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In this issue of Kidney Medicine, Verma et al1 highlight the
underuse of machine learning as a research tool in the

field of nephrology. Through a bibliometric search
approach, they found that kidney research had the lowest
Related article, p. 762
number of articles using machine learning when compared
with 4 other organ-specific research areas (brain, heart,
liver, and lung). Additionally, among machine learning
articles, the National Institute of Diabetes and Digestive
and Kidney Diseases had the lowest number of acknowl-
edgements as a funding source compared with 7 other
National Institutes of Health institution sponsors. Organ-
specific specialty journals were also found to have fewer
articles featuring machine learning when compared with
broad interdisciplinary journals. These findings highlight
the importance of educating the nephrology community
about the potential advantages (as well as inherent limi-
tations) of artificial intelligence (AI) research tools.

Although the scarcity of publications within the
nephrology field using machine learning has already been
pointed out,2,3 Verma et al1 rigorously document this
finding while also placing this into perspective with other
organ-specific fields and highlighting the disparity of
funding specifically directed toward machine learning
research within nephrology. The article is very timely
because of the increasing number of clinical trials and
rapid advancement in the field of diagnostics and thera-
peutics, areas that might get a further boost with the
integration of machine learning.

AI refers to the development of algorithms that allow a
computer to perceive, learn from data, react, make pre-
dictions, and act.4 Machine learning is one of the branches
of AI and comprises a set of algorithms, such as convoluted
neural networks, random forest, and deep learning, that
have the ability to learn and improve from experience
without having been explicitly programmed for a specific
task.4 Convoluted neural networks are particularly efficient
at analyzing data that are spatially or temporally depen-
dent, such as images, explaining their popularity in radi-
ology and pathology machine learning reseach.5

One of the advantages of deep learning is its ability to
analyze big and complex data and yield predictions that in
general tend to be similar to or outperform human experts.
Humans become "expert" in their fields over many years
after gathering and analyzing millions of data points in
their brains. The number of data points that can be
analyzed by machine learning is huge, and machine
Kidney Med Vol 3 | Iss 5 | September/October 2021
learning has a clear speed advantage over humans, offering
the potential of advancing our understanding much faster.

The requirement of a substantial amount of data for
training of convoluted neural networks can be a limiting
factor when dealing with rare diseases, as is the case with
glomerular diseases for instance.4 The creation of large
consortiums, such as the Nephrotic Syndrome Study
Network (NEPTUNE), the Kidney Precision Medicine
Project (KPMP), the Chronic Renal Insufficiency Cohort
(CRIC), and the Cure Glomerulonephritis (CureGN) Study,
is a potential way to circumvent this issue.4 Data obtained
through these consortiums have already been used in
machine learning research. For instance, digitalized kidney
pathology slides from the NEPTUNE database have been
used to train a convoluted neural network to segment
normal kidney histologic structures, including glomeruli,
distal and proximal tubules, and peritubular capillaries.6

The assessment of pathologic features, such as interstitial
fibrosis and tubular atrophy, has also been the subject of
machine learning studies,7 including for prediction of
kidney survival.8 Other pathologic states for which con-
voluted neural networks have been successfully trained to
grade and classify include diabetic nephropathy,9 lupus
nephritis,10 and interpretation of immunofluorescence
images.11

In another example of how large disease consortiums
could facilitate future machine learning research, data from
the KPMP database are being used to generate and feed
ontologies that could be used on AI/machine learning
projects to link various -omics profiles to clinical fea-
tures.12 One of the major advantages of the consortiums is
the annotation and review of the digital images by experts
from all over the world. The annotated images help pro-
vide the ground truth for the development of supervised AI
algorithms. After validation of the algorithms, these an-
notated images can be made available in the public domain
to help individual institutes develop their own algorithms.
In most studies, the κ for kidney pathology parameters is
very high. Machine learning and open-sourced reviewed
annotated images may help improve the reproducibility of
the findings and patient outcomes.

Given their ability to analyze and integrate large
amounts of complex data, machine learning tools are ideal
to facilitate understanding of genotype-phenotype re-
lationships in kidney diseases, which requires integration
of digital nephropathology and radiology, transcriptomics,
proteomics, metabolomics, and genome sequencing, as
well as other data modalities such as electronic health re-
cord repositories.13 Within the transplant field, one
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promising initiative is the creation of the Banff Digital
Pathology Working Group,14 which should increase the
availability and use of whole slide images of kidney
transplant biopsies for future use in AI/machine learning
research. Future potential applications of AI//machine
learning in nephropathology include the assessment of
transplant donor biopsies15 that are often read by non-
nephropathologists with limited expertise in medical
renal pathology, 3-dimensional reconstruction of kidney
biopsy tissue,16 and smartphone-based technologies to
assist with adequacy evaluation of kidney core biopsies in
real time, among others (reviewed by Huo et al16).

A few examples of nephrology-specific AI applications
include prediction of the development of left ventricular
dysfunction in patients with chronic kidney disease
(CKD),17 risk for developing progressive immunoglobulin
A nephropathy,18 dry weight assessment in maintenance
dialysis patients,19 acute kidney injury prediction in in-
patients20 including in the intensive care unit setting,21

identification of pathogen-specific immune fingerprints
in peritoneal dialysis patients,22 and even noninvasive high
potassium detection through deep learning of electrocar-
diogram (ECG) patterns on a smartwatch.23,24 Similar
smartphone-based technology has also been used to detect
atrial fibrillation, and it is currently US Food and Drug
Administration (FDA) approved.25 A database of FDA-
approved health care AI applications26 includes 36 appli-
cations in radiology, 16 in cardiology, 6 in internal
medicine, 5 in neurology, 3 in ophthalmology, 2 each in
endocrinology and psychiatry, and 1 in pathology and
urology,26,27 again highlighting the paucity of
nephrology-specific AI research leading to the develop-
ment of clinical applications. The single urology-related
FDA-approved AI application consists of a smartphone-
based urinalysis test kit to be used for at-home diagnosis
of urinary tract infections.28

Given the extensive interface between kidney and car-
diovascular diseases, many AI approaches that are currently
being considered for patients with cardiovascular diseases
could also prove useful among the kidney patient com-
munity. These include the use of wearable devices to detect
hemodynamic changes, including blood pressure levels
through photoplethysmography, biomechanical sensors
incorporated into clothing or shoes that could continu-
ously measure cardiac output, lung fluid volume and
weight, and tattoo-like sensors based on microfluidics for
continuous hemodynamic monitoring.29,30

Due to the similarities between the retinal and kidney
microcirculation, retinopathy has been proposed as a
noninvasive biomarker of microvascular disorders in
patients with CKD.31 Machine learning–based algorithms
have been developed to assist in the diagnosis and
classification of diabetic retinopathy32; a similar algo-
rithm could be tested in retinal images from patients
with CKD to assist in disease severity stratification, risk
for CKD progression,33 or the development of cardio-
vascular disease.34
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However, all these promising potential clinical appli-
cations can only reach the bedside after extensive research
and validation, for which funding and motivation from the
nephrology community to pursue those studies are
essential. In this regard, Verma et al’s findings could be
used to advocate for increased support from funding
agencies into AI/machine learning–based kidney research.
As suggested by Verma et al,1 strategies to increase
awareness and interest of nephrologists regarding machine
learning could include introducing AI machine learning
applications early in medical training to increase future
physicians’ familiarity with these tools. One such suc-
cessful example includes the integration of an iPad-based
ECG platform into preclerkship physiology teaching of
first-year medical students at the University of California,
Irvine School of Medicine.35 The same platform is also FDA
approved to record, store, and transfer single-channel ECG
rhythms.

Currently, machine learning is not an integral part of
nephrology fellowship or internal medicine training cur-
riculum. Physicians are not trained to use this technology
in practice. The current path for AI/machine learning
applications is that 2 people interested in technology will
talk and will come up with projects of mutual interest.
Nephrology can do better than this. To expedite the
development of this field, we need to include machine
learning curriculum in training and develop more collab-
orative opportunities. Another initiative that should
improve the nephrology community awareness and un-
derstanding of AI and machine learning tools is a recent
review series published by a leading kidney specialty
journal,2 as well as the incorporation of AI/machine
learning sessions in nephrology meetings such as the
American Society of Nephrology Kidney Week and the
International Society of Nephrology. Critically, Verma et al
highlight the gap between nephrology and other organ-
based research using AI/machine learning, calling atten-
tion to a field that can help improve health moving for-
ward if this gap is addressed.
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