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Abstract: There are several tools, frameworks, and algorithms to solve information sharing from
multiple tasks and robots. Some applications such as ROS, Kafka, and MAVLink cover most problems
when using operating systems. However, they cannot be used for particular problems that demand
optimization of resources. Therefore, the objective was to design a solution to fit the resources of
small vehicles. The methodology consisted of defining the group of vehicles with low performance or
are not compatible with high-level known applications; design a reduced, modular, and compatible
architecture; design a producer-consumer algorithm that adjusts to the simultaneous localization and
communication of multiple vehicles with UWB sensors; validate the operation with an interception
task. The results showed the feasibility of performing architecture for embedded systems compatible
with other applications managing information through the proposed algorithm allowed to complete
the interception task between two vehicles. Another result was to determine the system’s efficiency
by scaling the memory size and comparing its performance. The work’s contributions show the
areas of opportunity to develop architectures focusing on the optimization of robot resources and
complement existing ones.

Keywords: absolute position system; cooperative algorithm; intercepting vehicles; indoor position-
ing; robot framework; UWB sensors

1. Introduction

The use of an operating system has made it possible to standardize the technologies
for the problem of cooperativity between several robots or vehicles. To this end, the devices,
the sensors, the communication modules, the protocols, and the programming languages
are designed to be compatible with each other. This conception of unified platforms such as
ROS, Kafka, AEROSTACK, MAVLink among others, resolves several hardware problems
and allows a more user-friendly environment for software developers [1–4]. However, high
compatibility leads to a significant increase in resource usage. Another consequence is to
lose the diversity of solutions that are the result of particular case investigations.

In this research, a case study shows the importance of maintaining research with
custom designs than generic designs. A basic platform scenario requires resources at three
fundamental layers. The perception layer (indoor systems) uses a GoPro-type internal cam-
era [5,6] or a VICON type external camera sophisticated system [7,8]. The communication
layer involves the use of transmitters, routers, and standardized protocols such as WiFi,
Zigbee, or Bluetooth [9]. The third layer of applications involves the use of a compatible
information management system, i.e., master and slave workstations using a computer
architecture with an operating system such as Ubuntu or similar. The above implies a
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high energy consumption in managing information compared to the energy required for
actuators who achieve vehicles’ displacement. However, it is essential to consider the
advantages of these solutions. For example, end-users, developers, and interested people
can program solutions in a more friendly way.

In another perspective, there are tailor-made solutions so specific, complex, and cus-
tomized that they require specialized equipment and are not compatible with other systems.
Therefore, the proposal is based on a methodology that combines customized solutions
with generic ones to be implemented in low-performance vehicles or incompatible with
operating systems. For this, a reduction or replacement of tools is proposed without losing
compatibility with high-level technologies. Given the characteristics of this architecture, al-
gorithms based on hardware or technology constraints should be implemented. Finally, the
actual functionality should be validated through a known task and where the optimization
of resources can be compared.

A significant difference between the design of a generic and a customized platform
lies in taking advantage of the sensor’s characteristics. In particular, UWB sensors allow
sending messages and obtaining the position by triangulation. Consequently, known tools
cannot be applied directly, and an intermediate algorithm has to be used. The libraries
of programming languages based on operating systems are very advanced compared to
embedded systems. It is important to remember that the migration of a tool or algorithm
of custom technology to a general one is always possible. However, in the opposite
direction, it is not always guaranteed. Therefore, it is essential not to miss the opportunity
to investigate code optimization for embedded systems.

1.1. Contribution

The design and implementation of an alternative architecture for small vehicles is
the main contribution of this work. Simultaneous localization and sharing information
with a UWB technology reduced computing resources and consumption energy. A suitable
producer–consumer algorithm gives a solution to manage the concurrent processes in
reduced-scale hardware. Other contributions are listed as follow:

• Enable incompatible hardware with high-level architectures.
• Manage information packets between embedded systems.
• Achieve an interception task among vehicles avoiding the use of additional hardware

or complex infrastructure.
• Make compatible an architecture that uses operating systems with one that does not.
• Adapt to the confinement conditions when performing experiments at home.
• The small vehicle platform allows test different autonomous navigation strategies,

lowering the risk and cost of large-scale testing.

1.2. Organization

The article is organized as follows. Section 2 presents a brief review of the state-of-
the-art in robotic systems architectures. The customized architecture for small vehicles
and its underlying concepts are presented in Section 3. The experiments, results and
discussions are developed during Section 4. Conclusions and future Work can finally be
found in Section 5.

2. Background and Related Work
2.1. Robotic System Architectures

Software-oriented solutions in multi-vehicle tasks have consistently been standardized
on architecture with at least three layers with particular purposes. These layers’ functions
are the quantification of physical variables, the communication between sensors and
processing devices, and the applications that solve the tasks [10].

This architecture seeks to centralize the sensors’ information in an integrated manner
on the devices running the applications. Sophisticated communication systems are used to
guarantee the exchange of information. The processing and storage devices use operating
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systems to program the solutions to the tasks. The above clearly shows that the software-
oriented perspective allows for more excellent compatibility. However, poor performance
or incompatibility can occur with specific problems.

2.1.1. Localization Sensors

The Inertial Navigation Systems (INS) are fed with data from their Inertial Measure-
ment Unit (IMU), composed mainly of sensors such as gyroscopes and accelerometers.
INS are cost-effective solutions that do not require additional infrastructure. The main
disadvantage of these systems lies in the cumulative position error that grows during
the operation of the vehicle [11]. However, the combination of the information from an
INS with a global positioning system allows to improve the accuracy of the positioning
estimates [12].

A variety of technologies applied to indoor global positioning systems have been
sought. The results in [13] showed that accuracy depends on the implementation and
methodology used. In particular, the technologies, which were applied in the development
of autonomous vehicles, are global positioning systems by vision such as VICON [7,8], or
Optitrack [14,15], Virtual Reality (VR) systems [16,17] and RF technology [18–20]. Mean-
while, the use of Ultra-Wide Band (UWB), part of the RF technologies, attracted interest
during the last years [21], because with this technology it is also possible to obtain a good
performance in terms of accuracy [22].

Typical tasks that autonomous vehicles must fulfill depend on the quality of the
information about the vehicle’s absolute and relative position within its workspaces, such
as Simultaneous Localization and Mapping (SLAM), obstacle avoidance, trajectory tracking,
and cooperation. The integration of absolute and relative positioning systems is, therefore,
necessary. The most recent research efforts present various technologies to achieve a good
precision in detecting the global and relative position and thus perform a satisfactory
SLAM. On the other hand, UWB and vision systems have been combined to improve the
estimation of the position in the workspace [23]. Other strategies bet on the fusion of
UWB data with those coming from INS [24], and Optitrack [25]. Additionally, it has been
tried to improve UWB systems’ results on a platform of mobile robots using Gaussian
processes [26] and neural networks [27].

2.1.2. Communication Protocols

Indoor Wireless Communications are technologies that allow devices to be uniquely
identified and exchanged over a limited distance of 10 m to 100 m [9]. There are several
criteria for selecting Bluetooth, UWB, ZigBee, or Wi-Fi technology. The most commonly
used technologies are Bluetooth or WI-FI because most robots have it by default. ZigBee
is identified as an alternative for users looking to work with a more significant number
of devices, a low transfer rate, and requiring less energy consumption. Finally, UWB
technologies are less present as a combination of high transfer rate and low normalized
energy consumption.

2.1.3. Applications

Applications such as ROS, Kafka, and MAVLink are versatile tools to incorporate
most devices, infrastructures, programming languages, and technologies. For example,
ROS is defined as a robotic middleware to help manage the complexity and heterogeneity
inherent in distributed systems [1]. Apache Kafka is a distributed messaging system widely
used in big data applications [2] and MAVLink is a communication protocol used for
the bidirectional communications between drones and ground stations over a wireless
channel [4]. In this sense, by having approved research platforms, it is possible to leave
aside hardware problems and focus on algorithms’ performance.

There are different examples of applications that use ROS in its architecture as
in [28–30]. In [31] Apache Kafka was used to parallelize a set learning architecture. In
contrast, in [29], small drones are used to collect data to test obstacle avoidance algorithms.
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Finally, MAVLink being a communication protocol, can be found implemented in several
tools such as ROS. In [32] MAVLink was used with ROS to communicate with the pixhawk
drone and perform autonomous flights. In [33], they used the protocol to communicate
with real drones to validate the performance of the proposed architecture.

The element relationships of the Robotic System Architectures with the software
developed are shown in Table 1.

Table 1. Comparison between similar applications and tools.

Software
(Tool)

Computer
Architecture

Supported
System

Comm.
Devices

Infrastructure

ROS [28] x64
ARM

GNU/Linux Wi-Fi
Network
Camera

FCU

Kafka, ROS [29] ARM GNU/Linux 4G
Network

VPN
Cloud Service

Cameras

MAVLink [34] ARM Android 4.3 Zigbee
X-bee Modules

Tablet
Camera

Proposed
architecture

x64. . .
STM, EV3

Linux. . .
µC Based

Wi-Fi Network
UWB

Table 1 shows that the proposed architecture incorporates non-compliant devices such
as EV3 devices and UWB technology as localization, communication, and infrastructure
devices.

Some architectures propose using cloud services to improve the computational ca-
pacity and intelligence in vehicles such as AGVs [35]. Some examples suggest using
architectures based on the edge-fog model as seen in [30]. The authors used the publish-
subscribe model of ROS to perform 3D scenario reconstruction through SLAM and proof
of concept presented in [36]. In the case AVG [37] the authors give an application-oriented
to AGV collaboration, while in [38] they use ROS. Other similar examples can be seen
in [39–41].

2.1.4. Cooperative Tasks

Cooperative tasks have been investigated in various scenarios with software-oriented
architectures [42,43]. Information sharing using algorithms among aerial or ground vehicles
has been studied. These algorithms are proposed to solve the path planning problem [44],
for the surveillance of multiple moving ground targets [45] or intercepting intruders [46].
Tools of general-purpose have proposed the simulation of these algorithms. However, real
implementation of the hardware of these algorithms requires a particular adaptation. The
adaptation to solve this problem is shown in Section 3.

3. Customized Architecture for Small Vehicles

The previous section showed a typical software-oriented architecture with the most
common technologies. In this section, an alternative hardware-oriented architecture will
be developed. Figure 1 shown a general comparison of layers and technologies employed.

The small vehicle platform allows test different autonomous navigation strategies,
lowering the risk and cost of large-scale testing. The platform enables destructive testing at
a meager cost, infrastructure and energy consumption reduced.
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Figure 1. Comparison of software-oriented architecture (left-side) and proposed architecture
(right-side).

3.1. Small Vehicles Models
3.1.1. Ground Robot

We used a robot as a mobile reference point within the workspace. The robot with
3-DOF (x, y, θ) is of a differential configuration, so it has two independent, active wheels
and a fixed wheel as a support point. The odometry of the vehicle uses encoders and a
gyroscope as a relative reference system. The vehicle’s operation is executed intrinsically
in the controller using the dynamic model proposed in [47].

Figure 2 shows the robot with its differential system variables as it travels along a
given path in an absolute coordinate system XAYA. The mobile is composed of two wheels
with diameter φ, each placed at a distance L from the intermediate point P. The velocities
of the wheels are denoted by vd (dextram = right) and vs (sinestram = left) respectively, so
that the system inputs are:

[L, φ, θ, vs, vd] ∈ R5. (1)

Figure 2. Ground vehicle model.

According to the model of direct kinematics presented in [47], the robot motion is
given by the following matrix equation in (2).

ξA =

(ωd + ωs)cosθ
(ωd + ωs)sinθ

ωd −ωs

, (2)
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3.1.2. Aerial Vehicle

A 6-DOF nano-quadcopter (x,y,z, pitch, roll, yaw) to follow the ground reference
robot’s trajectory was used. The internal odometry consisted of INS, whose IMU integrates
an accelerometer, gyroscope (in three axes) and a barometric pressure sensor. Additionally,
the INS data are merged with the height estimation obtained employing an optical flow
sensor and the absolute positioning system’s data. The operation of the vehicle is done in
an autonomous, semi-autonomous way or by using teleoperation.

To operate the vehicle, we assumed the 12-state model, studied in [48,49] and validated
in [50]. According to Figure 3, the model requires two reference systems: the non-inertial
one X′Y′Z′ located at the center of gravity of the quadcopter, orientated as shown, and
the inertial one x, y, and z relative to the center of the earth. Of the 12 parameters, the
variables x, y and z represent the coordinates of the center of gravity, u, v and w are the
linear velocities along the X′, Y′ and Z′ axes, and ψ, θ and φ represent the rotation angles
(pitch, roll and yaw) with the corresponding angular velocities. All variables are expressed
within the inertial reference system. The model is non-linear and is described in [50,51].

Figure 3. Nano-quadcopter. (a) Body frame. (b) Inertial frame.

3.2. Sensor Information Sharing

A particular research objective was proposed a 3D global positioning platform oriented
to devices with limited hardware. The low-cost UWB sensors were used to perform
simultaneous localization and information exchange between the small vehicles.

The system consists of anchors and tags that communicate with UWB pulses. The
anchors within the workspace serve as absolute reference points for the tags. Likewise,
the tags are used as a mobile reference point to triangulate the anchors’ signals and,
simultaneously, as a communication interface to other external devices. Two-Way Ranging
(TWR) algorithms are used to detect a single tag, and a Time Difference of Arrival (TDoA)
algorithm is used to detect the position of one or more tags inside the same workspace.
The diagram of the operation is shown in Figure 4.

3.3. Producer-Consumer Algorithm

A reduced algorithm based on an analogy to the producer–consumer problem was
another particular research objective. This consideration helps to perform tasks to share
information with two or more complex sensors to localize small vehicles. Furthermore, this
algorithm is reduced to achieve accessible communication among multiple robots and an
extra path planning task was executed at the same time.

Collaboration in navigation among autonomous robots represents a problem of syn-
chronization between the transmission and reception of positioning and movement data.
In this problem, there appear two parallel processes (producer and consumer), which
exchange information by a finite memory buffer [52]. Here the producer is in charge of
generating and inserting data into the buffer, trying not to saturate it. Otherwise, the
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consumer extracts the data from the buffer one by one, preventing the buffer from emp-
tying. Applications of this problem are commonly in concurrency, and message passing,
although trivial, is extremely useful when needed [53]. Figure 5 shows the flowchart of the
consumer–producer problem.

Figure 4. Different configurations of the absolute positioning system mounted within a workspace:
(a) existence of only one tag: a location algorithm based on “two way ranging” TWR is used. (b)Two
or more tags are present: a location algorithm based on “time difference of arrival” TDoA is used.

Figure 5. Flowchart of the producer–consumer problem.

The producer–consumer problem is somehow analogous to the problem of cooperative
follow-up of a trajectory. In said problem, one or more dependent robots follow the
trajectory generated by a master robot until finally coinciding in (almost) the same point.
The master robot draws the trajectory in the workspace, so it operates as a producer of
information on points. On the other hand, the dependent robots receive their information
on the trajectory needed to get to the master, beginning from their starting points. It is,
though, possible to view the dependent robots as consumers of information.

The FIFO (First In-First Out) buffer can be modelled as an ordered set D of qi infor-
mation elements. The state of this kind of memory is determined through the sequence
{q0, q1, · · · , qm}, ordered by the moment insertion of its elements by (3) and (4). In this
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buffer, a new information element q0 is always placed at the end of its queue by the
insertion instruction of an I(q0, D):

I(q0, D) = q0 ∪ D. (3)

The operation raises all elements’ position in the buffer by one place and increases,
consequently, the cardinality by one unit: I(q0, D)| = |D| + 1. On the other hand, the
instruction of an extraction procedure E(D), removes, when executed, the first element qm
from the queue of the m data elements in D:

E(D) = D \ qm. (4)

It is clear that this command lowers the cardinality of the set D by one unit:
|E(D)| = |D| − 1.

For implementation of the algorithm in the robots, we used the following general
considerations. Let W ⊂ R3 be the workspace and R the set of positions of the i robots,
with i ∈ Z+, i = 1, . . . n and n > 1 . The value of the instantaneous position at time t of

each robot is represented by Ri(t) = (xi(t), yi(t), zi(t)). The trajectory
t f
t0

Ri of the robot i
between the starting point Ri(t0) and the endpoint Ri(t f ) are characterized by a sequence
of positions Ri(tj) which corresponds to the equidistant sequence of sampling moments
tj = t0 + j · ∆t, within the interval between the initial t0 and final time t f , separated by a

sampling interval ∆t between each moment, such that:
t f
t0

Ri = {Ri(t)}∀t ∈ [t0, . . . , t f ]. To
the master robot we assign, as identifier, the number 1. In this way the path of this robot is

symbolized with
t f
t0

Ri. The elements of the trajectory are then successively in D1 loaded
elements with the insertion command:

I(R1(tj), D0). (5)

The follower robots Rs, with s ∈ {2, 3, .., n}, reconstruct the path by successively
extracting the leading elements in the D1 buffer:

Rs ← (D1). (6)

The Algorithm 1 for the case of the master robot (producer) can be summarized
as follows:

Algorithm 1 Producer algorithm

1: procedure PRODUCER(D1, trajectory)
2: Initialize |D1| = 0 (empty)
3: RM starts trajectory at R1(t0)
4: while trajectory is not finish do
5: RM inserts its position in memory D1
6: Delay ∆t

The Algorithm 2 for the case of the follower robot (consumer) can be summarized
as follows:

Algorithm 2 Consumer algorithm

1: procedure CONSUMER(RM, D1)
2: if RM starts trajectory at R1(t0) then
3: while position R1(tj) is changing or D1 is not empty do
4: Extract an element from D1 and send it to robot s, as its next position ps
5: Move to ps(xs, yS, zs)
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4. Experiments, Results and Discussion
4.1. Experiments

The experiments performed were divided into two parts: (1) the characterization
of the sensor information sharing with small vehicles and (2) intercepting and landing
of the aerial vehicle on the ground vehicle with shared information using the producer–
consumer algorithm.

4.1.1. Experiment 1: Characterization

This experiment aimed to characterize the absolute positioning system and, after that,
estimate the tracking accuracy in 2D and 3D. The system was placed within a controlled
environment, and functionality tests were carried out within the fixed position’s polygon,
defined by the anchors. The 2D tracking tests consisted of following prior defined trajecto-
ries using the ground vehicle. The corresponding robot was tagged to know in real-time its
position in the xy plane, left side of Figure 6. In the xyz space, we used a nano quadcopter
with a tag integrated, as shown on the right side of Figure 6. The data obtained was used
to reconstruct the trajectory and to know the accuracy of the system.

Figure 6. Diagram of the characterization experiment. (a) In 2D. (b) In 3D.

We used a Loco Positioning System (LPS), which employes a UWB DMW1000 module
from Decaway and whose precision is estimated by the manufacturer to be within ±0.1
m. The LPS is composed of a Loco Positioning Node (anchors) and a Loco Positioning
Deck (tags). For triangulation of the signal, the system supports configurations with 4, 6
and 8 anchors and uses the TWR algorithm (a single tag) and TDoA in the existence of
two or more tags. A minimum of four anchors must triangulate the signal within a 3D
space, so we selected this configuration during our experiments. Four anchors (numbered
from 0 to 3) were placed at a distance 0.16 m above the floor, forming a rectangle with
dimensions m by n. We decided to place the absolute reference system’s origin in the center
of this m× n rectangle. Table 2 shows the values of m, n and the coordinates of each anchor.

Table 2. Positions of the anchors employed to characterize the positioning system.

Size Anchor’s Coordinates (x, y, z)
m [m] n [m] Anchor 0 [m] Anchor 1 [m] Anchor 2 [m] Anchor 3 [m]
1.86 5.0 (−0.93, −2.50, 0) (0.93, 2.50, 0) (−0.93, 2.50, 0) (0.93, −2.50, 0)
1.90 5.0 (−0.95, −2.50, 0) (0.95, 2.50, 0) (−0.95, 2.50, 0) (0.95, −2.50, 0)
5.20 1.9 (−2.50, −0.95, 0) (2.50, 0.95, 0) (−2.50, 0.95, 0) (2.50, −0.95, 0)
2.00 2.0 (−1.00, −1.00, 0) (1.00, 1.00, 0) (−1.00, 1.00, 0) (1.00, −1.00, 0)

A LEGO EV3 ground robot was used in its differential configuration. We employed a
gyroscope with an accuracy of ±3 degrees and an optical encoder with an accuracy of ±1◦

to measure the wheels’ rotation. The controller of the EV3 ground robot contains an ARM
9 processor with 64 MB of RAM and an SD card reader on which the GNU/Linux-based
EV3dev Operating System (OS) was installed. The trajectories and odometry of the EV3
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land mobile as described in [54] were implemented using Python as the programming
language and the EV3dev OS libraries.

The airbone vehicle used is a Crazyflie 2.1 quadcopter, which has as main controller an
STM32F405 and uses the nRF51822 for communication with the Crazyradio-PA telemetry
system. The architecture of the Crazyflie quadcopter allows for the stacking of accessories,
known as decks. We used the Flowdeck V2 as an optical flow sensor and the LPS Deck as a
tag, compatible with LPS. The Crazyflie quadcopter’s architecture is open to implement
tools and algorithms made by the community of developers. Crazyflie quadcopter uses
the Kalman Extended Filter, as proposed by [55,56] for the fusion of data of the IMU, the
Flowdeck V2 and the LPS. The implemented control algorithms are based on [57,58].

For the individual tests, we worked with the TWR mode. We assigned tag 1 to the
Crazyflie quadcopter and tag 2 to the LEGO EV3 robot. As a test to determine the UWB
triangulation system’s accuracy, we implemented a desired trajectory in the workspace for
both robots. A computer was interfaced with a Crazyradio-PA to acquire the position data
of each tag. For this purpose, a circle of 0.61 m radius and different heights, 0.02 m in the
EV3 robot and 0.5 m in the Crazyflie quadcopter.

4.1.2. Experiment 2: Intercepting and Landing Task

The experiment’s objective was to validate the operation of the proposed consumer-
producer algorithm when solving the combined task of intercepting and landing, where
the Crazyflie 2.1 quadcopter must intercept the LEGO EV3 lander and land on top of it.
The initial position of the EV3 robot was x = 0 m, y = 0.66 m and z = 0.02 m, and its given
path was an arc with a radius of 0.5 m and an arc length of also 0.5 m. The initial position
of the Crazyflie quadcopter was at x = 0 m, y = 0 m and z = 0 m, and during the trajectory
tracking phase, the quadcopter was asked to maintain a height of 0.5 m.

Figure 7 shows the flowchart of both the producer and consumer algorithms imple-
mented on a computer to manage the dataflow of the EV3 robot, the Crazyflie quadcopter
and the TDoA mode of the LPS. In this case, process A (producer) is the EV3 robot, and
process B (consumer) is the Crazyflie quadcopter. The process starts when the computer
has verified the communication between the EV3 robot and the Crazyflie quadcopter. The
computer sends then to the EV3 robot the information about the trajectory to be followed.
When the EV3 robot starts to move, it sends its position data to the computer. In parallel to
the EV3 robot following the demanded path, the computer starts the producer-consumer
algorithm and instructs the Crazyflie quadcopter to start its takeoff. When the Crazyflie
quadcopter reaches the reference height of 0.50 m, it starts receiving the buffer position
data of the EV3 robot from the computer.

The EV3 robot sends its position data continuously and independently to the D1
buffer in the computer until it reaches the endpoint of the given trajectory. The Crazyflie
quadcopter consumes the position data added by the EV3 robot in the buffer D1 and
computes its movements by comparing its position with the buffer’s positions. At the
moment, the Crazyflie quadcopter does not encounter any more position data in the buffer
D1 it starts a landing maneuver and touches down on top of the EV3 robot.

The details about the algorithm’s implementation can be viewed in the block diagram
in Figure 8. It illustrates the relationship of the tools used between the computer, the EV3
robot and the Crazyflie quadcopter during the algorithm’s execution. The white arrows
indicate the internal communication flow, while the dotted arrows represent external
communication flow.

The algorithm was implemented on a Python script using multi-threaded program-
ming and executed on a computer with a Core i7 processor with 8 GB of RAM. The Python
script sends orders over the local network to the EV3 robot using the MQTT protocol
through an MQTT broker installed in the EV3dev OS in the EV3 robot. MQTT was used
because it is ideal for machine-to-machine (M2M) communication due to this protocol’s
lightness. On the other hand, the EV3 robot was connected with a wireless network card.



Sensors 2021, 21, 3022 11 of 20

Figure 7. Flowchart of the process A (producer) implemented for the mobile robot EV3 and of the
process B (consumer) implemented for the Crazyflie quadcopter.

Figure 8. Block diagram illustrating the interaction between the components during the execution of
the algorithm.

The communication between the UWB tags and the computer was done using the
Crazyradio-PA telemetry system, which communicates wirelessly, using the NRF24 proto-
col. One Crazyradio antenna can communicate with up to 8 tags.
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4.1.3. Experiment 3: Performance

This experiment aimed to evaluate the scaling of the system about the size of the
consumer’s buffer. The proposal consisted of generating a constant amount of information
of 1.92 kbps by the producer. The tested trajectory was the same as in the previous
experiments with a speed of 0.1 m/s. Buffer size started with 0, increments of 1 and up to
14 times (24 Bytes up to 360 Bytes). The units of measurement used were: the consumption
rate in Kbps, the kinetic energy in Kg ·m2/s2, and the processing time of the information
in the queue with s. The break-even point to determine the system’s efficiency was to
compare the increase of the energy and the processing time.

An additional test was to eliminate the information sent by the Ev3 robot to destabilize
the operation of the quadcopter to 50% of the task.

4.2. Results and Discussion

During the characterization process for the anchor positions, as presented in Table 2
of Section 3, it was observed that a square-shaped distribution of the anchors in the
workspace leads to a better performance than a rectangular one (Figure 9). Nevertheless,
the manufacturer recommends a rectangular layout. The best configuration was a square
workspace of 2 m by 2 m and with the anchors at its vertices after trials.

0 0.5 1

x (m)

0

0.5

1

y
 (

m
)

Reference Rectangular Square

Figure 9. Performance of anchors in rectangular (green) and square (pink) configuration concerning
a reference path.

Figure 10 shows the results obtained after characterization and tuning of the 2 m × 2 m
workspace. Figure 10 shows the ideal trajectory (dashed line) and the one performed (green
line) by the EV3 robot (green line). We found that the data obtained were consistent;
however, when the robot moved near the anchors, the error increased significantly up to
0.1 m. Figure 10b,c show the EV3 robot’s displacement on each of the x and y coordinate
axes. The path carried out by the EV3 robot in the x-axis is much closer to the given
one than in the y-axis, due to the tag’s orientation. However, there are probabilities of
perturbations that increase the error during some moments, for example, in t = 19.7 s.

Figure 10 shows the RMS-error calculation of the path in both coordinate axes. In the
x-axis, the error is within a range below 0 to 0.1 m as claimed by the manufacturer of the
UWB system; however, in the y-axis, the maximum error went up to 0.16 m. The average
RMS-error in the x-axis was 0.042 m, again by a factor of 2/3 lower than the RMS-error of
0.062 m in the case of the y-axis.
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Figure 10. Results of the characterization run for a 2 × 2 m workspace. (a) Trajectory performed
by the robot. (b) x-axis component of the movement. (c) y-axis component of the movement. (d)
Quadratic error on x and y between the performed path and the given ideal trajectory.

The producer-consumer algorithm always kept the equilibrium of data. For this
reason, the Crazyflie quadcopter intercepted the EV3 robot with acceptable performance.
Figure 11 illustrates the best result we obtained when executing the algorithm; that is, it
represents the sequence of the points R1(tj) that were stored in D1’s queue, coming from
the EV3 robot, which was later on converted into set points for the Crazyflie quadcopter.
Figure 11a shows the trajectories performed by the EV3 robot (red line) and by the Crazyflie
quadcopter (blue line) in 3D perspective. The ideal trajectory for the quadcopter is shown
by the black dashed line. The projections of the trajectories on the x, y, and z axes are
similarly represented in Figure 11b–d.

Figure 12 shown the RMS-positioning-error of the EV3 robot and the Crazyflie quad-
copter from the ideal path. We restricted the evaluation of the EV3 robot’s performance to
the xy-plane. In Figure 12a, it is seen that the RMS-error in x is always smaller than 0.22 m.
When (t f − t0) < 10 s the error is greater than 0.1 m, for 10 s < (t f − t0) < 19 s you get an
average RMS-error of 0.04 m, and in the interval of 19 s < (t f − t0) < 23 s the RMS-error is
greater than 0.04 m but always less than 0.1 m, due to the proximity to the anchor three.

Figure 12b shown that the RMS-positioning-error in y is greater than the one in x.
This error is because the distance between the two robots at the beginning is 0.61 m and is
interpreted as an error. The Crazyflie quadcopter manages to reduce its RMS-positioning-
error to less than 0.1 m after the first 6 seconds. Once a level of proximity under 0.1 m is
reached, the average RMS-error in y drops down to a level of 0.032 m.
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Figure 11. The paths taken by the EV3 (blue line), and the Crazyflie quadcopter robot (red line)
compared to the ideal path (black dashed line). (a) The trajectory performed in 3D perspective.
(b) Displacement in x. (c) Displacement y. (d) Displacement in z.
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Figure 12. RMS-positioning-error between the EV3 robot and the Crazyflie quadcopter. (a) x-axis
error. (b) y-axis error.
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Figure 13a shows the performance results of the system about the scalability of the
consumer buffer. The exponential behavior of the data rate with three segments can be
observed. A moderate slope was observed in the first segment from 0 to 8 times the buffer
size, from 8 to 12 a steeper slope and after 12 a sudden increase.
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Figure 13. Buffer size vs. (a) consumption data rate and (b) kinetic energy and execution time
comparison as a system’s performance evaluation.

The results have allowed us to verify that the system can be scaled in terms of buffer
size to increase the consumption data rate. The limitation of this increase is affected by
the response of the quadcopter. Another scenario would be to increase the number of
quadcopters sharing the information; in this sense, the rate is divided among the robots
cooperating in the same task. The maximum operating limit of the platform is 6.8 Mbps
and a packet length of 1023 bytes.

The results to find the balance point between the energy consumed by the quadcopter
and the execution time are shown in Figure 13b. It was observed that with higher efficiency
of the consumption data rate by the quadcopter, the performance and energy increases;
however, for a rate lower than three and higher than 8, the results showed an excess or lack
of time.

From the results, we can deduce that there is a relationship between the energy
consumption of the quadcopter and the information efficiency. For this, by repeating the
experiments, a buffer with the size of 6 is the optimal value for executing the task.

In buffer size 12, a perturbation was tested by eliminating information from the
producer. Thus, it was verified that the lack of information decreased the energy consump-
tion; therefore, the relationship between the quality of the information and the energy
consumption was verified.

Figure 14 shows the results of the trajectories based on the scalability of the buffer
size. A more stable behavior was observed when the information to be consumed is higher
Figure 14(0–8). However, when the data is missing, there is a more unstable behavior as is
shown in Figure 14(12).

Finally, a video of the experiments can be seen at https://rodrigovazquezlopez.github.
io/Cooperation/ (accessed on 23 April 2021).

https://rodrigovazquezlopez.github.io/Cooperation/
https://rodrigovazquezlopez.github.io/Cooperation/
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Figure 14. Different tests made using buffer sizes from 0 to 14.

5. Conclusions and Future Work

The research highlighted the advantages of software-oriented robotic system architec-
tures; however, the disadvantages with small vehicle resources were shown. The proposed
hardware-oriented design succeeded in solving a small vehicle system’s particular problem
without losing the advantage of compatibility with widely used tools.

The producer-consumer algorithm successfully solved the problem of synchronization
of messages shared by two or more vehicles. This algorithm was implemented in real
hardware, while other similar algorithms only were simulated. This research also solved
the problem of intercepting an airborne vehicle’s trajectory to a level below 0.04 m and
landing it safely on top of the ground vehicle. The EV3 robot and the Crazyflie quadcopter
are affordable small-scale platforms and offer the experimenter reduced scale equipment
that avoids unnecessary exposure of people to risks.

It was possible to reduce the number of anchors from 6 and 8, as mentioned in
similar publications, to only 4. The square-shaped workspace gives better results than the
recommended rectangular one. Furthermore, in parallel, perpendicular or diagonal paths,
the RMS-positioning-error is reduced, compared to the one in curved paths, i.e., when the
tags rotate in the plane, has to be interference that increases the error. The positioning error
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increased due to the proximity between a tag and anyone of the anchors. Even under these
higher noise conditions, the results were satisfactory; that is, an average error of 0.04 m
was achieved.

The LPS platform configuration has the following advantages: Experimental test in
small environments of only 2 m × 2 m × 1 m (width, length and height), the platform is
portable and does not require complex installations. Due to the ongoing epidemic, it is
impossible to work in research laboratories in many places in the world. Therefore, the
possibility of having a compact platform, like the one presented here, allows continuing
developing research in our home-laboratories.

Performance tests showed the ability to scale the memory size and thus process more
information. However, the efficiency of the system does not improve proportionally. A
balance point was found to define a trade-off between data, power consumption, and pro-
cessing time. Therefore, we can suggest considering the efficiency relationship between the
size of the vehicles and their information management systems with the system’s scalability.

For further development, a new intelligent and robust algorithm will be proposed to
be executed intrinsically in the airborne and terrestrial robot and achieve the algorithm’s
implementation with a more significant number of cooperating robots.
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7. Akçakoca, M.; Atıcı, B.; Gever, B.; Oğuz, S.; Demir, M.; Saldiran, E.; Yuksek, B.; Koyuncu, E.; Yeniceri, R.; Inalhan, G. A
simulation-based development and verification architecture for micro uav teams and swarms. In Proceedings of the AIAA
Scitech 2019 Forum, San Diego, CA, USA, 7–11 January 2019. [CrossRef]

8. Dirir, A.; Elsayed, H. Object Tracking Framework for Unmanned Aerial Vehicles. In Proceedings of the 2019 IEEE Global
Conference on Internet of Things (GCIoT), Dubai, United Arab Emirates, 4–7 December 2019; pp. 1–6. [CrossRef]

9. Lee, J.; Su, Y.; Shen, C. A Comparative Study of Wireless Protocols: Bluetooth, UWB, ZigBee, and Wi-Fi. In Proceedings of the
IECON 2007—33rd Annual Conference of the IEEE Industrial Electronics Society, Taipei, Taiwan, 5–8 November 2007; pp. 46–51.
[CrossRef]

10. Pinto, M.F.; Honório, L.M.; Marcato, A.L.M.; Dantas, M.A.R.; Melo, A.G.; Capretz, M.; Urdiales, C. ARCog: An Aerial Robotics
Cognitive Architecture. Robotica 2021, 39, 483–502. [CrossRef]

11. Xu, C.; Wang, X.; Duan, S.; Wan, J. Spatial-temporal constrained particle filter for cooperative target tracking. J. Netw. Comput.
Appl. 2021, 176. [CrossRef]

12. Onyekpe, U.; Kanarachos, S.; Palade, V.; Christopoulos, S.R. Vehicular localisation at high and low estimation rates during gnss
outages: A deep learning approach. In Deep Learning Applications, Volume 2; Wani, M.A., Khoshgoftaar, T.M., Palade, V., Eds.;
Springer: Berlin/Heidelberg, Germany, 2021; Volume 1232, pp. 229–248. [CrossRef]

13. Brena, R.; García-Vázquez, J.; Galván-Tejada, C.; Muñoz-Rodriguez, D.; Vargas-Rosales, C.; Fangmeyer, J. Evolution of Indoor
Positioning Technologies: A Survey. J. Sens. 2017, 2017. [CrossRef]

14. Mohr, H. UAV Implementation of Distributed Robust Target Location in Unknown Environments. In Proceedings of the 2020
IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2020; pp. 1–10. [CrossRef]

15. Gargioni, G.; Peterson, M.; Persons, J.; Schroeder, K.; Black, J. A full distributed multipurpose autonomous flight system using
3D position tracking and ROS. In Proceedings of the 2019 International Conference on Unmanned Aircraft Systems (ICUAS),
Atlanta, GA, USA, 11–14 June 2019; pp. 1458–1466. [CrossRef]

16. Yashin, G.; Trinitatova, D.; Agishev, R.; Ibrahimov, R.; Tsetserukou, D. AeroVr: Virtual reality-based teleoperation with tactile
feedback for aerial manipulation. In Proceedings of the 2019 19th International Conference on Advanced Robotics (ICAR), Belo
Horizonte, Brazil, 2–6 December 2019; pp. 767–772. [CrossRef]

17. Wu, R.; Pandurangaiah, J.; Blankenship, G.; Castro, C.; Guan, S.; Ju, A.; Zhu, Z. Evaluation of Virtual Reality Tracking Performance
for Indoor Navigation. In Proceedings of the 2020 IEEE/ION Position, Location and Navigation Symposium (PLANS), Portland,
OR, USA, 20–23 April 2020; pp. 1311–1316. [CrossRef]

18. Shin, J.M.; Kim, Y.S.; Ban, T.W.; Choi, S.; Kang, K.M.; Ryu, J.Y. Position tracking techniques using multiple receivers for anti-drone
systems. Sensors 2021, 21, 35. [CrossRef] [PubMed]

19. Adjei, H.; Oduro-Gyimah, F.; Shunhua, T.; Agordzo, G.; Musariri, M. Developing a bluetooth based tracking system for tracking
devices using arduino. In Proceedings of the 2020 5th International Conference on Computing, Communication and Security
(ICCCS), Patna, India, 14–16 October 2020; pp. 1–5. [CrossRef]

20. Lie, K.; Yeo, K.; Ting, A.N.; Chieng, D.T. Indoor Tracking with Bluetooth Low Energy Devices Using K-Nearest Neighbour
Algorithm. In Proceedings of the 2020 IEEE 10th Symposium on Computer Applications Industrial Electronics (ISCAIE), Shah
Alam, Malaysia, 18–19 April 2020; pp. 155–159. [CrossRef]

21. Shi, G.; Ming, Y. Survey of indoor positioning systems based on ultra-wideband (UWB) technology. Wirel. Commun. Netw. Appl.
2016, 348, 1269–1278. [CrossRef]

22. Silvia, Z.; Martina, C.; Fabio, S.; Alessandro, P. Ultra Wide Band Indoor Positioning System: Analysis and testing of an IPS
technology. IFAC-PapersOnLine 2018, 51, 1488–1492. [CrossRef]

23. Lutz, P.; Schuster, M.; Steidle, F. Visual-inertial SLAM aided estimation of anchor poses and sensor error model parameters of
UWB radio modules. In Proceedings of the 2019 19th International Conference on Advanced Robotics (ICAR), Belo Horizonte,
Brazil, 2–6 December 2019; pp. 739–746. [CrossRef]

24. Cao, Y.; Yang, C.; Li, R.; Knoll, A.; Beltrame, G. Accurate position tracking with a single UWB anchor. In Proceedings of the
2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 2344–2350.
[CrossRef]

25. Gomaa, M.; Silva, O.D.; Mann, G.; Gosine, R.; Hengeveld, R. ROS Based Real-Time Motion Control for Robotic Visual Arts
Exhibit Using Decawave Local Positioning System. In Proceedings of the 2020 American Control Conference (ACC), Denver, CO,
USA, 1–3 July 2020; pp. 653–658. [CrossRef]

26. Ledergerber, A.; D’Andrea, R. Ultra-wideband range measurement model with Gaussian processes. In Proceedings of the
2017 IEEE Conference on Control Technology and Applications (CCTA), Maui, HI, USA, 27–30 August 2017; Volume 2017,
pp. 1929–1934. [CrossRef]

27. Zhao, W.; Goudar, A.; Panerati, J.; Schoellig, A.P. Learning-based Bias Correction for Ultra-wideband Localization of Resource-
constrained Mobile Robots. arXiv 2020, arXiv:2003.09371.

28. Pinto, M.F.; Honorio, L.M.; Melo, A.; Marcato, A.L.M. A Robotic Cognitive Architecture for Slope and Dam Inspections. Sensors
2020, 20, 4579. [CrossRef] [PubMed]

29. Munro, A.; Clayton, G. Drone Swarms, Communications Performance and Big Data. In Proceedings of the 2019 IEEE 90th
Vehicular Technology Conference (VTC2019-Fall), Honolulu, HI, USA, 22–25 September 2019; pp. 1–5. [CrossRef]

http://dx.doi.org/10.2514/6.2019-1979
http://dx.doi.org/10.1109/GCIoT47977.2019.9058406
http://dx.doi.org/10.1109/IECON.2007.4460126
http://dx.doi.org/10.1017/S0263574720000521
http://dx.doi.org/10.1016/j.jnca.2020.102913
http://dx.doi.org/10.1007/978-981-15-6759-9_10
http://dx.doi.org/10.1155/2017/2630413
http://dx.doi.org/10.1109/AERO47225.2020.9172459
http://dx.doi.org/10.1109/ICUAS.2019.8798163
http://dx.doi.org/10.1109/ICAR46387.2019.8981574
http://dx.doi.org/10.1109/PLANS46316.2020.9110225
http://dx.doi.org/10.3390/s21010035
http://www.ncbi.nlm.nih.gov/pubmed/33374686
http://dx.doi.org/10.1109/ICCCS49678.2020.9276884
http://dx.doi.org/10.1109/ISCAIE47305.2020.9108790
http://dx.doi.org/10.1007/978-81-322-2580-5_115
http://dx.doi.org/10.1016/j.ifacol.2018.08.292
http://dx.doi.org/10.1109/ICAR46387.2019.8981544
http://dx.doi.org/10.1109/ICRA40945.2020.9197345
http://dx.doi.org/10.23919/ACC45564.2020.9148022
http://dx.doi.org/10.1109/CCTA.2017.8062738
http://dx.doi.org/10.3390/s20164579
http://www.ncbi.nlm.nih.gov/pubmed/32824151
http://dx.doi.org/10.1109/VTCFall.2019.8891336


Sensors 2021, 21, 3022 19 of 20

30. Silva, L.A.Z.d.; Vidal, V.F.; Honório, L.M.; Dantas, M.A.R.; Pinto, M.F.; Capretz, M. A Heterogeneous Edge-Fog Environment
Supporting Digital Twins for Remote Inspections. Sensors 2020, 20, 5296. [CrossRef]

31. Wallace, C.; Ackels, S.; Benavidez, P.; Jamshidi, M. Real-Time Distributed Ensemble Learning for Fault Detection of an Unmanned
Ground Vehicle. In Proceedings of the 2020 IEEE 15th International Conference of System of Systems Engineering (SoSE),
Budapest, Hungary, 2–4 June 2020; pp. 463–468. [CrossRef]

32. Angel, M.; Abdulla, A.K.; David, M.; de la Escalera, A. 3D Trajectory Planning Method for UAVs Swarm in Building Emergencies.
Sensors 2020, 20, 642. [CrossRef]

33. Koubâa, A.; Qureshi, B.; Sriti, M.F.; Allouch, A.; Javed, Y.; Alajlan, M.; Cheikhrouhou, O.; Khalgui, M.; Tovar, E. Dronemap
Planner: A service-oriented cloud-based management system for the Internet-of-Drones. Ad Hoc Netw. 2019, 86, 46–62. [CrossRef]

34. Basso, M.; Zacarias, I.; Tussi Leite, C.E.; Wang, H.; Pignaton de Freitas, E. A Practical Deployment of a Communication
Infrastructure to Support the Employment of Multiple Surveillance Drones Systems. Drones 2018, 2, 26. [CrossRef]

35. Damacharla, P.; Mehta, D.; Javaid, A.Y.; Devabhaktuni, V.K. Study on State-of-the-art Cloud Services Integration Capabilities
with Autonomous Ground Vehicles. In Proceedings of the 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall), Chicago,
IL, USA, 27–30 August 2018; pp. 1–5. [CrossRef]

36. Salmeron-Garcia, J.J.; van den Dries, S.; Diaz-del Rio, F.; Morgado-Estevez, A.; Luis Sevillano-Ramos, J.; van de Molengraft, M.J.G.
Towards a cloud-based automated surveillance system using wireless technologies. Multimed. Syst. 2019, 25, 535–549. [CrossRef]
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