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PACAP Controls Endocrine and Behavioral Stress
Responses via Separate Brain Circuits
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ABSTRACT
BACKGROUND: The neuropeptide PACAP (pituitary adenylate cyclase-activating polypeptide) is a master regulator
of central and peripheral stress responses, yet it is not clear how PACAP projections throughout the brain execute
endocrine and behavioral stress responses.
METHODS: We used AAV (adeno-associated virus) neuronal tracing, an acute restraint stress (ARS) paradigm, and
intersectional genetics, in C57BL/6 mice, to identify PACAP-containing circuits controlling stress-induced behavior
and endocrine activation.
RESULTS: PACAP deletion from forebrain excitatory neurons, including a projection directly from medial prefrontal
cortex to hypothalamus, impairs c-fos activation and corticotropin-releasing hormone (CRH) messenger RNA
elevation in the paraventricular nucleus after 2 hours of restraint, without affecting ARS-induced hypophagia, or
c-fos elevation in nonhypothalamic brain. Elimination of PACAP within projections from lateral parabrachial
nucleus to extended amygdala, on the other hand, attenuates ARS-induced hypophagia, along with extended
amygdala fos induction, without affecting ARS-induced CRH messenger RNA elevation in the paraventricular
nucleus. PACAP projections to extended amygdala terminate at protein kinase C delta type (PKCd) neurons in
both the central amygdala and the oval bed nucleus of the stria terminalis. Silencing of PKCd neurons in the
central amygdala, but not in the oval bed nucleus of the stria terminalis, attenuates ARS-induced hypophagia.
Experiments were carried out in mice of both sexes with n $ 3 per group.
CONCLUSIONS: A frontocortical descending PACAP projection controls paraventricular nucleus CRH messenger
RNA production to maintain hypothalamic-pituitary-adrenal axis activation and regulate the endocrine response to
stress. An ascending PACAPergic projection from the external lateral parabrachial nucleus to PKCd neurons in the
central amygdala regulates behavioral responses to stress. Defining two separate limbs of the acute stress
response provides broader insight into the specific brain circuitry engaged by the psychogenic stress response.

https://doi.org/10.1016/j.bpsgos.2023.04.001
The flight-or-fight response mediated by catecholamine
release from the adrenal medulla (1,2), the cortisol response to
stress, and the concept of the stress response itself (3), were
elucidated in the early 20th century. Investigations of how
interoceptive and exteroceptive stress cues trigger brain re-
sponses, and how brain regulation of behavior is subsequently
affected, proceeded from these seminal observations (4).
McEwen (5) and others established that cortisol/corticosterone
(CORT) acts on the brain to mediate long-term consequences
of stress. The catecholaminergic alerting system of the locus
coeruleus mediates interoceptive stress effects in the central
nervous system (6), in parallel with catecholamine release in
the periphery (7). The activation of the hypothalamic-pituitary-
adrenal (HPA) axis is initiated at corticotropin-releasing
hormone (CRH) neurons of the hypothalamic paraventricular
nucleus (PVN) (8,9) and constitutes the brain’s endocrine
response to stress. Stress signaling initiated by both internal
and external cues is processed for salience in corticolimbic
brain structures, which project to hypothalamus to modulate
HPA axis activation and to other brain regions controlling
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behavioral responses. The HPA axis has long been considered
a final common pathway for both endocrine stress responses,
that is, CORT elevation, and behavioral responses (via CORT
effects on behavioral brain circuits) (4). The involvement of
CRH as both hypothalamic hormone and amygdalar neuro-
transmitter in registering and generating stress-driven affective
states contributed to the hypercortisolemic hypothesis of
melancholic depression and identification of the CRH receptor
as a neurotherapeutic target in treatment of affective disorders,
including depression (10,11). However, these studies also
contributed to an emerging realization that HPA axis–
independent pathways, engaged for behavioral modulation of
the stress response, must also exist.

Neuropeptide neurotransmitters besides CRH have recently
been invoked in the neurobiology of the stress response. The
neuropeptide PACAP (pituitary adenylate cyclase-activating
polypeptide) is a cotransmitter with acetylcholine in the sym-
pathoadrenal system required for elevation of plasma epineph-
rine and norepinephrine levels during both systemic and
psychogenic stress [(12,13) and references therein]. PACAP was
ier Inc on behalf of Society of Biological Psychiatry. This is an
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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subsequently shown, through phenotypic analysis of PACAP-
deficient mice, to mediate HPA responses to psychogenic
stressors, such as social defeat and restraint, but not systemic
stress responses, including cold, inflammation, hypoglycemia,
andcircadian rhythmicity (12,14–17). These studies culminated in
the demonstration that PACAP and its receptor are linked to
genetic risk for posttraumatic stress disorder in humans (18).

PACAP mediates both endocrine and behavioral responses
to psychogenic stress. Restraint stress (RS), both acute and
chronic, triggers CRH messenger RNA (mRNA) elevation, c-fos
activation, and increased secretion from CRH-expressing
neurons of the PVN, the first step in HPA axis activation
leading to CORT elevation. RS also causes decreased eating,
resulting in loss of body weight. Both HPA axis activation and
hypophagia are attenuated or abolished in PACAP-deficient
mice (19,20). Chronic social defeat over a 2-week period re-
sults in persistent CORT elevation; depressive-like behavior,
including decreased social interaction and increased immo-
bility in the forced swim test; and FosB elevation in the PVN
and multiple stress-related central and limbic nuclei in mice. All
these effects of chronic social defeat are abolished in PACAP-
deficient mice (16), as are stress responses induced by open-
field exposure (14).

The delayed effects of PACAP deficiency on CORT eleva-
tion secondary to its effects on CRH gene transcription,
compared to the immediate effects of PACAP deficiency on
hypophagia following acute restraint stress (ARS), highlight the
dissociation between PACAP’s actions within the endocrine
and the behavioral domains of the stress response (20). These
findings have set the stage to use intersectional genetics to
probe endocrine and behavioral aspects of stress regulation by
PACAP to probe for separate endocrine and behavioral stress
circuits for PACAP in the brain, similar to the concerted but
separate actions of CRH in hypothalamic and limbic stress
circuits (21). Importantly, the differential temporal PACAP
dependence of stress-induced HPA axis activation and
decreased eating indicate that hypophagia after acute restraint
is not secondary to CORT elevation during ARS (20) and that
the hypophagic (behavioral) effect of ARS must therefore
require PACAP actions within circuits other than those con-
trolling the HPA axis.

Here, we used regionally precise abrogation of PACAP
expression in mice to test the hypothesis that 2 separate
PACAPergic circuits mediate the coordinated, but distinct,
behavioral and endocrine responses to acute stress. These
data have implications for redefining the stress response as
proceeding from activation of multiple parallel input circuits
and, potentially, to identify multiple drug targets for treatment
of the symptoms of stress-related disorders.

METHODS AND MATERIALS

Detailed methods and materials are provided in the
Supplement.

Animals and Drugs

Mice (wild-type, transgenic, or knockout) on C57BL/6 back-
groundwere housed 2 to 5 per cage and acclimatized to 12-hour
light/dark cycle with food and water ad libitum. Animal care was
approved by the National Institute of Mental Health Institutional
674 Biological Psychiatry: Global Open Science October 2023; 3:673–
Animal Care andUseCommittee and conducted in accordance
with the National Institutes of Health guidelines. PACAP2/2

deficient mice and the floxed PACAP mouse strain PACAPfl/fl

were generated as described previously (12,22). Camk2a-cre
mice (Cre expression restricted to Camk2a-expressing excit-
atory neurons in the forebrain) and Sim1-cre mice (Cre
expression restricted mainly to the hypothalamus) were ob-
tained from The Jackson Laboratory (stock Nos. 005359 and
006395) and bred with PACAPfl/fl mice to obtain Camk2a-
cre::PACAPfl/fl and Sim1-cre::PACAPfl/fl conditional knockout
mice. Adcyap1-2A-cre mice (Cre expression restricted to
PACAP-expressing neurons of adult) were from The Jackson
Laboratory (stock No. 030155). Description of PKCd-cre
(Prkcd-glc-1/CFP,-cre)EH124Gsat) mice can be found at
(https://www.mmrrc.org/catalog/sds.php?mmrrc_id=11559)
(23). Clozapine N-oxide (BMLNS105-0005; Enzo Life Science-
BIOMOL) was freshly dissolved in saline (0.9% NaCl) to a
concentration of 0.4 mg/mL and intraperitoneally injected 30
minutes before 2-hour restraint at 2.5 mg/kg for hM4Di
silencing.

Immunohistochemistry and In Situ Hybridization

Immunohistochemistry was conducted as previously
described (24). In situ hybridization used the RNAscope
Multiplex Fluorescent V.2 Kit (Cat. No. 323100) and RNAscope
2.5 HD Reagent-RED Kit (Cat. No. 322350; ACD Bio), as
directed in the manual. Information about all antibodies and
probes used can be found in the Supplement.

Mouse Surgery and Viral Injection

Surgeries were conducted and viral injection was administered
according to National Institutes of Health Animal Research
Advisory Committee guidelines for survival rodent surgery, as
previously described (24,25).

Restraint Stress

Acute and chronic RS, food and weight measurement, tail
blood sampling, and plasma corticosterone assays were car-
ried out as previously described (19,20).

Experimental Design and Statistical Analysis

Mice of both sexes were used in all studies. The sample size (n)
per group and statistical analyses are described in detail in the
figure legends and Supplemental Methods and Materials. Data
are displayed using histograms and scatter plots to represent
mean 6 SEM and individual animals in each group.

RESULTS

PACAP Elimination From Forebrain Excitatory
Neurons Impairs Endocrine but Not Behavioral
Effects of ARS

PACAP mRNA is eliminated from forebrain excitatory neurons
in Camk2a-cre::PACAPfl/fl mice as confirmed by RNAscope
hybridization for cortical areas, including the medial prefrontal
cortex (mPFC), the piriform cortex, and the entorhinal cortex
(Figure 1A). PACAP mRNA was also reduced in the hippo-
campus, amygdala, habenula, ventromedial, and mammillary
nuclei of the hypothalamus (Figure S1A). Deletion of PACAP
685 www.sobp.org/GOS
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Figure 1. PACAP expression eliminated from forebrain excitatory neurons showed endocrine but not hypophagic effect induced by 2-hour acute restraint.
(A) PACAP expression eliminated from forebrain (especially limbic cortex areas including the mPFC, cingulate cortex, piriform cortex, entorhinal cortex)
excitatory neurons. Camk2a-cre::PACAPfl/fl was generated by crossing Camk2a-cre with PACAPfl/fl mice. PACAP expression throughout the whole adult brain
was examined using RNAscope ISH. Adcyap1 mRNA for PACAP is indicated by red signals. (B) Scheme of experimental design for acute and chronic RS
studies. Mice were acclimatized for 3 days to achieve habituation to handling and blood sampling. Mice were then restrained for 2 hours (RS 2 hours) or
chronically for 4 days, 2 hours daily (CRS). Weight loss over a 24-hour period for animals without restraint (NRS) or after 2-hour restraint was collected. Tail
blood sampling for CORT assaywas performed for animals without RS (for NRS), immediately after 2-hour restraint (for RS 2 hours), or immediately after the fourth
restraint (for CRS). Brain samples were collected for IHC or ISH immediately after 2-hour restraint. (C) Elimination of PACAP from forebrain excitatory neurons did
not affect restraint-induced hypophagia, as seen in PACAP constitutive knockout (PACAP2/2) mice. Male and female WT, PACAP2/2, PACAPfl/fl, or
Camk2a-cre::PACAPfl/fl mice were subjected to the RS paradigm shown in (B). Three-way analysis of variance showed no significant sex effect (F1,90 = 0.00651,
p = .936) but significant stress effect (F1,90 = 84.356, p , .001), genotype effect (F3,90 = 10.524, p , .001), and stress 3 genotype interaction (F3,90 = 10.631,
p , .001). Post hoc all pairwise multiple comparison with Bonferroni t test showed significant stress effect of 2-hour restraint on WT, PACAPfl/fl, or Camk2a-
cre::PACAPfl/fl (RS 2 hours vs. NRS, **p, .001), but not PACAP2/2mice (p= .694). AndCamk2a-cre::PACAPfl/fl showed a level of weight loss in 24 hours similar to
that of WT or PACAPfl/fl after 2-hour restraint (p = 1), unlike PACAP2/2 mice, which are impaired in hypophagia reflected by weight loss (PACAP2/2 vs. WT, or
PACAPfl/fl, or Camk2a-cre::PACAPfl/fl, **p, .001). n = 4–10 mice for each group. (D) Elimination of PACAP from forebrain excitatory neurons attenuated CORT
elevation induced by CRS, similar to that observed in PACAP2/2mice. Three-way analysis of variance showed significant sex (F1,144 = 247.822, p, .001), stress
(F2,144 = 406.297, p, .001), and genotype (F3,144 = 26.524, p , .001) effects. CORT release immediately after 2-hour restraint is not PACAP dependent: CORT
levels in the tail blood samples collected immediately after 2-hour restraint do not differ between WT and PACAP2/2 mice (post hoc Bonferroni t test, WT vs.
PACAP2/2, p = 1within RS 2 hours). However, attenuated CORT elevation was observed in PACAP-deficient mice after repetition of RS over a 4-day period (CRS)
(WT vs. PACAP2/2, p = .001within CRS), indicating that sustained corticotropin-releasing hormone effects onCORT elevation during chronic restraint are PACAP
dependent. Attenuated CORT elevation induced by CRS was also observed in mice with PACAP elimination from forebrain excitatory neurons (Camk2a-cre::-
PACAPfl/fl vs. WT or PACAPfl/fl, after CRS, in either males or females, **p , .001; Camk2a-cre::PACAPfl/fl vs. PACAP2/2 mice, p = 1), demonstrating impaired
endocrine effect after 2-hour acute RS. n = 4–10 animals for each group. ACAd, anterior cingulate area dorsal; ACAv, anterior cingulate area ventral; AId, agranular
insular area dorsal; AIv, agranular insular area ventral; CORT, cortisol/corticosterone; CRS, chronic restraint stress; ENT, entorhinal area; IHC, immunohisto-
chemistry; ISH, in situ hybridization; MOp, primary motor area; MOs, secondary motor area; mPFC, medial prefrontal cortex; mRNA, messenger RNA; NRS, no
restraint stress; ns, not significant; ORBl, orbital area, lateral part; PACAP, pituitary adenylate cyclase-activating polypeptide; Pir, piriform area; RS, restraint
stress; SSp, primary somatosensory area; WT, wild-type.
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from these brain areas did not affect neurotransmitter pheno-
types in general, based on expression of VGluT1, VGluT2, or
VGAT mRNAs, as shown for the mPFC (Figure S1B, C).
Camk2a-cre::PACAPfl/fl and corresponding control (PACAPfl/fl)
mice were subjected to an RS paradigm (Figure 1B; described
in detail in the Supplement). Body weight loss and/or food
intake was measured during the 24-hour period following 2-
hour restraint (RS 2 hours). Tail blood was collected for mea-
surement of plasma CORT levels 1 day before restraint (NRS)
or immediately after acute 2-hour restraint (RS 2 hours) or after
chronic restraint for 2 hours daily for 4 days (CRS).

Anxiety-associated behavior reliably emerges after chronic,
but not acute, RS (16,26–28). However, hypophagia, measured
either as decreased food intake or as body weight loss, is a
stable behavioral acute stress response in rodents (19,20)
(Figure S2). Weight loss caused by ARS is eliminated in
constitutive PACAP knockout mice, but preserved after dele-
tion of PACAP from forebrain excitatory neurons (Camk2a-
cre::PACAPfl/fl) (Figure 1C). In contrast, Camk2a-cre::PACAPfl/fl

mice exhibited an impaired endocrine response to stress, as
reflected in attenuated CORT elevation after CRS in both male
and female mice (Figure 1D).

We compared the stress phenotype of Camk2a-cre::PA-
CAPfl/fl with Sim1-cre::PACAPfl/fl mice, in which PACAP
expression is deleted in hypothalamic neurons, to assess the
role(s) of hypothalamic and extrahypothalamic PACAP on
activation of PVNCRH neurons, the first step in the HPA stress
response. PACAP expression arising from intrinsic hypotha-
lamic sources including the preoptic area, PVN and peri-PVN,
anterior hypothalamic nucleus, and ventromedial, mammillary,
and other hypothalamic nuclei putatively involved in metabolic
homeostasis is eliminated in Sim1-cre::PACAPfl/fl mice
(Figure 2A), while PACAP expression in cortical areas, notably
the mPFC, is largely unaffected (Figure 2B). Induction of c-fos
and CRH mRNA was compared in the PVN of hypothalamic
(Sim1-cre::PACAPfl/fl), constitutive (PACAP2/2), and forebrain
(Camk2a-cre::PACAPfl/fl) PACAP knockout mice. Both c-fos
induction and CRH mRNA upregulation in the PVN during ARS
were eliminated in PACAP2/2 and Camk2a-cre::PACAPfl/fl

mice but unaffected in Sim1-cre::PACAPfl/fl mice (Figure 2C).
Thus, PACAP dependence for endocrine effects of RS via
PVNCRH neurons arises from ablation of PACAP from extra-
hypothalamic, rather than intrinsic hypothalamic, neurons.

To establish whether hypothalamic PACAP participates in
any aspect of HPA axis activation following stress, we
measured CORT elevation after ARS and repeated RS in Sim1-
Cre::PACAPfl/fl mice. Despite unimpaired c-FOS and CRH
mRNA activation in Sim1-Cre::PACAPfl/fl mice, CORT elevation
after RS was reduced (Figure S3A). Therefore, we examined
the effect of PACAP knockout on expression of arginine
vasopressin (AVP) mRNA in the PVN magnocellular neurons
(Figure S3B), which also play a role in adrenocorticotropic
hormone secretion during stress (29). AVP mRNA was signifi-
cantly decreased in PVN in both PACAP2/2 and Sim1-
Cre::PACAPfl/fl but not in Camk2a-cre::PACAPfl/fl mice
(Figure S3C). The small population of non-CRH neurons in the
PVN that are fos-positive after restraint may represent AVP
neurons (Figure S3D). Our data confirm that activation of the
HPA axis after ARS requires sustained release of both AVP and
CRH and that maintenance of mRNA levels encoding both AVP
676 Biological Psychiatry: Global Open Science October 2023; 3:673–
and CRH sufficient to support this sustained release depends
on PACAP release from hypothalamic and forebrain PACA-
Pergic neurons, respectively.

PACAPergic Projections From the mPFC to the PVN
Control CRH-Dependent Endocrine Responses to RS

To identify the source of extrahypothalamic PACAP pro-
jections to the PVN, we performed retrograde tracing studies
after injection of AAV2-hSyn-DIO-EGFP (retrograde) into
Adcyap1-2A-cre mice (Figure 3A). Most PACAP-positive neu-
rons that project to the PVN arise within the mPFC (Figure 3A;
Figure S4A). This was confirmed by anterograde tracing of
PACAP projections from the mPFC to the hypothalamus after
injecting AAV1-hSyn-Flex-tdTomato-T2A-synaptophysin-
EGFP into the mPFC of Adcyap1-2A-cre mice (Figure 3B;
Figure S4B): injection site is indicated by td-Tomato and
PACAP terminals are visualized by synaptophysin-EGFP. The
tracing result showed that PACAPergic projections from the
mPFC to the PVN terminate within a peri-PVN zone (Figure 3B;
Figure S4B).

We next asked whether elimination of PACAP expression in
mPFC neurons could influence the activation of PVN CRH
neurons induced by acute restraint. To eliminate PACAP
specifically from neurons with cell bodies in the mPFC, AAV-
cre virus was injected bilaterally into the mPFC of PACAPfl/fl

or wild-type (WT) control mice (Figure 3C). Four to six weeks
later, mice were subjected to 2-hour RS, and c-fos and CRH
mRNA levels in the PVN were assessed. RNAscope with c-fos
and crh probes indicated that c-fos and CRH upregulation
induced by restraint were largely attenuated in the PVN when
PACAP expression was knocked out in the mPFC (Figure 3C).
Thus, PACAPergic projections from the mPFC to the PVN
regulate HPA axis activation (fos and crh mRNA induction in
the PVN) after RS.

PACAP Nerve Terminals in the Extended Amygdala
Project Mainly or Exclusively From Lateral
Parabrachial Nuclei

The lateral parabrachial nucleus (LPBn), especially the external
subregion, in mouse brain is densely populated with PACAP-
positive neurons coexpressing slc17a6 (VGluT2) and largely
overlapping with Calca (CGRP-expressing) neurons (30,31)
(Figure S5A–D). These neurons project to several diencephalic
structures, including the central amygdala (CeA) and oval bed
nucleus of stria terminalis (BNSTov), consistent with previous
data for PACAPergic projections to the extended amygdala (EA)
from the PBn (Allen Brain Atlas; http://connectivity.brain-map.
org/projection/experiment/301016900 and http://connectivity.
brain-map.org/projection/experiment/552284594) (31) and with
PACAPergic projections from PBn to BNSTov, and coex-
pressing CGRP, in the rat (32,33). We note here that PACAP
expression is unaltered in LPBn in either Camk2a-cre::
PACAPfl/fl or Sim1-cre::PACAPfl/fl, emphasizing that PACA-
Pergic projections from the cortex to hypothalamus, and
within the hypothalamus itself, are genetically insulated from
PACAPergic projections from the PBn to the EA in these
mice (Figure S5E). We further characterized this projection
with respect to its termination onto specific cell populations
of the EA. AAV (adeno-associated virus) containing a
685 www.sobp.org/GOS
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(NRS vs. RS 2 hours, **p , .001). PACAP deficiency eliminated c-fos and CRH mRNA elevation induced by 2-hour restraint in PACAP2/2 mice
(PACAP2/2 vs. PACAP1/1 within RS 2 hours, **p , .001; RS 2 hours vs. NRS within PACAP2/2, p = 1). Sim1-cre::PACAPfl/fl showed no attenuation of either
c-FOS induction or CRH upregulation in the PVN induced by 2-hour restraint (Bonferroni t test following one-way analysis of variance, Sim1-cre::PACAPfl/fl vs.
PACAP1/1, p = 1). However, impaired c-fos and CRH mRNA elevation after RS were observed in the PVN of Camk2a-cre::PACAPfl/fl mice
(Camk2a-cre::PACAPfl/fl vs. PACAP1/1 or Sim1-cre::PACAPfl/fl, **p , .001 for CRH mRNA; *p , .05 for c-FOS-IR). n = 3–6 mice per group. ac, anterior
commissure; AHN, anterior hypothalamic nucleus; AVPV, anteroventral periventricular nucleus; CRH, corticotropin-releasing hormone; dBNST, bed nuclei of the
stria terminalis dorsal; ir, immunoreaction; ISH, in situ hybridization; KO, knockout; MEA, medial amygdala nucleus; MEPO, median preoptic nucleus; MM, medial
mammillary nucleus; mPFC, medial prefrontal cortex; mRNA, messenger RNA; NRS, no restraint stress; ns, not significant; PACAP, pituitary adenylate cyclase-
activating polypeptide; PH, posterior hypothalamic nucleus; pm, principle mammillary tract; PVN, paraventricular hypothalamic nucleus; RS, restraint stress; SCH,
suprachiasmatic nucleus; SUM, supramammillary nucleus; V3, third ventricle; vBNST, bed nuclei of the stria terminalis ventral; VMN, ventromedial nucleus.
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synapsin promoter driving a Cre-dependent channelrho-
dopsin ChrimsonR and td-Tomato gene (AAV9-Syn-Flex-
ChrimsonR-tdTomato) was injected into the LPBn of
Adcyap1-2A-cre mice, mainly targeted to external LPBn.
Four to six weeks later, PACAPergic (td-Tomato-positive)
nerve terminals were observed in the BNSTov and
678 Biological Psychiatry: Global Open Science October 2023; 3:673–
capsular and lateral parts of the central nucleus of the
amygdala (CeC/L) (Figure 4A).

There are 2 non-overlapping neuronal groups in the mouse
CeC/L, expressing either protein kinase C delta type (PKCd)
or somatostatin, which together constitute the majority of
local GABAergic (gamma-aminobutyric acidergic) neurons in
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this region (23,34–36). Further study of PACAPergic innerva-
tion (indicated by td-Tomato-positive nerve terminals) of the
EA from PBn revealed that these projections are mainly to the
soma of PKCd neurons, but not to somatostatin neurons
(Figure 4B), consistent with the previous observation of
specialized projections of the external subregion of LPBn
neurons to this population in the EA (34). When
AAV9.hSynap.HI.eGFP-Cre.WPRE.SV40 was injected
Biological Psychiatry: Global O
bilaterally into the LPBn of PACAPfl/fl (PBnAAV-cre::PACAPfl/fl),
PACAP-positive terminals were completely ablated from the
BNSTov and CeA approximately 4 to 6 weeks later
(Figure 4C). Thus, the external subregion of LPBn is the major
source of PACAPergic nerve terminals in the EA, consistent
with previous reports of substantial loss of PACAPergic nerve
terminals in the BNSTov of the rat following NMDA-induced
lesioning of neurons of the PBn (33).
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Activation of EA PKCd Neurons Induced by RS Is
PACAPLPBn/EA Dependent
Acute 2-hour RS induces c-Fos activation in various discrete
brain regions, including the PVN (Figure 2C) and EA (BNSTov
and CeA) (Figure 5A). Stress-induced Fos activation in BNSTov
and CeA is PACAP dependent since it is not detected in
PACAP2/2 mice following 2-hour RS (Figure 5A). Furthermore,
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c-fos is induced by ARS in the LPBn, the putative source of
PACAPergic fibers in the EA, and this activation persists in
PACAP2/2 mice, suggesting that stress-activated inputs to the
PBn mediating stress-induced hypophagia are not themselves
PACAPergic (Figure S6A).

Because PACAPergic nerve terminals in the EA arise mainly
from the LPBn (Figure 4), we examinedwhether c-Fos activation
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in the EA can be ablated by elimination of PACAP expression in
the LPBn. AAV9.hSynap.HI.eGFP-Cre.WPRE.SV40 was injec-
ted bilaterally into LPBn of PACAPfl/fl or WT control mice. Brain
tissues with EA from PBnAAV-cre::PACAPfl/fl and their controls
PBnAAV-cre::WT were collected immediately after 2-hour restraint
for c-FOS immunohistochemistry. Similarly to PACAP2/2,
PBnAAV-cre::PACAPfl/fl mice showed significant attenuation of c-
FOS induction in the EA after acute restraint (Figure 5A). Elimi-
nation of PACAP expression in the forebrain of Camk2a-cre::
PACAPfl/fl mice had no effect on c-FOS induction in the EA after
restraint (Figure 5A), despite a significant deficit in PVN c-FOS
induction (Figure 2C). Thus, c-FOS expression in the EA induced
by RS is PACAPLPBn dependent.

Further studies with RNAscope using pkcd, sst, crh, and
c-fos probes indicated that Fos activation occurs mainly in
PKCd neurons (Figure 5B) after RS. This is consistent with our
observations that PACAPergic projections from the LPBn
establish anatomical and functional connections mainly with
PKCd neurons in the EA.

These results support the notion that activation of EA PKCd
neurons induced by RS is PACAPLPBn dependent, that these
neurons also express CGRP (Figure S5C, D), and that PKCd
neurons in the EA are activated by PACAPergic projections
from the LPBn and mediate the behavioral effects of RS.
Altered expression of PACAP, PAC1, and CRH mRNAs in the
EA have been reported in the rat subjected to chronic stress;
however, no significant changes in CRH or PACAP expression
were observed in the EA after 2-hour RS (Figure S6B, C),
suggesting that PACAPergic neurons within the EA itself are
not involved in this response.
PACAPLPBn/CeA Contributes to RS-Induced
Hypophagia

To investigate whether PACAPPBn/EA neurons contribute to
behavioral (2-hour restraint-induced hypophagia) effects of
acute stress, PACAPfl/fl or WT mice received bilateral
LPBn injection of AAV-cre virus (PBnAAV-cre::PACAPfl/fl or
PBnAAV-cre::WT) and were subjected to a 2-hour acute
restraint paradigm (Figure 6A). Mice with PACAP ablation in the
LPBn (PBnAAV-cre::PACAPfl/fl) showed attenuation of body
weight loss, compared with corresponding control mice
(PBnAAV-cre::WT), in response to 2-hour restraint (Figure 6B).
However, PBnAAV-cre::PACAPfl/fl and PBnAAV-cre::WT mice
showed similar levels of CORT elevation after acute or chronic
restraint (Figure 6C). These observations eliminate the possi-
bility that weight loss after RS is secondary to stress-induced
CORT elevation. Consistent with the functional independence
of these 2 pathways, c-Fos and CRH upregulation in the PVN
induced by 2-hour RS were not influenced by PACAP elimina-
tion in the LPBn (Figure 6D).

The studies described above demonstrate that PACAP
neurons in the LPBn project to both the CeA and BNSTov, and
c-Fos activation in PKCd neurons is induced by acute restraint
in both the CeA and BNSTov. We next wished to determine
whether activation of PKCd neurons in both the CeA and
BNSTov, or only one of these, is required to elicit RS-induced
hypophagia. For these inquiries, we turned to a chemogenetic
method. AAV9-hSyn-DIO-hM4D(Gi)-mCherry was injected into
the CeA or BNSTov of PKCd-cre mice to allow expression of
Biological Psychiatry: Global O
the inhibitory DREADD (designer receptor exclusively activated
by designer drugs) hM4Di in PKCd neurons in the CeA or
BNSTov. Clozapine N-oxide was subsequently administered 30
minutes prior to 2-hour restraint, to activate the Gi-coupled
DREADD, enabling the electrical silencing of PKCd neurons
(Figure 6E). Silencing of PKCd neurons in the CeA attenuated
weight loss after restraint, as did the deletion of PACAP from the
LPBn projection to the EA. Silencing of PKCd neurons in the
BNSTov did not affect restraint-induced hypophagia (Figure 6F),
and silencing of PKCd neurons in either the CeA or BNSTov was
without effect on stress-induced CORT elevation (Figure 6G).

DISCUSSION

We previously observed that RS-dependent CORT elevation and
hypophagia are differentially dependent on stress duration (20).
Here, regionally specific genetic ablation of PACAP expression
identifies 2 neuronal populations, arising from the frontal cortex
and brain stem, that independently regulate the endocrine and
behavioral effects, respectively, of ARS. These findings contrast
with an earlier view that behavioral consequences of stress are
mediated largely through the final common pathway of HPA axis
activation and CORT effects on the brain (37). They invite
consideration that modulation of multiple stress pathways could
mitigate separate components of the stress response.

A newly described PACAPergic projection from the mPFC
to the hypothalamus mediates activation of PVN CRH neurons
and maintenance of CRH biosynthesis, but is dispensable for
depression of feeding behavior, after acute stress. The
mPFCPACAP projection to the PVN terminates in the PVN, and
in a pronounced peri-PVN pattern. PACAP release may cause
PVNCRH neuronal activation via release onto extensively
arborized CRH neuronal dendrites, and/or via paracrine effects
in the peri-PVN region, as described by Chen et al. (38) for
noradrenergic activation of CRH neurons in the PVN. Learning
how frontocortical PACAP projection neurons are activated will
help unravel the complete input-to-output brain circuit arcs that
constitute the psychogenic stress response. These also include
a frontocortical projection to the EA (anterior BNST) activating
inhibitory projections to the PVN to attenuate HPA axis activation
during stress (39), a PACAP pathway from the amygdala to the
ventromedial hypothalamic nucleus that modulates fear extinc-
tion by immobilization/RS (40), and PACAPergic neurons within
the infralimbic cortex itself apparently dissociated from PACAP-
dependent HPA axis activation (41). Antagonistic or differential
effects of these multiple pathways during acute versus chronic
stress may be key to understanding the interactions between
brain state and sensory input that determine whether maladap-
tive or resilient responses manifest clinically in human subjects
after trauma exposure (18,42,43).

A second and separate PACAPergic pathway from the
LPBn to the CeA is required for hypophagia induced by ARS
and is dispensable for PACAP-dependent activation of
PVNCRH neurons. This reveals an anatomical location for the
functional role of PACAP in mediating the behavioral effects of
acute stress. The PBn was first described as a sensory
pathway conveying pain sensation from primary sensory af-
ferents to the CeA (44) and is now known as a relay station for
alarm responses, including pain, proximal danger/threat cues,
bitter tastants, and other stimuli signaling salience for aversion
and promotion of avoidance behavior (45–50). The LPBn is
pen Science October 2023; 3:673–685 www.sobp.org/GOS 681
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divided into sections that function in secondary sensory relay
from brainstem nuclei to either the hypothalamus or the EA
(51,52). The PACAPergic projection described here is
congruent with the so-called N19 PBn cluster defined by
transcriptomic and multiplex in situ hybridization
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histochemistry in the mouse (31). Multiple neuropeptides are
used as first messengers/neurotransmitters within this
pathway, including CGRP, PACAP, substance P, and neuro-
tensin (31). CGRP expression in the PBn is required for pain
transmission (45,46,53,54), and a role for PBn PACAP in
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chronic pain and anxiety is implied by pharmacological effects
of PACAP infused into the lateral part of the central nucleus of
the amygdala (CeL) on pain sensitivity and anxiety (32,50).

Multiple studies of PBn/EA circuitry have employed
neuropeptide-specific Cre driver mice to gain access to neu-
rons of the LPBn to silence or excite them to inhibit or mimic
behaviors exhibited by threatening or aversive stimuli (45–50).
Despite this, how these neuropeptides function, together with
glutamate release, to gate behaviors based on sensory expe-
rience and its salience, and in the filtering of sensory input
based on behavioral state (satiety, anxiety, etc.), and, indeed,
when their expression is required for patent information
transfer in this pathway leading to specific behaviors, has yet
to be carefully examined. Here, we used a convergent genetic
approach to ablate PACAP from the PBn projections to the
amygdala and to silence the PACAP-targeted cell populations
there. These experiments allowed us to parse the necessity of
a specific neuropeptide first messenger for signaling in a
distinct circuit mediating brain-dependent stress response.
Stress-induced neuronal activation (c-Fos induction) is PACAP
dependent in the EA as in the PVN. Furthermore, this activation
is specific to a major GABAergic subgroup of the capsular and
lateral parts of the central nucleus of the amygdala (CeC/L) and
BNSTov neurons expressing PKCd, which are differentially
innervated by PACAPergic projections from the LPBn and are
also implicated in mediating other anorexigenic signals in
addition to stress (55). PKCd neurons in the CeC/L, but not in
=

Figure 6. PACAPPBn/CeA contributes to RS-induced hypophagia. (A) Sch
the following RS studies. AAV9-hSyn-eGFP-cre was injected into the LPBn o
(PBnAAV-cre::WT) bilaterally. Animals were subjected to acute 2-hour restraint or (c
the CORT level for NRS, RS 2 hours, or CRS; body weight was measured for hyp
expression eliminated from the LPBn led to an attenuation of restraint-induced hyp
response to 2-hour restraint (as showed in Figure 1C), data for females and males
female mice. Two-way analysis of variance, stress effect F1,37 = 43.647, p , .001;
.031. Post hoc Bonferroni t test, RS vs. NRS, p, .001, for PBnAAV-cre::WT; p = .006
hours, p , .001. n = 8–13 mice per group. *p, .05; **p , .001. (C) PACAP expres
acute RS or CRS for 4 days, 2 hours daily. Three-way analysis of variance, stress e
effect F1,45 = 0.000312, p = .986. n = 5–7 mice per group. (D) PACAP express
elevation in the PVN induced by 2-hour restraint. Immediately after 2-hour restrain
with c-FOS antibody, or freshly frozen brains were cryostat sectioned for RNAs
experimental design for inactivation of PKCd neurons in the extended amygdala d
or BNSTov of PKCd-cre mice bilaterally. Expression of hM4D(Gi) tagged with mC
later. Mice were subjected to 2-hour RS paradigm and CNO (2.5 mg/kg) or saline
CeA, not in the BNSTov, led to attenuation of 2-hour restraint-induced hypopha
CNO vs. saline, F1,88 = 2.011, p = .16; injection site CeA vs. BNSTov, F1,88 = 8.888
mCherry into the CeA or BNSTov showed no difference in weight loss in the 24 ho
RS, mice injected with virus in the BNSTov or CeA treated with saline similarly s
Bonferroni t test following 3-way analysis of variance, RS 2 hours vs. NRS, p ,

Inactivation of PKCd neurons in the BNSTov by administration of CNO did no
BNSTov_AAV-DIO-hM4D(Gi) groups after RS, CNO vs. saline, p = .861]. Howeve
attenuation of restraint-induced body weight loss [post hoc Bonferroni t test, in C
mice per group, males (blue dots) and females (pink dots) are combined becaus
straint. *p , .05; **p , .001. (G) Inactivation of PKCd neurons in the CeA or in BN
way analysis of variance showed significant stress effect (F1,80 = 841.668, p ,

examined immediately after 2-hour restraint was not different between PKCd-c
BNSTov or treated with saline and CNO (F3,80 = 1.313, p = .276). AC, anterior co
oval nuclei of bed nucleus of stria terminalis; BNSTv, BNST ventral; CeA, centra
corticotropin-releasing hormone; CRS, chronic restraint stress; IHC, immunohist
LPBn, lateral parabrachial nucleus; lv, lateral ventricle; mRNA, messenger RNA; N
adenylate cyclase-activating polypeptide; PKCd, protein kinase C delta type;
ventricle; WT, wild-type.

Biological Psychiatry: Global O
the BNSTov, are required for mediation of hypophagic
behavior following stress. Apparently, BNSTov and CeL PKCd
neurons are not functionally redundant, although stimulated by
the same PACAPergic projections from the LPBn. PBn PACAP
projections to the BNSTov may modulate other aspects of the
threat/stress response (56). PACAP signaling in this pathway is
necessary, but may not be sufficient, for stress-induced be-
haviors such as hypophagia. The approach used here for
defining PACAP’s role may be useful for defining how other
first messengers, including glutamate and CGRP, and perhaps
other neuropeptides, signal combinatorially via the PBn/EA
to convey pain, gustatory, imminent threat cue, and RS infor-
mation relevant to affective state and motivation for purposeful
action (eating, escape, or avoidance). Such investigations may
reveal how this projection integrates state-dependent and
immediate sensory information during presentation to limbic
structures to convey salience and determine behavioral
responses.

PACAP is indeed a master regulator of the stress response
(57), conveying separate consequences of stressful stimuli
through distinct neuronal circuits to endocrine and behavioral
outputs in the mammalian stress response. Stress responses
culminating in hypophagia occur in parallel to endocrine (HPA)
activation, rather than exclusively downstream of CORT
elevation, as in previous models for the psychogenic stress
response (37). CORT acting conditionally on these circuits
(58,59) may explain the inability of steroid treatment alone to
eme of experimental design for elimination of PACAP in the LPBn and
f PACAPfl/fl (PBnAAV-cre::PACAPfl/fl) or the corresponding control WT mice
hronic) 2 hours daily restraint for 4 days. Tail blood was collected to examine
ophagic effect; and brain tissue was collected for IHC and ISH. (B) PACAP
ophagia. Because female and male mice have no difference in weight loss in
are displayed together: blue dots indicate male mice and pink dots indicate
genotype effect F1,37 = 8.728, p = .005; stress 3 genotype F1,37 = 5.006, p =
for PBnAAV-cre::PACAPfl/fl. PBnAAV-cre::PACAPfl/fl vs. PBnAAV-cre::WT for RS 2

sion eliminated from LPBn did not affect CORT elevation induced by 2 hours
ffect F2,45 = 116.097, p, .001; sex effect F1,45 = 87.693, p, .001; genotype
ion eliminated from the LPBn did not affect c-FOS induction or crh mRNA
t, mice were perfused and brain sections were collected for immunostaining
cope with crh probe. n = 3–4 mice per group. **p , .001. (E) Scheme of
uring 2-hour RS. AAV9-hSyn-DIO-hM4D(Gi)-mCherry was injected into CeA
herry in the PKCd neurons of CeA or BNSTov was confirmed 4 to 6 weeks
was ip injected 30 minutes before RS. (F) Inactivation of PKCd neurons in the
gia. Three-way analysis of variance, stress effect F1,88 = 250.618, p , .001;
, p = .004. PKCd-cre mice bilaterally injected with AAV9-hSyn-DIO-hM4D(Gi)-
urs prior to ARS (post hoc Bonferroni t test, CeA vs. BNSTov, p = .169). After
howed significant body weight loss in 24-hour poststress period [post hoc
.001; BNSTov_AAV-DIO-hM4D(Gi) vs. CeA_AAV-DIO-hM4D(Gi), p = .116].
t affect restraint-induced body weight loss [post hoc Bonferroni t test, in
r, inactivation of PKCd neurons in the CeA by administration of CNO led to
eA_AAV-DIO-hM4D(Gi) groups after RS, CNO vs. saline, p = .001]. n = 9–14
e of no sex difference for body weight loss in response to acute 2-hour re-
STov did not affect CORT elevation induced by 2 hours of acute RS. Three-
.001) and sex effect (F1,80 = 138.9, p , .001). However, CORT elevation
re mice with AAV9-hSyn-DIO-hM4D(Gi)-mCherry injection at the CeA and
mmissure; ARS, acute restraint stress; BLA, basolateral amygdala; BNSTov,
l amygdala; CNO, clozapine N-oxide; CORT, cortisol/corticosterone; CRH,
ochemistry; ir, immunoreaction; ip, intraperitoneal; ISH, in situ hybridization;
RS, no restraint stress; ns, not significant; opt, optic tract; PACAP, pituitary
PVN, paraventricular hypothalamic nucleus; RS, restraint stress; 3V, third
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trigger behavioral stress-like responses in rodents. The po-
tential roles of both frontocorticohypothalamic and para-
brachioamygdalar PACAP-containing pathways in response to
psychogenic stress uncovered here may be relevant to human
brain processing of stress in well-known PACAP-dependent
disorders, including posttraumatic stress disorder (43).
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