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Abstract: Carcinogenicity is a crucial endpoint for the safety assessment of chemicals and products.
During the last few decades, the development of quantitative structure—-activity relationship ((Q)SAR)
models has gained importance for regulatory use, in combination with in vitro testing or expert-
based reasoning. Several classification models can now predict both human and rat carcinogenicity,
but there are few models to quantitatively assess carcinogenicity in humans. To our knowledge,
slope factor (SF), a parameter describing carcinogenicity potential used especially for human risk
assessment of contaminated sites, has never been modeled for both inhalation and oral exposures.
In this study, we developed classification and regression models for inhalation and oral SFs using data
from the Risk Assessment Information System (RAIS) and different machine learning approaches.
The models performed well in classification, with accuracies for the external set of 0.76 and 0.74 for
oral and inhalation exposure, respectively, and r? values of 0.57 and 0.65 in the regression models for
oral and inhalation SFs in external validation. These models might therefore support regulators in
(de)prioritizing substances for regulatory action and in weighing evidence in the context of chemical
safety assessments. Moreover, these models are implemented on the VEGA platform and are now
freely downloadable online.

Keywords: cancer slope factor; in silico method; QSAR; prioritization

1. Introduction

Every day, people are exposed to numerous environmental chemical stressors that
can have adverse health effects during their life. Exposure to toxic chemicals or mixtures
comes from the environment, living places and workplaces, but diet, drugs and lifestyle
are important concurrent sources as well [1-4]. Adverse effects include chronic diseases
and cancer. Nowadays, cancer is a major public health issue with more than 3 million new
cases per year in the European Union [5,6].

Experimentally, the carcinogenic potential of a substance is evaluated by long-term
in vivo carcinogenicity studies with laboratory animals. The conventional test for carcino-
genicity is the two-year rodent carcinogenicity bioassay as described by the Organization
for Economic Co-operation and Development (OECD) Test Guidelines 451 and 453 [7-9].
Although the procedure is expensive and time-consuming, animal models are still the most
widely used method of investigation. In the last decade, the validity of the rodent bioassay
was debated because of uncertainty related to extrapolating results to humans and ethical
concerns about the numbers of animals needed [6]. Various non-animal methods have
recently been proposed as alternative or complementary methods to assess carcinogenicity
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with the aim of reducing animal testing, time and cost of the evaluation. These methods
include in vitro bioassays (such as cell transformation assays and toxicogenomics) and in
silico methods, such as (Q)SARs models and expert systems [10-20].

Most of the in silico models for carcinogenicity are classifier tools used to predict
whether or not chemicals are carcinogens in animal models [15,21-24]. Only a few con-
tinuous models are used to quantitatively assess carcinogenicity, specifically, to predict
the potency dose in vivo as the endpoint (TD50) [25-32]. Most of these models are already
implemented in license-based or freely available software tools (Table S1).

To our knowledge, no model has yet been developed for oral and inhalation slope fac-
tors (SFs) used in human quantitative risk assessment (HRA) of environmental pollutants.
The SF is the upper-bound estimate of the slope of the dose-response curve in the low-dose
region for carcinogens and is used to assess the increase over a lifetime in incidence of
cancers in humans from oral or inhalation exposure to a dose of a carcinogenic chemi-
cal [33-36]. In the HRA framework, the cancer risk for each chemical (CR or Incremental
Lifetime Cancer Risk, ILCR) is calculated using the chronic daily intake (CDI, mg/kg-day)
and the slope factor (SF, (mg/kg-day) ~!); the SF provides the chemical-specific carcino-
genic potency. With these two values, the cancer risk (CR, dimensionless) is obtained by
multiplying them, as in Equation (1):

CR = CDI x SF 1)

Here we propose an integrated in silico approach for the qualitative and quantitative
assessment of chemical carcinogenic potency, which includes classification and quantitative
models for inhalation and oral human carcinogenicity based on slope factors.

2. Results

We developed both classification and regression models for carcinogenicity expressed
as oral or inhalation slope factors. Data were collected from the Risk Assessment Informa-
tion System (RAIS) Toxicity values database (https://rais.ornl.gov). For each exposure
route (oral or inhalation), chemicals with a defined value for SF were considered carcino-
genic, while compounds with no value were considered non-carcinogenic. This binary
dataset was used to develop the classification models; however, the dataset including the
SF values to describe carcinogenic potency was used for the regression models. Thus, in
our proposed approach, the classifier models indicate if the substance is carcinogenic or
not, and the regression model should be used in cascade to assess the substance’s potency
if it is labelled as carcinogenic.

2.1. Classification Models

Binary classification models were built by the Classification and Regression Tree
(CART) modelling approach. CART models for inhalation and oral carcinogenicity per-
formed well for sensitivity and specificity. The structure of inhalation and oral CART mod-
els are included in the Supplementary Materials as Figures S1 and S2. In order to increase
access to the models, we implemented them within the platform VEGA (Virtual models
for property Evaluation of chemicals within a Global Architecture, www.vegahub.eu),
our online, freely available platform that contains a series of QSAR models for regulatory
purposes. There are negligible differences between the original models in CART and those
in VEGA. Balancing the dataset between models led, as expected, to lower sensitivity for
the inhalation model than for the oral model (Table 1).

2.2. Regression Models

We developed the regression models using descriptor-based multi-layer perceptron—
artificial neural networks (MLP-ANNS). In the proposed strategy to assess carcinogenicity,
the regression model should be run when the classification model indicates carcinogenicity.
For each regression model, the performance is reported as a determination coefficient (r2),
root-mean-square error (RMSE), mean absolute error (MAE) and percentage of predicted
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compounds (this percentage is called coverage of the model). We split the substances into
two approaches. As detailed in the Material and Methods section, in one case (split A) we
used a test set (TeS) to select the best model, and then an external validation set (ES) was used
to evaluate the performance of new substances. In approach B, there was only a training and
validation set, and the model selection was done using the 10-fold cross-validation method,
using substances from the training set. Performances are reported in Tables 2 and 3 for the
two splitting approaches, with values for the training set (TtS), TeS and ES.

Table 1. Statistics for the final oral and inhalation classification models (as implemented in VEGA).

Endpoint Statistics Training Set Test Set
Accuracy 0.81 0.76
OSF Sensitivity 0.82 0.76
Specificity 0.79 0.76
Accuracy 0.81 0.76
ISF Sensitivity 0.73 0.72
Specificity 0.86 0.79

Table 2. Performance of OSF and ISF regression models derived with split scheme A.

Endpoint Statistics TrS TeS ES
12 0.709 0.708 0.569
OSF MAE 0.651 0.784 0.946
RMSE 0.875 0.945 1.255
coverage 100% 81% 88%
12 0.745 0.654 0.510
ISF MAE 0.639 0.875 0.933
RMSE 0.876 1.035 1.176
coverage 100% 85% 89%

Table 3. Performance of OSF and ISF regression models derived with split scheme B. Coverage is the
percentage of compounds retained after applying the applicability domain (AD).

TrS

Endpoint Statistics Goodness-of-Fit ~ 10-Fold Cross-Validation ES
12 0.756 0.608 0.515
OSE MAE 0.646 0.819 1.012
RMSE 0.814 1.031 1.284
coverage 100% 100% 76%
12 0.745 0.591 0.647
ISE MAE 0.639 0.838 0.853
RMSE 0.876 1.088 1.023
coverage na. na. 81%

Split scheme A returned similar results for both OSF and ISE. The predictive power
of both models was confirmed on both validation sets, with r? values from 0.70 to 0.65 on
the TeS, and from 0.57 to 0.51 on the ES. Coverage of the models on the two validation sets
was always greater than 80%. Models derived from split scheme B showed similar results,
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though performance was slightly better for the ISF model that returned an 12 of 0.65 on the
ES, while the OSF model returned an r2 of 0.52. Moreover, the coverage on the TeS for the
OSF was lower than 80%. Thus, split scheme A can be considered preferable for model
OSF, while split scheme B gave better results for model ISE.

One disadvantage of DRAGON descriptors is that they cannot be used to develop
a completely free and open source QSAR model software, even though they are widely
used and robust. There are some examples of QSAR models retrained with DRAGON-
like descriptors that give similar results [37,38]. With a view of implementing all of the
developed models in the VEGA platform [39], we retrained them using the best scheme for
each endpoint (scheme A for OSF and scheme B for ISF).

The model for OSF was replicated without modifications because VEGA already has
the same descriptors as DRAGON models; however, the selected descriptors were not
available as DRAGON:-like descriptors for the inhalation models, so retraining the model
led to different performances.

Table 4 shows the statistics of the models implemented in VEGA. The implementation
of OSF with DRAGON gave higher 12 in training (TrS = 0.709, TeS = 0.708) than VEGA
did (TrS + Te = 0.62), which gave a better performance in ES (0.569 vs. 0.839). However,
12 values for the TrS and ES of ISF (TrS = 0. 745, ES = 0.647) were both certainly higher
than with VEGA implementation (IrS = 0.586, ES = 0.566). Within the feature selection, we
reduced the number of descriptors, using tools such as genetic algorithms, as described in
the Materials and Methods section. One possible explanation is that a genetic algorithm
using a larger number of descriptors in DRAGON had more starting combinations and
a greater chance of selecting the best pool of descriptors.

Table 4. Performance of OSF and ISF regression models after VEGA implementation. Performances
are reported for the training and test sets. Since the applicability domain is evaluated with the ADI
index (53), coverage is not reported.

Endpoint Statistics Train ! Full Train without Outliers Test Full Test in AD
2 0.658 0.642 0.573 0.636
OSF MAE 0.713 0.725 0.951 0.881
RMSE 0..96 0.969 1.28 1.131
2m 0.653 0.64 0.489 0.58
?mavg 0.655 0.633 0.501 0.595
r?mDelta 0.004 0.015 0.023 0.029
k 1.017 1.02 0.985 1.028
ki 0.647 0.63 0.57 0.619
F 536.384 477.804 40.315 48.974
CccC 0.791 0.778 0.722 0.77
2 0.586 0.577 0.566 0.592
ISF MAE 0.862 0.868 0.923 0.91
RMSE 1.119 1.13 1.121 1.115
2m 0.584 0.574 0.524 0.525
r?mavg 0.568 0.562 0.484 0.482
r?mDelta 0.034 0.024 0.08 0.085
k 0.993 0.996 0.916 0.936
ki 0.595 0.582 0.63 0.635
F 330.968 302.773 32,615 34.808
CcccC 0.74 0.732 0.729 0.738

! The training set for the OSF is TrS + TeS.
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3. Discussion

Here we propose classification and regression models for the carcinogenicity risk
assessment of organic chemicals. Classification models are used to detect potential carcino-
gens and assume that negatively predicted compounds are non-carcinogenic. Meanwhile,
the regression models quantify the potency of each chemical as a slope factor. We developed
models for both inhalation and oral carcinogenicity.

The carcinogenicity models performed well: accuracies in the test set were 0.76 and
0.74 for oral and inhalation models, respectively, and r2 values were 0.57 and 0.65 in the
regression models, respectively, for oral and inhalation SFs in ES.

Our results suggest that these models could be useful to support regulators in chem-
ical safety assessments, providing information not only on the carcinogenic potential of
chemicals but also as a measure of their potency. This latter information is fundamen-
tal to establish threshold concentrations of each chemical carcinogen, and it also gives
a quantitative estimate of the risk of adverse health effects in exposed recipients.

3.1. Focusing on Selected Descriptors

Even though the models were trained with different split schemes and different
datasets, some descriptors were selected in more than one model, and others came from
the same descriptor block (Table S2).

The cyclomatic number (nCIC), for example, was selected for both classification and
regression slope factors and refers to the number of rings. The descriptor is related to the
high carcinogenicity potency and to the large number of rings in the same molecule and is
typically seen in polycyclic aromatic hydrocarbons (PAHs), which are carcinogenic through
the formation of epoxides [40].

Another important class of descriptors selected for the regression models relates to the
presence of chlorine. Several non-genotoxic mechanisms are influenced by the presence of
halogens. For example, polychlorinated biphenyl (PCB) interaction with the aryl hydrocarbon
receptor (AHR) plays a major role in breast cancer. It has also been reported that the affinity
is related to the planar conformation of the molecule [41-43]. Though the developed model
does not take account of 3D information, the position of halogens on the ring (BO2[CI-1],
B04[O-C1], B07[C1-C1], BOS[CI-C1], BOS[CI-Cl1] and F04[O-Cl]) heavily influences the planarity
of the molecule. This is well known for dioxin-like PCBs [44].

Descriptors like nRNNOx (number of nitroso groups) and nN-N identify several
indirect alkylating agents, such as hydrazine or N-nitroso groups, that can form DNA
adducts after metabolic activation.

3.2. Usefulness of the Model

The classification models can help spot uncertain data from the original dataset. For
example, vinyl chloride, 1,3-butadiene and chloromethane are predicted as non-carcinogens
by the oral classification model, even though they have an oral slope factor value. If we look
at the origin of the data, we see that the results for these three substances were extrapolated
from inhalation tests on rats because they have a gaseous state at 20 °C [45].

The same information holds with the inhalation classification model. Thiourea,
methylthiouracil and acetamide are classified as non-carcinogenic by the inhalation classifi-
cation model, but there is an inhalation slope factor for them. The inhalation risk arises
only if the particles are smaller than 5 um [46,47]. The three misclassified substances have
a particle size reported in the OECD QSAR toolbox [48] above this threshold, making them
unlikely to have a carcinogenic effect via inhalation.

3.3. Model Integration

The use of these models should follow a hierarchical pipeline. Since the regression
models are based on a subset of compounds included in the classification dataset, a smaller
chemical space will be covered. For this reason, substances should first be screened with
the classification-based model in order to evaluate any carcinogenic effect, before then
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evaluating the potency with the relative regression model. This suggested workflow is
outlined in Figure 1.

SMILES conversion
Binary classification model
Negative Positive
outcome outcome
Non carcinogen Carcinogen
9
Potency estimation

with regression models

Figure 1. Hierarchical workflow to apply classification and regression-based models for carcinogenicity.

4. Materials and Methods
4.1. Datasets and Data Curation

Regression and classification models were developed using data from the RAIS Toxicity
values database [49]. Data cover different pollutant categories including organic and inor-
ganic compounds, such as dioxins, PAHs, pesticides and metals frequently found in contam-
inated sites. We retrieved 1110 and 990 values for the oral slope factor (OSF, (mg/kg-day) 1)
and for the inhalation unit risk (IUR, ng/m?3), respectively.

In accordance with the United States Environmental Protection Agency (US EPA) [50],
IUR data were converted to inhalation slope factor (ISF) using the formula

ISF = (IUR * BW % CF)/IR @)

where IUR = inhalation unit risk [(ug/m?) ~!], BW = average body weight [70 kg],
IR = inhalation rate [20 m?/ day] and CF = conversion factor [1000 ng/mg]. Both OSF
and ISF values were then converted in logarithmic units for modelling purposes.
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Canonical simplified molecular-input line-entry systems (canonical SMILES) were
retrieved for each chemical from JChem for Office [51] and ChemlID plus [52], and chemicals
showing incongruency between the various sources were rejected. Most QSAR models
cannot handle inorganic compounds, metals and metal complexes or organic salts, so data
related to these compounds or mixtures were rejected. Ionized structures were neutralized
and counterions eliminated. The datasets were further checked for duplicates.

Chemicals with a defined value (in our case SF) were considered carcinogenic, and
compounds with no value were considered non-carcinogenic.

The final datasets for the classification models included 745 and 750 compounds,
respectively, for OSF and ISE. For the regression models, only compounds with continuous
data were used for modelling. This led to two final datasets comprising 315 compounds
with OSF data and 263 with ISF data. Datasets are available on Zenodo [53] and also in the
Supplementary Materials (Table S5: Dataset OSF and Table Sé6: Dataset ISF).

4.2. Classification Models

We applied the same modelling workflow to OSF and ISF datasets. 2D molecular
descriptors were calculated using DRAGON version 7.0.6 [54]. All available descriptors
were selected, then pruned within DRAGON, removing those with missing values, constant
and semi-constant values and redundant descriptors (those with a pairwise correlation
over 0.95 with another descriptor).

For the training/test split, we used constitutional and ring descriptor blocks, together
with the experimental class value, as input for principal component analysis (PCA). The first
principal component (PC) was used to rank the compounds, then a venetian blind approach
was used to split training and test set compounds in an 80-20% ratio.

An in-house tool developed in the R statistical platform [55] was used to select the
best descriptors set and size to be employed for the final model. The approach was based
on a forward selection technique, a well-known general strategy previously used by our
group to build models for toxicological endpoints [56,57]. In this approach, the descriptor
leading to the best model was added at each iteration, starting from the descriptor most
closely correlated with the experimental data, until the final number of 25 descriptors.
Models were built with Linear Discriminant Analysis (LDA) modelling and applied with
a bootstrap cross-validation approach (100 iterations). The fitness function was calculated
for each model as a linear combination of the means for accuracy, sensitivity and specificity
from the models built in each bootstrap iteration. This function was used to select the best
descriptor to be added in the process to proceed to the next iteration. The set of descriptors
with the best cross-validation values was used for the final model.

The “best” values were defined on the basis of their trend: by progressively adding
descriptors to the model, cross-validation performance increases up to a plateau, meaning
that the optimal number of descriptors has been reached, and adding further descriptors
would lead to over-fitting.

The optimal set of descriptors was used to build a CART model in the R statistical
environment (using the “rpart” package [58]) for both datasets to improve the performance
of the naive LDA approach used in the first step. The CART modelling implemented in R
includes an internal cross-validation to reduce the complexity of the model; as a result, the
final trees contain fewer descriptors than the set provided as input (while still leading to
better performance than with the LDA models).

4.3. Regression Models

Two different split schemes were applied on the OSF and ISF datasets (Figure 2).
In split scheme A, 10% of the entire dataset was randomly extracted from the ES for
external validation. The modeling set, consisting of the remaining chemicals, was split
into a TrS and a TS [59] containing 80% and 20% of the modeling set, respectively. In split
scheme B, only two datasets were created: TrS and ES, containing 80% and 20% of the
entire dataset, respectively.
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Figure 2. Graphic representation of the two schemes applied for dataset split. For each dataset,
the function in model development (i.e., derivation, selection and validation) is reported.

For both split schemes, uniform distribution of the endpoint values among the subsets
was ensured by applying an activity sampling method: compounds were sorted on the
basis of their activity and divided into bins of equal size in terms of activity range. For
each bin, chemicals were randomly assigned to datasets based on the percentages [60-62].
Table S3 reports the size of the datasets with the two split schemes, OSF and ISF.

As for the classification models, molecular descriptors were calculated for each com-
pound with DRAGON 7 software, and the same pruning procedure was applied for the
regression models.

Features were selected with the “gaselect” R package [63] that implements a partial
least-squares genetic algorithm (PLS-GA) and repeated double cross-validation [64] for
statistical analysis of subsets of descriptors. The following settings were applied for the
PLS-GA: initial population 2000; number of iterations 5000; minimum number of variables
5; maximum number of variables 12. Optimal subsets of descriptors returned by the final
iteration of the run were used for model derivation, using r? as a fitness function.

Regression models were derived from each optimal subset of descriptors with multi-
layer perceptron-artificial neural networks (MLP—ANNS) [65], as implemented in KNIME
software. The MLP node is an implementation of the RPROP algorithm for multilayer
feed-forward networks. This is a multi-layer perceptron trained with backpropagation that
performs a local adaptation of the weight-updates according to the behavior of the error
function. This solution has been found useful to overcome the inherent disadvantages
of pure gradient-descent. In this algorithm, weights near the input layer have an equal
chance to grow and learn as weights near the output layer. In addition, the descriptors
were normalized in a range from 0 to 1 to be used in the algorithm.

MLP-ANNSs were trained over 100 iterations and had a standard architecture formed
by one input layer (with the same number of nodes as input descriptors), one hidden layer
(with 10 neurons) and one output layer.

The applicability domain (AD) [66-68] was defined in order to identify less reliable
predictions that were more likely to be wrong. The AD was evaluated by PCA. TrS chem-
icals were projected on a chemical space defined by the first two principal components
(PCs) calculated using model descriptors. TeS and ES chemicals whose PC1 or PC2 values
fell outside the range defined by the 5th and 95th percentiles of the distribution for TrS
compounds were considered outside the AD and excluded from the statistical analysis of
the models. This restrictive approach was preferred to avoid the inclusion of underrep-
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resented areas within the chemical space defined by the first two PCs. The AD was also
defined using the standardization approach [69].

Models for OSF and ISF were derived for each of the two split schemes. The selection
of the best models was different based on the splitting scheme applied. In scheme A, models
were ranked according to their r? value on the TeS, without considering compounds outside
the AD. The single best-performing OSF and ISF models were then evaluated for their
external predictivity on the ES. In scheme B, single best models were selected according to
internal performance (i.e., r* in 10-fold cross-validation) and then were evaluated for their
external predictivity on the TeS.

All the models were then implemented in VEGA [39,70]. The OSF model has the
same descriptors as the original DRAGON models since the VEGA engine is already
able to calculate them. After recalculation of the descriptors with VEGA, the model was
retrained using TrS + TeS, then validated on ES. Since selected descriptors for the inhalation
regression model were not available as free descriptors in the VEGA platform, it was
necessary to replicate the model using the same approach but with the descriptors already
implemented in VEGA.

4.4. Statistical Analysis

Accuracy, sensitivity and specificity were calculated according to Baratloo et al. [71] to
evaluate the classification models. For regression models, we calculated the 2, the RMSE
and the MAE:

o Thawi-9)' | RSS ®
Zln:1 (yi — yavg>2 TSS
n Y
RMSE = w 4)
MAE = |y; — 1 5)

where y; is the observed dependent variable (the experimental response), i is the calculated
value, yavg is the mean of the dependent variable, RSS is the residual sum of squares and
TSS is the total sum of squares for n elements of the modeled dataset.

Finally, r>m metrics (including r?m, average r>m and Delta r?m) were calculated for
validation purposes according to previously published approaches [72,73].

5. Conclusions

The protection of human health is the most important goal of public health man-
agement. The need to characterize the effects of chemicals is now considered a priority
research area for environmental protection agencies and national institutes of health in
different countries. In this study, we propose four QSAR models to assess chemical carcino-
genicity, based on inhalation and oral slope factors, which are key parameters for health
risk assessment, especially in the investigation of contaminated sites. To our knowledge,
few models are available to quantitatively assess carcinogenicity, and most of them only
predict in vivo oral carcinogenicity in animal models. Our combined approach can classify
a compound as potentially carcinogenic or not, and it can estimate its carcinogenic potency
for humans in terms of oral and inhalation slope factors in cases of carcinogenic activity.

The proposed models could help regulators to evaluate chemical substances for
carcinogenicity in humans. Making a version of the models freely available will permit
easy screening of chemicals, which will greatly support health risk assessments.

Supplementary Materials: The following are available online. Table S1. Non-exhaustive list of
software tools to predict carcinogenicity, adapted from Bossa et al., 2018 [32]. Table S2. Descriptors
of the OSF and ISF models. Table S3. Sizes of datasets for the regression model. Table S4. QSAR
Model Reporting Format of the carcinogenicity. Table S6 Dataset OSF. Table S7. Dataset ISF. Figure S1
Inhalation CART model. Figure S2 Oral CART model.
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