ferritin, triglycerides, LDH, and GLDH

were analyzed by the Department of Clinical Chemistry using the
Roche Modular Analytics Evo. Levels of sCD25 were determined
by using the mouse IL-2Ralpha DuoSet kit (R&D systems) accord-
ing to the instructions of the manufacturer. The IFN-γ ELISA was
performed as described before (46).

HISTOLOGY
To evaluate hemophagocytic macrophages, immunohistochem-
istry on paraffin-embedded liver sections was performed as
previously described (46).

ANTIBODIES, INTRACELLULAR STAINING, DEGRANULATION, AND
CYTOTOXICITY ASSAY
Antibodies were purchased from eBioscience or BD Biosciences.
Surface expression of CD107a and intracellular IFN-γ of
CD8+CD3+ CTL was determined after 4 h of restimulation with
the immunodominant CTL epitope gp33-41 (PolyPeptide) or
medium in the presence of monensin (BD Biosciences). For fixa-
tion and permeabilization of spleen cells the Cytofix/Cytoperm kit
(BD Biosciences) was used. CTL cytotoxicity was determined in a
5 h 51chromium-release assay by incubating spleen cells as effec-
tors with LCMV-infected MC57 target cells. In order to calculate
the CTL to target ratio, CD8 T cells were quantified by antibody
staining and flow cytometry.

ADOPTIVE TRANSFER EXPERIMENT
Splenic CD8 T cells from mice that had been infected with
200 pfu LCMV-WE 8 days earlier were MACS purified using the
MACS CD8a+ T Cell Isolation Kit II (Miltenyi Biotec). Purity
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was determined by flow cytometry and was above 90% in all
experiments. About 2× 106 purified CD8 T cells were transferred
intravenously into C57BL/6 wild-type mice that had been infected
with 104 pfu LCMV 10 h before. After 18 h of adoptive cell transfer,
splenic virus titers were determined.

STATISTICAL ANALYSIS
Tests were performed using the GaphPad InStat software version
3.06. The comparison between data was evaluated with a one-way
ANOVA (Analysis Of Variance) with posttest. Differences were
considered significant at a p-value below 0.05.
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Table A1 | Analysis of HLH biomarker on day 8 after LCMV infection.

HLH parameter Wild-type Beige Pearl Souris Syntaxin-11KO Ashen PKO

Ferritin (ng/mL) 393.8±244.0 493.9±181.1 892.6±424.6*** 481.8±259.4 365.0±163.1 578.3±79.7 1280.7±1212.9***

sCD25 (pg/mL) 545.7±206.2 508.0±261.5 805.2±294.5 816.4±234.5 707.1±389.7 916.7±415.3 1060.4±314.1*

Triglycerides (mg/dL) 58.3±18.0 97.1±21.6 97.3±93.3 63.5±54.2 187.5±97.0* 174.0±107.9 164.1±90.1***

Additional parameter

IFN-γ (ng/mL) 0.4±1.2 8.45±9.9 20.5±16.5* 114.8±26.0*** 79.7±60.6** 70.3±42.3* 156.7±56.8***

HLH NO NO Transient YES YES YES Lethal

Gray fields indicate fulfilled HLH criteria.

The red font accentuates the final disease phenotype.

***p < 0.001; **p < 0.01; *p < 0.05 (ANOVA; statistically significant differences compared to day 8 values of wild-type mice).
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