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Introduction
Osteoarthritis (OA) is characterized by articular 
cartilage degeneration, pain and eventual disabil-
ity. It is estimated that symptomatic OA affects 
one in eight men and women in the USA (27–31 
million).1 Disability secondary to OA continues 
to rise, increasing by 16% between 1990 and 
2010,2 and the UK National Health Service con-
tinues to spend over £900 million annually 
directly treating the disease.3

Arthroplasty is an effective treatment for end-
stage OA which has not responded to conservative 
measures including analgesia and physiotherapy.4 

Two of the most common interventions under-
taken are primary total hip arthroplasty (THA) 
and primary total knee arthroplasty (TKA). 
According to the National Joint Registry (NJR) 
91,698 primary THA and 102,177 primary TKA 
were undertaken in England, Wales and Northern 
Ireland in 2017, with greater than 90% of these 
being for the treatment of primary OA.5

A proportion of patients require revision of their 
primary surgery with the main indications for 
revision being (rate of revision/1000 patient-
years) aseptic loosening (1.25 THA, 1.25 TKA), 
pain (0.84 THA, 0.85 TKA), dislocation (0.87 
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THA), adverse reaction to particulate debris 
(0.86 THA), infection (0.72 THA,), instability 
(0.69 TKA), malalignment (0.38 TKA) and 
periprosthetic fracture (0.69 THA, 0.16 TKA).5 
Revision risk increases each year following pri-
mary arthroplasty and despite modern surgical 
advances and improvement in implant materials, 
the overall revision risk has remained relatively 
static for the last 5 years.5 Comparing 2010 and 
2017 NJR data, the 5-year risk of revision was 
2.5% and 2.34% for hips, and 2.7% and 2.65% 
for knees.5,6 When compared with primary arthro-
plasty, revision surgery is recognized to be more 
complex and is associated with increased risk of 
dislocation, venous thromboembolism, infection 
and mortality.7 Furthermore, functional improve-
ment after revision surgery may be less than that 
from the primary procedure.8 In addition to being 
more burdensome at the patient level with a 
higher risk of failure,9 revision surgery impacts on 
a societal level with greater financial implications 
arising from increased length of hospital stay, 
operative time and complexity.7,10,11

With an ageing population, increasing life expec-
tancy and rising obesity rates, the number of peo-
ple requiring primary arthroplasty of the hip and 
knee is set to increase substantially.

Efforts to reduce the risk of revision have focused 
on intra-operative factors including reducing con-
tamination at surgery, optimum placement of the 
prostheses and development of new implants. 
There is developing evidence from animal stud-
ies however, that 3-hydroxy-3-methylglutaryl-
coenzyme A (HMG-CoA) reductase inhibitors, 
commonly known as statins, may influence 
implant survival following arthroplasty.

This review was tailored to include all English 
language, peer-reviewed publications available 
via structured searches of Embase (1974–2019) 
and Ovid Medline (1946–2019) relating to 
statins, arthroplasty, revision and the identified 
mechanisms underlying this phenomenon includ-
ing osteolysis, loosening, osseointegration and 
wear debris response. The reference list of each 
publication identified from searches was also 
reviewed for relevant articles. Epidemiological, 
clinical and laboratory studies were included.

What are statins?
Statins are cholesterol-modulating drugs that act 
upon the mevalonate pathway by inhibition of 

HMG-CoA reductase.12 Reduction of cholesterol 
by statins has been shown consistently to improve 
survival in clinical trials by reducing fatal coro-
nary events.13,14 The annual number of prescrip-
tions of lipid-lowering drugs in England has 
increased significantly from 295,000 in 1981 to 
over 50 million in 2011.15 Derivatives of 
mevalonate are required in the post-translational 
modification of the triphosphate-binding proteins 
(GTPases) responsible for the regulation of oste-
oblastogenesis and osteoclastogenesis.16

Statins and osseointegration of prosthetic 
implants and bone
Osseointegration is necessary for implant stability 
and is a result of direct bone-to-implant contact.17 
It is defined as the direct structural and functional 
connection between bone and implant such that 
there is no relative movement between the two 
surfaces as the implant has been incorporated  
into the living bone.18 Poor osseointegration of 
implants may be a risk factor for arthroplasty fail-
ure in the short and long term because of micro-
motion at the bone–implant interface, which can 
initiate periprosthetic bone resorption and subse-
quent loosening.19 This is particularly true in 
uncemented arthroplasty, which relies on implants 
integrating with surrounding bone. Optimal osse-
ointegration requires formation of new bone at the 
bone–implant interface and there is evidence  
to suggest statins may promote bone growth and 
osteoblastogenesis via bone-morphogenetic pro-
tein-2 (BMP-2). Mundy et al. demonstrated an 
increase in BMP-2 expression, as detected by 
northern blot, in murine and human bone cells  
in response to simvastatin exposure,20 and that 
explanted neonatal murine calvaria demon-
strated increased bone growth when exposed to 
simvastatin, fluvastatin, lovastatin and mevastatin. 
Furthermore, in vivo work demonstrated that lov-
astatin and simvastatin increased bone formation 
by nearly 50% in the calvaria of mice when injected 
subcutaneously, comparable to the effect seen with 
BMP-2 injection.20 In addition, statins have been 
shown to induce vascular endothelial growth factor 
(VEGF) expression. VEGF is a glycoprotein 
responsible for osteoblast differentiation and an 
angiogenic factor necessary for vascular invasion 
prior to bone formation, intercellular communica-
tion between endothelial cells and subsequent 
osteoblast activity necessary for bone growth.21

The potential for statins to promote osseointegra-
tion in vivo has been explored in multiple animal 
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studies, with systemic administration of simvasta-
tin after implant insertion demonstrating increased 
bone density around implants and crucially, an 
increase in the mechanical strength/stability of 
the bone–implant interface.22–25 Du et al. demon-
strated that administering oral simvastatin to 
osteoporotic rats (post oophorectomy) could 
increase implant–bone contact rate in cancellous 
bone when compared with untreated controls.24 
Li et al. explored the effect of intraperitoneal sim-
vastatin administration on peri-implant bone 
growth in rat tibial titanium implants and found 
an increase in bone formation in the treatment 
cohort when compared with controls.26

It has been proposed that local application of 
statins to implants may promote similar poten-
tial osteogenic effects, increasing mechanical 
strength and improving peri-implant bony calcifi-
cation.27–29 Masuzaki et al. gave a single injection 
of fluvastatin-impregnated microspheres to rats 
with tibial titanium implants. This showed 
enhanced bone growth and bone contact as dem-
onstrated by staining and microscopy around the 
implant and was accompanied by an increased 
bending strength.30 Similar studies have reported 
encouraging results with simvastatin-coated 
implants, scaffolds and biomaterials.31,32

Dose-dependency studies have suggested that 
implants coated with 75 µg of fluvastatin osseoin-
tegrate better than control implants, for example 
a rodent model demonstrated improved implant 
trabecular bone layer composed of mineral bone 
and a thicker appearance of the new trabeculae in 
the medullary canal. Paradoxically at higher doses 
of fluvastatin (300 µg) the implants perform 
worse,28 in that there is a delay in calcification of 
peri-implant bone. Moriyama et al. hypothesized 
that this is due to higher doses of fluvastatin yield-
ing immature osteoblasts, normally developed by 
osteocalcin expression.28 The maturation of oste-
oblasts involves the fine balance of RUNX2 sup-
pression (part of the BMP-2 signalling pathway) 
and Osterix enhancement, however statins have 
been thought to stimulate RUNX2 expression, 
potentially suppressing Osterix and the balance 
required for fully matured osteoblast formation, 
bone mineralisation and thereby osseointegration.28

Osseointegration generally occurs within 3 months 
of primary arthroplasty.33,34 Therefore preloading 
with statins prior to primary arthroplasty and 
early statin use in the initial weeks and months 
postimplant insertion could theoretically be 

associated with a reduction in complications as a 
result of suboptimal osseointegration, such as 
implant stem migration, periprosthetic fracture 
and loosening as a result of failure of trabecular 
bone ingrowth.35 This is supported by animal 
data from Li et al. who demonstrated that early 
use of statins after implant insertion promotes 
peri-implant bone growth, and discontinuation 
of statins in this early period leads to rebound 
bone resorption.26 Animal models should, how-
ever, be interpreted with caution. Many of the 
animal studies referenced administered statins for 
30 days or less, osseointegration in humans is 
thought to occur within a more prolonged period 
(3 months). Furthermore, the dynamic forces on 
the human hip joint in gait are not directly com-
parable with those of animals used in the refer-
enced studies. In addition, load bearing is an 
important aspect of lower limb arthroplasty osse-
ointegration and some of the studies are not 
designed for load bearing of the implant.

Statins and periprosthetic osteolysis
Periprosthetic osteolysis (PPOL) is the gradual, 
progressive resorption of bone and subsequent 
reduction in bone density around the bone–
implant interface in THA and TKA.36–38 The ini-
tial trigger for this process is activation of 
phagocytic cells in response to wear-related debris 
particles released from the bone–implant inter-
face following arthroplasty.35,36 Specific articula-
tion surface debris such as ultra-high molecular 
weight polyethylene (UHMWPE) have been 
implicated in phagocyte activation and the subse-
quent osteolytic cascade weakens the bone–
implant interface. This process is generally 
asymptomatic and can go clinically undetected 
until there is decompensation and biomechanical 
instability. Symptomatic PPOL with aseptic loos-
ening presents late and commonly revision arthro-
plasty is required to salvage joint function. 
Monocyte/macrophages and their derivatives 
have been implicated in the resorption of bone 
and PPOL in arthroplasty since early 1990.39

There is an established research base for a class of 
drug known as bisphosphonates (BP) in inhibit-
ing osteoclast formation and function that is facil-
itated by their interaction with the mevalonate 
pathway by inhibition farnesyl pyrophosphate 
(FPP), downstream of the influence of statins. 
Some authors have highlighted the potential ben-
efit of BP in arthroplasty survival in human40,41 
and animal42,43 models. In a study using data 
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from the Danish Hip Arthroplasty Register 
(DHAR), BP use for more than 240 days was 
associated with a reduction in the relative risk of 
revision of 0.58 (95% CI; 0.32–1.05)  for all indi-
cations.41 More recent research identified an 
associated risk reduction of up to 59% in those 
starting BP after arthroplasty surgery.40

Statins inhibit the mevalonate pathway upstream 
of FPP and have the potential to exert a similar 
molecular response as BP, inhibiting the osteo-
lytic cascade and reducing PPOL. A murine cal-
varial study noted that introduction of 
UHMWPE particles induced a pronounced 
bone resorption response when compared with 
controls; this effect was significantly abrogated 
in the group treated with simvastatin.44 
Polymethylmethacrylate (PMMA) particles, 
released in cemented arthroplasty, have also been 
implicated as a potential trigger for PPOL via 
production of the pro-inflammatory cytokine 
tumour necrosis factor-alpha (TNFα) by human 
monocytes. An in vitro experimental model of 
PMMA-induced inflammation using human 
peripheral blood monocytes has suggested that 
the potent HMG-CoA reductase inhibitor ceriv-
astatin significantly inhibited this response via 
the intracellular Raf-MEK-ERK pathway.44 In a 
case-control study of patients with radiologically 
detectable femoral osteolysis in THA, the authors 
compared statin ‘ever-users’ and ‘never-users’ at 
5 years post-THA. The relative risk ratio after 
adjustment for confounders (age, sex, activity 
level, body mass index, diagnosis, bearing sur-
face, type of stem) was 0.38 (95% CI 0.15, 0.99). 
This analysis did not have sufficient follow-up 
length to determine whether the risk of revision 
was lower in the statin ever-use group.45

Pro-inflammatory cytokines are considered to be 
major mediators of osteolysis and ultimately asep-
tic loosening; three of the most well characterized 
are interleukin-1 (IL-1), interleukin-6 (IL-6), and 
TNFα.46 Experimentally it has been demon-
strated that TNFα upregulates IL-1 and IL-6 and 
plays a pivotal role, both directly and indirectly, 
in the activation and recruitment of osteoclasts 
with subsequent induction of PPOL in total hip 
replacement.47 TNFα production is upregulated 
in experimental and clinical models of osteolysis, 
and this upregulation is further associated with 
particulate wear debris in vitro and in vivo.46,48,49 
Similar molecular upregulation of both IL-146,50,51 
and IL-646–52 has been reported in aseptic loosen-
ing models.

The presence of cells releasing IL-1, IL-6 and 
TNF has been directly correlated with the severity 
of osteolysis in THA and the authors suggest 
pharmacological modulation of these pathways may 
be a potential target for inhibition of prosthesis 
loosening.53 There is evidence to suggest that 
cerivastatin inhibits PMMA-induced inflamma-
tion in vitro via abrogation of TNFα.54 Cerivastatin 
also reduces production of the chemokine monocyte 
chemotactic protein-1, which facilitates migration 
and infiltration of leukocytes into tissues.54,55 
Simvastatin has been demonstrated experimen-
tally to inhibit particle-mediated induction of 
IL-6 in human osteoblasts treated with titanium.56 
Aseptic loosening and PPOL resulting from 
inflammatory processes occurring over a longer 
period of time may theoretically be reduced by 
long-term statin exposure. These data are sum-
marized in Table 1 and a mechanistic model of 
statin effects is presented in Figure 1.

Pharmacoepidemiological evidence of a role 
for statins in arthroplasty survival
There is observational evidence which suggests 
that statins may impact on arthroplasty survival. 
Using data from the UK Clinical Practice 
Research Datalink (CPRD), Sarmanova et al. 
conducted a propensity score-matched cohort 
study, matching 178,467 statin users to the same 
number of nonstatin users to assess the impact of 
statins on risk of requiring joint arthroplasty for 
the treatment of OA and rheumatoid arthritis 
(RA).57 The results of the analysis suggested that 
statin prescriptions were associated with a 
reduced risk of joint arthroplasty due to RA but 
not OA.

Data from the DHAR identified 2349 patients 
who underwent THA between 1996 and 2005 
and also had revision arthroplasty during this 
period.58 In a multivariable, propensity-score 
matched conditional logistic regression model, 
the relative risk (95% CI) of revision in those 
exposed to statins compared with those unex-
posed was 0.34 (0.28–0.41). Statin exposure 
was not modelled in a time-dependent manner 
but was more crudely assigned as ‘ever versus 
never’ statin exposure.

In a study which used data from both the CPRD 
in the UK and the Danish National Health 
System, Lalmohamed et al. analysed the associa-
tion between statin exposure and revision of pri-
mary THA and TKA.59 In the primary analysis, 
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Table 1.  Summary of studies investigating links between statins and bone biology.

Study Model Statin Mode of 
administration

Observed effect Conclusions

Mundy et al.20 Cultured human (MG-63) 
and murine (2T3) cell 
lines with statin to assess 
BMP-2 expression by 
northern blot

Simvastatin 5 μM of statin 
cultured with cell 
lines for 48 h

Increased BMP-2 
expression by northern 
blot in cell lines exposed to 
simvastatin for 48 h

As BMP-2 increases 
osteoblast differentiation 
and proliferation, statins 
may promote bone growth

Mundy et al.20 Explanted neonatal 
murine calvarial bones 
were placed in tissue 
culture medium with 
test compound to assess 
bone growth

Simvastatin, 
fluvastatin, 
lovastatin 
and 
mevastatin

1 µM of test statin 
was incubated with 
the calvarial bone 
for 72 h

Increased bone growth on 
histomorphometric analysis

Simvastatin, fluvastatin, 
lovastatin and mevastatin
all increased 
bone formation by 
approximately two- to 
threefold, comparable 
with BMP-2 and fibroblast 
growth factor-1

Mundy et al.20 Statin injected into the 
subcutaneous tissue 
over the calvaria of mice 
to assess growth in 
calvarial bone

Lovastatin 
and 
simvastatin

5 mg/kg/day or 
10 mg/kg/day of 
statin injected 
subcutaneously 
over calvaria three 
times a day for 
5 days

On histomorphometric 
analysis at day 21, a near 
50% increase in bone 
formation demonstrated 
with statin administration

Local subcutaneous 
injection of statins may 
increase bone formation

Mundy et al.20 Statins administered 
systemically to assess 
effect on bone formation

Simvastatin Intraperitoneal 
injection at 14 days 
and 4 days prior to 
sacrifice

Tibia, femur and lumbar 
vertebrae were analyzed by 
histomorphometric analysis

Simvastatin increased 
trabecular bone 
formation

Du et al.24 Titanium implants 
inserted into the tibia of 
oophorectomized versus 
sham surgery to assess 
osseointegration in rats

Simvastatin Oral administration 
5 mg/kg for either 
28 days or 84 days 
before sacrifice

Increase in the percentage 
of cancellous bone 
to implant contact 
as measured by 
histomorphometric analysis 
from both sides of the 
implant; no significant 
difference observed in 
cortical bone contact

Simvastatin may improve 
osseointegration

Li et al.26 Titanium tibial implant 
inserted into mice and 
bone growth assessed 
by micro-CT scanning 
and histomorphometric 
analysis

Simvastatin Daily 
intraperitoneal 
injections of 10 mg/
kg of simvastatin 
for 7 days

Following 7 days of 
simvastatin administration, 
there was an increase in 
peri-implant bone growth 
compared with control. 
There was a decrease in 
bone growth following 
simvastatin discontinuation 
as confirmed by histology

Short-term statin 
administration is 
associated with peri-
implant bone growth and 
there is rebound loss of 
bone on discontinuation

Masuzaki et al.30 Single injection of 
fluvastatin-impregnated 
microspheres to rats 
with tibial titanium 
implants

Fluvastatin Fluvastatin- 
impregnated 
microspheres 
were injected 
beneath the skin 
at the implant site 
following surgery

Peri-implant bone growth 
measured by staining 
and light microscopy 
demonstrated an increase 
in bone growth and bone 
strength was increased 
when assessed by three-
point bending

A single injection of 
fluvastatin-impregnated 
microspheres increased 
implant osseointegration 
and the mechanical 
strength of the bone

Laing et al.54 In vitro model of 
monocyte/macrophage 
inflammatory response 
to PMMA particles, 
compared with 
pretreatment with statin

Cerivastatin Cerivastatin 
dissolved in media 
to 150 µM or 300 µM 
for 1 h followed by 
PMMA exposure 
for 23 h

Inflammatory cytokine 
TNFα production is 
significantly abrogated with 
cerivastatin pretreatment

Cerivastatin reduces 
production of a pro-
inflammatory cytokine 
implicated in osteolysis

BMP-2, bone-morphogenetic protein-2; CT, computed tomography; PMMA, polymethylmethacrylate; TNFα, tumour necrosis factor-alpha.
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statin exposure was modelled in a time-depend-
ent manner from the date of the primary THA/
TKA. Using data from both cohorts, statin expo-
sure was associated with a small though signifi-
cant reduction in risk of revision (incident rate 
ratio = 0.9; 95% CI, 0.89, 0.96). A more recent 
analysis using CPRD data looked at impact of 
duration and timing of statin exposure on revi-
sion risk.60 Of those exposed to statins following 
THA/TKA, 852 (1.3%) had revision arthro-
plasty, compared with 2648 (3.1%) of those 
unexposed, with an adjusted hazard ratio for 
revision in those exposed versus those unexposed 
of 0.82 (0.75, 0.90). Similar results were seen in 
participants who had a THA 0.86 (0.76, 0.98) 
and TKA 0.76 (0.66, 0.88). Exposure in the first 
5 years following surgery appeared protective: 
compared with those who were not exposed to 
statins, the hazard ratio of revision in those first 
exposed to statins in the periods 0–1 years and 
1–5 years after the primary surgery was 0.82 
(0.74, 0.91) and 0.76 (0.65, 0.90), respectively. 
No statistically significant effect of statin expo-
sure on revision risk >5 years following primary 
surgery was observed. Compared with partici-
pants exposed to statins for a total duration of 

less than 1 year, exposure for 1–2, 2–3, 3–4 and 
4–5 years did not appear to be associated with 
THA/TKA revision risk, though exposure for a 
total duration of >5 years was associated with a 
reduced hazard ratio of 0.74 (0.62, 0.88) for 
revision surgery.60 The data from these studies 
demonstrate a small but significant effect of 
statins on reducing the risk of revision arthro-
plasty. There are however important limitations 
in interpreting the data and in particular the 
potential for unmeasured confounding factors 
which may have influenced the observed associa-
tions, and also changes in surgical technique and 
implants which have occurred during the course 
of the observation period. The findings are less 
convincing than those observed in animal/in vitro 
studies, highlighting the importance of human 
studies in investigating the association.

Conclusion
There is some evidence from animal and in vitro 
models to suggest that statin therapy may pro-
mote osseointegration and reduce PPOL. Data 
from observational clinical studies support a 
weak effect of statins on arthroplasty revision. 

Figure 1.  Mechanistic model of interaction between statins and bone–implant interface biology.
PPOL, periprosthetic osteolysis; TNFα, tumour necrosis factor-alpha.
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However there are significant limitations to the 
interpretation of these data, such as the potential 
for unmeasured confounding factors to influence 
results and improvements in surgical technique 
and implants during the study period.

Taken together the published literature suggests 
that although there is likely an association between 
statin therapy and reduced revision risk in lower 
limb arthroplasty and a body of mechanistic evi-
dence from animal models, the causal relation-
ship is far from clear and there is currently 
inadequate evidence to recommend routine clini-
cal prescribing of statin therapy in patients under-
going arthroplasty of the hip or knee.
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