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Security breach: peripheral nerves provide unrestricted 
access for toxin delivery into the central nervous system

Abstract  
We explore the hypothesis that a potential explanation for the initiation of motor neuron disease is 
an unappreciated vulnerability in central nervous system defense, the direct delivery of neurotoxins 
into motor neurons via peripheral nerve retrograde transport.  This further suggests a mechanism 
for focal initiation of neuro-degenerative diseases in general, with subsequent spread by network 
degeneration as suggested by the Frost-Diamond hypothesis.  We propose this vulnerability may be a 
byproduct of vertebrate evolution in a benign aquatic environment, where external surfaces were not 
exposed to concentrated neurotoxins.
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Introduction 
More than 15% of the worlds’ population suffer from disorders of the 
central nervous system (World Health Organization, 2007) including major 
neuro-degenerative disease such as Alzheimer’s disease, frontotemporal 
dementia, Parkinson’s disease, multiple sclerosis and amyotrophic lateral 
sclerosis (ALS). The costs to society, financial and otherwise, are staggering, 
there are no cures and few therapies (Erkkinen et al., 2018), and disease 
prevention seems not possible (Global Burdon of Disease, 2019). While we 
continue to learn more about disease pathology, to date we simply do not 
know their initiating causes. For example, loss of myelin in multiple sclerosis 
is mediated by an autoimmune attack, and to date over 20 viruses have been 
falsely implicated in initiating the multi-focal ‘plaque-like’ onset. Similarly, 
in ALS the lateral spread of motor neuron (MN) loss follows accumulation 
of aggregated protein inclusion bodies, with an unknown relationship to 
principal risk factors including traumatic injury and environmental toxins. 
Like all neuro-degenerative diseases, ALS begins as a focal lesion (MN loss 
in the spinal column) with subsequent lateral spreading (Cudkowicz et al., 
2004), a progression that is consistent with the Frost-Diamond “prionopathy” 
hypothesis (Frost and Diamond, 2010). Here we propose that one explanation 
for selective loss of MN in ALS represents an unappreciated vulnerability in 
central nervous system (CNS) defense, the direct delivery of neurotoxins to 
motor neurons via peripheral nerve retrograde transport. We suggest this 
represents a byproduct of vertebrate evolution in an aquatic environment 
where external surfaces were not exposed to high concentrations of 
neurotoxins. Mercury (Hg), for example, is present at only trace levels after 
release from point sources such as mining and industrial pollution. Inorganic 
Hg is not a significant neurotoxin until converted to organic methyl-mercury, 
by bacteria in anoxic aquatic environments, and subsequent bioaccumulation 
in the marine food chain (Hintelmann, 2010). Thus mercury neuro-toxicity is 
largely through ingestion rather than external contact. 

The human body is exposed to a plethora of environmental toxins and 
pathogens including bacteria, viruses, and fungi. For somatic tissues, 
defense mechanisms include humoral immune surveillance and chemical 
detoxification in the liver. Unlike somatic tissue, neurons in the CNS 
live throughout our life span and, with limited exceptions (Berninger 
and Jessberger, 2016), retain the wiring connections established during 
development, and the CNS provides additional unique adaptations for their 
protection (Figure 1). The CNS is guarded by skull and spinal bones, and 

it is encased in a meningeal sac filled with cerebralspinal fluid (CSF) that 
acts like air bags to insulate from physical trauma. Since the skull creates a 
fixed space, the brain is also vulnerable to compression from within, and a 
dynamic flux between CSF and the cerebral vasculature stabilizes intra-cranial 
pressure from edema or arterial-venous pressure gradients generated in the 
cardiac pulse cycle (Wilson, 2016; Butler et al., 2017). The brain has another 
specialized cellular filtration system formed by astrocytes, the blood-brain 
barrier (BBB), that prevents microbes and toxins in the blood from entering 
brain parenchyma. Bone-marrow derived microglial scavengers also provide 
immune surveillance. Finally, neurons also withdraw from DNA replication and 
thus avoid accumulating spontaneous mutations, the hallmark of replicative 
senescence in somatic tissues. Neuronal axons are also wrapped in insulating 
myelin sheaths, an economy of size that allows fast conduction with 100-fold 
smaller axon diameters (Weatherby et al., 2000). Despite these protections, 
the CNS remains vulnerable to a spectrum of acquired neuro-degenerative 
diseases. To date only a few risk associated environmental agents have been 
identified, including viral and microbial invaders (Melton-Celsa, 2014; Parisi 
and Martinez, 2014) as well as environmental neurotoxins (Kang et al., 2014; 
Naughton and Terry, 2018). For example, ALS incidence is increased for Gulf 
War veterans (Horner et al., 2003) and populations with dietary accumulation 
of the neurotoxin beta-methylamino L-alanine (Murch et al., 2004; Bradley 
and Mash, 2009). However, the initiating cause for most neuro-degenerative 
diseases remains unknown.

Motor Neuron Pathology in Amyotrophic Lateral 
Sclerosis 
ALS entails progressive loss of motor neurons in the CNS (Saberi et al., 2015).  
Like all of the major non-infectious neuro-degenerative diseases, ALS is 
associated with the accumulation of fibrillary protein aggregates that spread 
by apparent trans-cellular propagation along synapse connected pathways 
(Frost and Diamond, 2010). While the root cause is unknown, identified 
risk factors include genetic mutations (Taylor et al., 2016), environmental 
toxin exposure (Kang et al., 2014), sport injuries and smoking (Chio et al., 
2014; Blecher et al., 2019). Some 10% of cases are ‘familial’ with inherited 
mutations in a small family of genes (Taylor et al., 2016), and the remaining 
90% of ALS case are termed ‘sporadic’ (Ling et al., 2013; Tiryaki and Horak, 
2014). For both forms the prognosis is the same, a devastating loss of motor 
function that is generally lethal within 5 years of diagnosis (Horner et al., 
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2003). The known genes provide insight into pathways and mechanisms 
associated with the pathology of motor neuron degeneration, and potential 
strategies to approach therapy. However, since their penetrance is low and 
not all allele carriers develop ALS (Chio et al., 2014), and for those who do the 
symptoms do not emerge early, these appear to be predisposition genes for 
disease progression and neither necessary nor sufficient for disease initiation 
(Hutten and Dormann, 2020). 

The hallmarks of neuro-degenerative diseases such as ALS are the presence 
of inclusion bodies formed from mislocalization and aggregation of proteins 
in the nucleus or cytoplasm (Saberi et al., 2015; Taylor et al., 2016). These 
‘stress-granules’ result from the deregulation of RNA and protein homeostasis 
and are a common effector mechanism for both sporadic and familial ALS (Ling 
et al., 2013). It is unknown whether these are causal or a result of the major 
degenerative phenotypes including mitochondrial dysfunction (Bose and 
Beal, 2016; Rahman and Copeland, 2019) and defective nucleo-cytoplasmic 
and/or axonal transport (Guo et al., 2020; Hutten and Dormann, 2020). Since 
movement of transport cargo is fundamental to maintaining the complex 
neuronal architecture, it seems evident that any insult which disrupts this 
process would be catastrophic for the cell (Perlson et al., 2010). In ALS, the 
main components of inclusion bodies are FUS (fused in sarcoma) and the 
trans-active response DNA binding protein TDP-43 (Suk and Rousseaux, 2020), 
a key element of non-homologous end joining and DNA repair. Since TDP-
43 inclusion body aggregates are consistent across all cases of ALS (Suk and 
Rousseaux, 2020), its loss of function may be central to ALS progression. The 
mis-localization of TDP-43 is thought to be caused by protein mis-folding due 
to either inherited mutations in tardbp or mediated by mutant chaperone 
or modifying factors, such as superoxide dismutase (Cudkowicz et al., 2004) 
(familial ALS), or possibly initiated by exposure to environmental toxins 
(sporadic ALS). One model that may explain disease progression in sporadic 
ALS is a focal insult followed by the lateral spread of pathology, analogous 
to the progression of ‘infectious’ prion protein aggregates (Erkkinen et al., 
2018) due to auto-catalytic mis-folding in Creutzfeld-Jakob disease (Prusiner, 
1982), as proposed for the spread of alpha-synuclein aggregate Lewy bodies 
in Parkinson’s disease (Frost and Diamond, 2010).

Neurotoxicity: Active Ingestion or Passive 
Exposure?  
Two risk factors for ALS, sports injury and environmental toxins, provide 
valuable insight into ALS etiology. ALS is associated with injury prone sports 
(Chio et al., 2005; Blecher et al., 2019) played predominantly on grass fields 
(soccer, baseball), and its familiar name recognizes the professional baseball 
player Lou Gherig. Importantly, ALS clusters have not been identified in 
traumatic injury prone sports not conducted on grass such as basketball, 
boxing or ice hockey (Blecher et al., 2019). Thus the highest risk athletes 
experience abrasion injuries with peripheral nerve damage while exposed 
to agrochemicals. Of note, ALS is also strongly associated with other 
agrochemical rich environments such as farming (Kang et al., 2014), and it is 
more prevalent in farm laborers than in non-farming rural residents (Kang et 
al., 2014). Together these observations suggest that absorption of neurotoxins 
via skin abrasion presents a significant risk for ALS initiation.

As outlined below, one model that may explain these observations is contact 
exposure followed by the retrograde transport of neurotoxic chemicals along 
motor neuron axons. Toxins could either be passively entrapped in retrograde 
transport vesicles during assembly of ‘signaling endosome’ vesicles at the 
synaptic cleft (Maday et al., 2014), or actively inserted into auto phagosomes 
during autophagy, the lysosome degradation pathway in neurons (Perlson 
et al., 2010). Since the peripheral nervous system (PNS) lacks the protective 
blood filtering system of CNS glial (Reinhold and Rittner, 2020), ingested toxins 
also have unfiltered access to the PNS. In the dorsal root ganglion of the rat 
PNS, tight junction protein expression that constitutes the blood-nerve-barrier 
(BNB) is in the nerve fiber-rich area but not in the cell soma-rich area (Hirakawa 
et al., 2004). In both cases, chemicals that enter the distal end of an injured 
motor neuron axon, or evade the BNB in peripheral nerve ganglia, have direct 
access to neuronal cell bodies in the CNS. Thus the PNS is accessible to the 
plethora of neurotoxins in our environment, synthetic and otherwise. These 
include heavy metals such as lead and mercury (Deng et al., 2001; Neal and 
Guilarte, 2010; Pletz et al., 2016; Siblerud et al., 2019; Mezzaroba et al., 
2019), and organophosphates (OP) including common agricultural pesticides, 
fire retardants and solvents (Naughton and Terry, 2018). Repeated exposure 
to OPs leads to acetylcholinesterase inhibition, defects in axonal transport, 
neuro-inflammation, oxidative stress and motor impairment, although to 
date there is no direct causal link between OP and neurodegenerative disease 
(Naughton and Terry, 2018). This unique toxin vulnerability may also underlie 
the exclusive PNS-sensitivity of chemotherapy-induced peripheral neuropathy 
(Trecarichi and Flatters, 2019). Further research is required to determine 
whether and which specific toxins may utilize suicide transport, and whether 
sensory involvement (Pugdahl et al., 2007) and early signs of neuromuscular 
junction instability (Moloney et al., 2014) represent peripheral nerve damage 
in ALS.

Retrotoxicity: Suicide Transport of Neurotoxins
Neurons extend axons up to several meters out of the CNS, and the 
maintenance of these processes depends on axonal transport to deliver cargo 
from the soma in the CNS to terminal synapses in the periphery and back 
(Maday et al., 2014; Guo et al., 2020).  Thus axonal transport is a constitutive 
and essential component of neuronal survival. The retrograde transport 
system is exacerbated by nerve crush (Bisby and Bulger, 1977), it has been 
used as an experimental tool in pre-clinical studies of axon tracing (Card and 
Enquist, 2012), it has been co-opted by viruses as a route to establish latency 
(Koyuncu et al., 2018), and this feature has been manipulated as a strategy for 
viral vector mediated transgene delivery (Kaspar et al., 2003). Herpes Simplex 
virus enters latency in our nervous system via mucosal sensory nerves, 
and when the virus detects immune stress it reactivates, escapes down 
the same nerves to form cold sores, and finds a new host (Koyuncu et al., 
2018). Thus the peripheral nerves present an open door for environmental 
exposure to both toxins and pathogens; they can bypass the intricate CNS 
defense mechanisms and have direct access to the CNS via peripheral nerve 
retrograde transport.

A variety of toxins have been used in studies of PNS axonal pathology and 
targeted neurotoxicity, and the resulting pathology is dependent on the insult 
used. Scholars focused on toxic lectins such as ricin (Wiley et al., 1982; Wiley 
and Oeltmann, 1986), which generate both peripheral and central nerve 
damage (Harper et al., 1980; Yamamoto et al., 1985; Wiley and Oeltmann, 
1986). Ricin is a potent toxin that interferes with ribosomal protein synthesis 
(Lord et al., 1994) with broad scale tissue destructive effects, and this model 
has been limited by high lethality in rodents (Liang et al., 2018). Shiga toxin 
produced by S. dysenteriae works similarly to ricin in its toxic effects (Melton-
Celsa, 2014). Another toxin utilized in this model, the anthracycline antibiotic 
doxorubicin, is a fluorescent compound which provides additional benefits 
for axonal tracing studies (Bigotte and Olsson, 1982; Koda and vander Kooy, 
1983). However, doxorubicin is a broad spectrum toxin that is also used 
for chemotherapy, as it intercalates into DNA to interrupt replication and 
transcription. Thus many of the toxins used in retrotoxicity studies to date 
have broad scale tissue toxicity at both the site of injection and of retrograde 
delivery.

Our recent study (Liang et al., 2021) used the fungal toxin wortmannin, an 
inhibitor of phosphoinositol 3′-kinase that blocks a signaling pathway that 
is critical for neuronal survival. Our initial objective was to generate a spinal 
cord injury (SCI) that was minimal invasive, scalable and reproducible, and 
was motivated by the need for SCI injury models that were transparent 
and lacked experimental variability (Steward et al., 2012; Cheriyan et al., 
2014; Lemmon et al., 2014; Snow, 2014). We demonstrated that retrograde 
transport of wortmannin via the sciatic nerve generated a focal loss of motor 
neurons, proportional to the level of drug administered, in the ipsilateral 
lumbar spinal cord.  Co-injection of fluorescent viral tracers demonstrated 
that the immediate effects of acute wortmannin did not interfere with 
retrograde transport. The short half-life of wortmannin resulted in minimal 

Figure 1 ｜ Peripheral nerve security breach.  
Schematic of central nervous system (CNS) motor neurons (N) with axons exiting to 
the periphery; axons are insulated with myelin sheaths generated by oligodendrocytes 
in the CNS and Schwann cells in the peripheral nervous system (PNS, not shown).  
Motor neurons send electrical signals to somatic tissue [e] and receive trophic factor 
feedback information [i] by retrograde axonal transport.  Neuronal defense mechanisms 
include the astrocyte (A) derived blood brain barrier surrounding blood vessels (v), and 
immune surveillance by microglia (μ). Retrograde transport can subvert these defense 
mechanisms to deliver toxins to neuronal soma, a process termed ‘suicide transport’.
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wound spread, and the focal loss of MN resulted in a motor function defect, 
with both MN loss and motor function defect sustained through the length 
of the study. The retrograde delivery of wortmannin to motor neurons thus 
presents a reproducible model for quantitative studies on neural repair. 
Further, these results led to a surprisingly simple hypothesis for targeted 
motor neuron toxicity in diseases such as ALS (McKinnon, 2021). The least 
complex model for these findings would suggest that if you handle pesticides 
such as organophosphates with a cut on your finger, these neurotoxins can 
bypass the CNS defense mechanisms and be delivered into and destroy spinal 
cord motor neurons.

This back door direct entry channel circumvents the many elaborate systems 
that evolved to protect our CNS from ingested toxins, and this may indicate 
that our aquatic ancestors faced different challenges than we do for CNS 
protection. Our CNS is not protected from surface exposure and peripheral 
nerve transport, perhaps reflecting the low concentration of toxins in the 
aqueous environment from which we evolved. Since dilution prevented their 
outer surface from exposure to high concentrations of toxins, CNS defense 
mechanisms appear to have focused on preventing exposure to ingested 
toxins with adaptations such the blood brain barrier.  In a similar vein, since 
buoyancy protected the early vertebrate spinal column from structural loads, 
we also inherited a spine that is poorly suited for vertical support during 
bipedal locomotion. Thus evolution appears to have given our house a 
defective frame and left the back door open to intrusion.

Harnessing Retrograde Transport for Delivery of 
Therapeutics 
Retrograde neuro-toxicity may provide insight into how ALS starts, and 
this can lead to identifying environmental factors responsible for disease 
onset. This could also focus the many efforts being invested to identify small 
molecule therapeutics to prevent motor neurons loss. For example, increasing 
microtubule stability and targeting a family of protein kinase regulators of 
axonal transport may improve motor neuron function (Naughton and Terry, 
2018; Guo et al., 2020). Despite these efforts, to date only four FDA drugs 
have been approved for ALS treatment, there is no ideal therapeutic, and 
there is no known cure (Tiryaki and Horak, 2014). Cell replacement also 
represents a potential therapeutic strategy to replace damaged neural cells 
(Kiel et al., 2008; Kadoya et al., 2016). However, grafted cells would also 
presumably be vulnerable to degeneration if the pathology is due to infectious 
prionopathy (Frost and Diamond, 2010), and engineering such cells to resist 
uptake (Puangmalai et al., 2020) or propagation of misfolded aggregates may 
be a prerequisite. 

Therapy studies to date have used ingestion for drug delivery with the 
limitations of restricted access at the BBB and off target toxicity (Guo et al., 
2020). The ability to deliver small molecules through retrograde transport 
may offer a novel avenue to circumvent the BBB by targeted delivery of 
therapeutics into the CNS. For example, retrograde transport of a viral vector 
encoding insulin-like growth factor, delivered into the hind limb quadriceps, 
delayed motor neuron force degeneration and age of death in a mouse model 
of ALS (Kaspar et al., 2003). This approach appears to have great potential 
to provide a novel route for targeted delivery of small molecule protective 
pharmaceuticals, to restore function, and to promote regeneration in many 
forms of neurodegenerative diseases. 

Conclusions
The delivery of a toxin via peripheral nerves directly into the CNS 
demonstrates the potency of suicide transport and suggests that retrotoxicity 
can contribute to the etiology of neuro-degenerative diseases. This 
highlights the need to expand environmental toxicology studies beyond the 
current focus on ingested toxins. This also suggests that for activities that 
involve potential nerve injury during chemical exposure, adequate body 
coverings may decrease risk of disease onset. In addition to avoiding aerosol 
organophosphates or consuming mercury contaminated fish, we should 
protect our fingers and toes while fertilizing the lawn.  Finally, since peripheral 
nerves can deliver toxins directly into the spinal cord, retrograde transport 
can also serve as an efficient vector for testing the neurotoxicity of suspect 
compounds and targeted delivery of potential therapeutics.  
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