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Abstract
Purpose The minimal important change (MIC) of a patient-reported outcome measure (PROM) is often suspected to be 
baseline dependent, typically in the sense that patients who are in a poorer baseline health condition need greater improve-
ment to qualify as minimally important. Testing MIC baseline dependency is commonly performed by creating two or more 
subgroups, stratified on the baseline PROM score. This study’s purpose was to show that this practice produces biased 
subgroup MIC estimates resulting in spurious MIC baseline dependency, and to develop alternative methods to evaluate 
MIC baseline dependency.
Methods Datasets with PROM baseline and follow-up scores and transition ratings were simulated with and without MIC 
baseline dependency. Mean change MICs, ROC-based MICs, predictive MICs, and adjusted MICs were estimated before 
and after stratification on the baseline score. Three alternative methods were developed and evaluated. The methods were 
applied in a real data example for illustration.
Results Baseline stratification resulted in biased subgroup MIC estimates and the false impression of MIC baseline depend-
ency, due to redistribution of measurement error. Two of the alternative methods require a second baseline measurement 
with the same PROM or another correlated PROM. The third method involves the construction of two parallel tests based 
on splitting the PROM’s item set. Two methods could be applied to the real data.
Conclusion MIC baseline dependency should not be tested in subgroups based on stratification on the baseline PROM score. 
Instead, one or more of the suggested alternative methods should be used.

Keywords Minimal important difference · Minimal important change · Baseline dependency · Mean change method · ROC 
method · Predictive modeling method

Introduction

The minimal important change (MIC) is defined as the 
smallest change in a patient-reported outcome measure 
(PROM) that is important to patients [1, 2]. Anchor-based 
MICs correspond to an external criterion (the “anchor”) of 
what constitutes a minimal important change for patients. 
This external criterion is often a transition question, asking 
patients to rate their perceived change between two moments 
in time [3]. Commonly used response options are “much 
better,” “a little better,” “unchanged,” “a little worse,” and 
“much worse.” The change of interest can be in the direc-
tion of improvement or deterioration. For simplicity, we will 
limit the present treatise to improvement, knowing that the 
case for deterioration is exactly the reverse. Three commonly 
applied methods to estimate anchor-based MICs are the 
mean change method, the receiver operating characteristic 
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(ROC)-based method, and the predictive modeling method. 
According to the mean change method, the MIC is defined 
as the mean PROM change in the subgroup considered to 
have experienced a minimal important improvement, i.e., 
patients who have rated their condition as “a little better” [4]. 
According to the ROC-based method, the MIC is defined 
as the PROM change score threshold that optimally dis-
tinguishes improved from not-improved patients [5]. The 
predictive modeling method defines the MIC as the PROM 
change score that is equally likely to occur in the improved 
and not-improved groups [6, 7].

There seems to be a broad consensus in the literature that 
MICs often depend on the baseline PROM score, usually in 
the sense that patients who are in a relatively poor condition 
at baseline have greater MICs [8–11]. A plausible explana-
tion is that patients who are in a relatively poor health state, 
need greater improvement to consider their change impor-
tant, than patients who are in a better health condition [12]. 
The standard test for baseline dependency of the MIC is to 
estimate the MIC in severity subgroups based on baseline 
stratification, either split by the mean, median, or quartiles of 
the baseline score. However, baseline stratification results in 
subgroups with skewed baseline distributions. We suspected 
that this might result in biased subgroup MIC estimates.

We conducted three studies. In the first simulation study, 
we examined how standard baseline stratification affects the 
MIC estimation in the severity subgroups. In the second sim-
ulation study, we examined the performance of three alterna-
tive methods. In the third study, we compared the standard 
and alternative methods using a real dataset.

Study 1

Methods

We explored the effect of baseline stratification on the 
assessment of baseline dependency by simulating a dataset 
in which the MIC was not baseline dependent. The simu-
lation started with the creation of normally distributed 
“true” (i.e., measurement error free) baseline (T1) scores 
with an arbitrary mean of 50 and an arbitrary standard 
deviation (SD) of 10, representing the latent baseline state 
expressed in the metric of the (simulated) PROM (Fig. 1). 
Next, normally distributed true change scores were created 
with an arbitrary mean of 7.5 and an SD of 10. The true 
change scores were given zero correlation with the true T1 
scores. True follow-up scores (T2) were derived by adding 
the true change scores to the true T1 scores. The next step 
was to add measurement error (i.e., a random variable with 
a mean of zero) to the true T1 and T2 scores, and rounding 
the “observed” scores to integers. Equal error variance for 
T1 and T2 were created resulting in a reliability (i.e., the 

variance of the true score divided by the variance of the 
observed score) of the T1 scores of 0.85. The observed 
change scores were obtained by subtracting the observed 
T1 scores from the observed T2 scores. The final error 
scores of the T1, T2 and change scores were obtained by 
subtracting the true scores from the observed scores.

An important assumption underlying the use or transi-
tion ratings is that patients have their individual bench-
marks by which they judge the magnitude and importance 
of a perceived change in their condition. More specifically, 
when asked to rate their change, e.g., as “much better,” 
“a little better,” “unchanged,” “a little worse,” or “much 
worse,” we assumed that patients compare their perceived 
change with a set of individual thresholds of what they 
consider to be a change that qualifies for “much better,” 
…, “much worse.” However, in the context of estimat-
ing anchor-based MIC values, only two specific thresh-
olds were of interest. The first threshold, the one between 
“unchanged” and “a little better,” was used to dichotomize 
the group in improved and not-improved patients in order 
to estimate ROC-based and (adjusted) predictive modeling 
MICs [7]. The second threshold, the one between “a little 
better” and “much better,” was used to identify the group 
who had qualified their change as “a little better,” neces-
sary to estimate the mean change MIC. To account for 
individual variability of the thresholds, we simulated two 
normal distributions of thresholds, the first with a mean 
of 7.5 and an SD of 1.5, and the second with a mean of 
12.5 and an SD of 1.5. We let the thresholds be correlated 
(r = 0.75) to ensure that the second threshold was always 
greater than the first. Zero correlation was simulated 
between the true T1 scores and the thresholds to ensure 
that there was no baseline dependency of the MICs. The 
mean of the first threshold was chosen to equal the mean of 
the true change score in order to ensure that the proportion 
improved (i.e., patients rating “a little better” or “much 
better”) was 0.5. Proportions improved smaller or larger 
than 0.5 are known to cause bias in the ROC-based and 
predictive modeling MIC estimates [7], and we wished to 
avoid this complication. We simulated a sample of 100,000 
patients to limit the influence of chance on the simulations.

The mean change MIC  (MICmean) was estimated as the 
mean observed change score in the “a little better” subgroup 
[4]. The ROC-based MIC  (MICROC) was estimated by per-
forming ROC analysis using the dichotomized transition 
ratings (improved versus not-improved) as the state vari-
able and the observed change scores as the test variable [5]. 
The  MICROC was determined by the cutoff with the high-
est Youden index (i.e., the change score with the maximum 
sum of sensitivity and specificity). The predictive modeling 
MIC  (MICpredicted) and the adjusted predictive modeling 
MIC  (MICadjusted) were calculated using the methods and 
formulas shown in Box 1 [6, 7].
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We used two methods to split the group into a low- and a 
high-severity subgroup. The first method used the standard 
method based on median-splitting by the observed base-
line scores. However, because median-splitting a normal 

distribution results in two highly non-normal distributions, 
we applied a second method using resampling to create 
two subgroups with normally distributed observed baseline 
scores. Resampling implied the pre-specification of two sets 

Fig. 1  Graphical display of the 
simulation design. Simulated 
variables (depicted as density 
plots) were the true baseline 
(T1) score, the true change 
score, measurement error, 
and two transition rating 
thresholds (one between “no 
change” and “a little better,” 
and the other between “a little 
better” and “much better”). 
Mean thresholds are depicted 
by dashed lines; individual 
variability is indicated by small 
density plots overlying these 
lines. Transition ratings were 
derived by comparing the true 
change to the thresholds: rating 
“0” is “not-improved” (i.e., 
“unchanged,” “a little worse,” or 
“much worse”), rating “1” is “a 
little better,” rating “2” is “much 
better.” The following variables 
were derived from the simulated 
variables: the true follow-up 
(T2) score (the true T1 score 
plus the true change score), the 
observed T1 and T2 scores (the 
true T1 score plus measurement 
error of the T1 score, and the 
true T2 score plus measurement 
error of the T2 score, respec-
tively), and the observed change 
score (the observed T2 score 
minus the observed T1 score)
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Box 1  Formulas for calculating the predictive modeling MIC (predicted MIC) and the adjusted predictive modeling MIC (adjusted MIC)

MICPredicted = (logodds(imp) − C)/B
MICAdjusted =  MICPredicted − (0.090 + 0.103 × Cor) ×  SDchange × logodds(imp)
Explanation:
MICPredicted = Predictive modeling minimal important change
logodds(imp) = logodds of improvement = natural logarithm of (proportion improved/(1 − proportion improved))
C = Intercept coefficient of a logistic regression model with the PROM change score as the independent variable and the dichotomous transition 

rating (improved versus not-improved) as the dependent variable
B = Regression coefficient of the logistic regression model as above
MICAdjusted = Adjusted predictive modeling minimal important change
Cor = Point-biserial correlation between the PROM change score and the dichotomous transition rating
SDchange = standard deviation of the PROM change score
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of normally distributed observed T1 scores with means of 41 
and 59, respectively. These distributions were then “filled” 
with cases sampled from the original group. For instance, 
cases with a T1 score of 30 in the pre-specified low baseline 
distribution were filled by sampling cases (with replace-
ment) from the original cases with the same T1 score, and 
this was done for all T1 score categories in both pre-speci-
fied T1 scores distributions. To our knowledge, resampling 
has never been used as an alternative for median-splitting on 
the baseline score. We applied it to enable stratification on 
the baseline score without creating heavily skewed subgroup 
samples.

Results

In the total group, the MIC types based on the thresh-
old between improved and not-improved (i.e.,  MICROC, 
 MICpredicted, and  MICadjusted) were 7.5, which equaled both 
the mean observed change score and the mean of the first 
thresholds (Table 1, column 1) [7]. Moreover,  MICROC and 
 MICpredicted were not biased by the proportion improved 
because we simulated it to be 0.5 [7]. The  MICmean value 
was 9.9, substantially higher than the other MIC values.

As expected, median-splitting into two subgroups 
resulted in clearly different mean observed T1 scores 
(Table 1, columns 2–3) and highly skewed observed T1 
scores (Fig. 2A). Because the thresholds were not cor-
related with the T1 score, the mean thresholds remained 
the same in both groups. Furthermore, because the change 
score was not correlated with the baseline score, the pro-
portions improved and “a little better” also remained the 

same. Nevertheless, the MIC estimates were considerably 
greater in the low baseline subgroup than in the high base-
line subgroup, equaling the mean observed change scores, 
but no longer the mean of the first thresholds. The resam-
pling method resulted in subgroups with normally distrib-
uted baseline scores (Fig. 2B). Nevertheless, the method 
showed a picture very similar to the median-split method, 
including the false impression that the MICs were baseline 
dependent (Table 1, columns 4–5).

Table 1  Results before and after 
baseline stratification through 
median-splitting and resampling 
on the baseline score

Statistic Total group Median-split subgroups Resampled subgroups

Low baseline High baseline Low baseline High baseline

Proportion improved 0.50 0.50 0.50 0.50 0.50
Proportion “a little better” 0.19 0.19 0.19 0.19 0.19
Mean threshold 1 7.5 7.5 7.5 7.5 7.5
Mean threshold 2 12.5 12.5 12.5 12.5 12.5
Correlation T1-change score 0.00 0.00 − 0.00 − 0.00 − 0.00
Correlation T1-threshold 1 0.00 − 0.00 0.00 − 0.01 0.01
Mean observed T1 score 50.0 41.0 58.3 41.0 59.0
Mean error T1 score − 0.0 − 1.4 1.2 − 1.3 1.4
Mean observed T2 score 57.5 49.9 64.6 49.9 65.2
Mean error T2 score − 0.0 0.0 − 0.0 0.0 0.0
Mean observed change score 7.5 8.9 6.3 8.8 6.2
Mean error change score 0.0 1.4 − 1.3 1.3 − 1.4
MICmean 9.9 11.3 8.6 11.3 8.6
MICROC 7.5 8.5 6.5 8.5 6.5
MICpredicted 7.5 8.9 6.3 8.9 6.2
MICadjusted 7.5 8.9 6.3 8.9 6.2

Fig. 2  A Median-split subgroups; B resampled subgroups
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Discussion

The simulations show that stratifying on the baseline 
score, either by median-splitting or by resampling, results 
in spurious baseline dependency of the MICs. Because 
resampling produced the same results as median-splitting, 
creating non-normal baseline scores can be ruled out as 
causing this phenomenon. We rather need to look at the 
mean change score. At this point it is important to rec-
ognize that the ROC and (adjusted) predictive modeling 
methods target a different MIC concept than the mean 
change method. The former methods target a MIC that 
represents the threshold change score in between not-
improved and improved patients (i.e., the first threshold in 
our simulations), whereas the latter method targets a MIC 
that represents the mean change score in the group expe-
riencing a minimal important improvement (i.e., a value 
roughly in between both thresholds in our simulations). If 
the mean change score equals the mean threshold between 
not-improved and improved, logically, in half of the cases 
the (true) change score will exceed this threshold, and con-
sequently, the proportion improved will be 0.5 [7]. This is 
the case in the total group (Table 1). In the baseline strati-
fied subgroups, this pattern is broken because the mean 
error component of the change scores is no longer zero, 
which spuriously increases (in the low baseline groups) or 
decreases (in the high baseline groups) the mean observed 
change score (Table 1). Because observed T1 scores con-
sist of true T1 scores and error T1 scores, selecting a sub-
group with relatively low (or high) observed T1 scores, 
selects a group not only with relatively low (or high) true 
T1 scores, but also with relatively low (or high) error 
T1 scores. This leads to a non-random redistribution of 
baseline measurement error across the subgroups. As a 
result, the mean baseline measurement error is non-zero 
in the subgroups (the mean baseline error is negative in 
the low baseline subgroup and positive in the high base-
line subgroup, see Table 1). Because the observed change 
scores equal the observed T2 scores minus the observed 
T1 scores, the reduced (or elevated) mean error in the 
observed T1 scores is “transferred” to the observed change 
scores. This leads to an elevated mean error component 
of the change scores in the low baseline subgroup, and 
a reduced mean error component of the change scores 
in the high baseline subgroup. Consequently, the MICs 
reflect the spuriously elevated (or reduced) observed mean 
change scores, but not the mean thresholds (Table 1). This 
explains the false impression of baseline dependency in 
the ROC-based and (adjusted) predictive modeling MICs. 
The mean change MIC was 9.9 in the total group (i.e., a 
value roughly halfway in between both mean thresholds, 
7.5 and 12.5). The mean change MIC, being the mean 
change score in a subgroup of patients, also reflected the 

spuriously elevated (or reduced) observed change scores 
in the subgroups based on baseline stratification.

Study 2

Methods

In Study 1 we found that spurious baseline dependency 
of the MIC results from stratifying on the baseline scores, 
which are subsequently used to calculate change scores. The 
obvious solution, therefore, seems to stratify on an inde-
pendent assessment of the baseline state, which is not used 
to calculate change scores. In the following, we present three 
methods.

Method 1

An independent second baseline measurement with the same 
PROM would be ideal. Under the assumption that the sec-
ond true baseline score would be the same as the initial true 
baseline score and that the error in the second measurement 
would not be correlated with the error in the initial measure-
ment, stratifying on a second baseline measurement would 
select patients on the (initial) true baseline score only, and 
not on the (initial) error baseline score.

Method 2

Another possibility is using a baseline assessment with a 
different PROM that is correlated with the PROM of inter-
est. If, for instance, the PROM of interest measures physical 
function, another PROM measuring activities of daily living 
might be used. One could also consider using a single-item 
global rating of severity as a different PROM. The correla-
tion between the initial PROM and the other PROM should 
be large enough to obtain clearly different mean baseline 
scores on the initial PROM across the low and high baseline 
subgroups.

Method 3

A third possibility involves splitting the PROM’s item set 
and constructing two “parallel” test versions of the PROM 
based on different item sets. The parallel tests measure the 
same construct, while they do not share their measurement 
error. Method 3 actually represents a “trick” to create an 
independent second baseline measurement when only a sin-
gle measurement with the PROM of interest is available. 
After stratifying the group on parallel test A, the MIC can be 
calculated for parallel test B, and vice versa. Importantly, the 
MICs, thus calculated, relate to the reduced scales of the par-
allel tests. MIC-A relates to the scale of parallel test A, and 
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MIC-B to the scale of parallel test B. Given that the sum of 
the parallel tests represents the original PROM, the sum of 
MIC-A and MIC-B represent an estimate of the MIC related 
to the scale of the original PROM. Because there may be 
some variation depending on the exact division of the items 
across the parallel tests (and the internal consistency and 
unidimensionality of the PROM), we recommend repeating 
the random splitting of the item set a number of times (e.g., 
5–10) and then take the average of the MIC estimates. Note 
that Method 3 is not available when the PROM consists of a 
single item (e.g., a visual analog scale).

Because methods 1 and 2 build on the same reasoning, 
using another PROM assessment that is correlated with the 
initial PROM assessment, we illustrate method 2 in the fol-
lowing. We added to the previous simulated example another 
PROM baseline measurement correlating 0.70 with the ini-
tial PROM baseline score. The other PROM measurement 
was used to median-split the group, after which the MICs 
were estimated in the low and high baseline subgroups. To 
examine whether this approach is capable of detecting base-
line dependency if the MIC is truly baseline dependent, we 
used a different simulation and added baseline dependency 
of the MIC to the simulated example by adding a negative 
correlation between the first thresholds and the true T1 
scores. A negative correlation implies that the thresholds 
between improved and not-improved are greater with smaller 
baseline scores. Thus, patients who are worse off (i.e., with 
lower baseline scores) need greater improvement to qualify 
it as “a little better” than patients who start at a better posi-
tion. The true T1 scores and the first thresholds were set 
to correlate − 0.80. We added a small negative correlation 
(− 0.13) between the true T1 scores and the true change 
scores to ensure that the proportions improved remained 
about 0.50 in the subgroups.

To illustrate method 3, we simulated two sets of par-
allel test scores (A and B) representing the scores of two 
item sets, together making up the original PROM. So, the 
baseline A-scores plus the baseline B-scores resulted in the 
original PROM baseline score (with the same mean, SD, and 
reliability). Similarly, the change A-scores and the change 
B-scores added up to the original PROM change score, and 
the follow-up A-scores and the follow-up B-scores added 
up to the original PROM follow-up score. After median-
splitting the group on the baseline B-scores, MICs were 
estimated for parallel test A in the low and high baseline 
subgroups, and vice versa. So, in each low or high base-
line situation, two parallel test MICs were estimated, one 
based on parallel test A and the other based on parallel test 
B. Given that the sum of the parallel tests represented the 
original PROM, the sum of MIC-A and MIC-B represented 
an estimate of the MIC related to the original PROM scale. 
The simulations were performed under two conditions, one 
in which the MICs were independent of the baseline score, 

and the other in which the MICs were baseline dependent. 
Baseline dependency was simulated as in the simulation of 
method 2.

Results

With method 2, in the absence of MIC baseline depend-
ency, median-splitting the group on the baseline measure-
ment of the other PROM resulted in two subgroups with 
different mean baseline scores, 43.9 versus 56.1 (Table 2, 
columns 2–3). Importantly, the mean error components of 
the baseline and change scores were now all close to zero 
in the low and high baseline subgroups. Consequently, the 
MICs reflected not only the mean change scores, but also the 
mean first thresholds. There was no false impression of MIC 
baseline dependency.

In the presence of baseline dependency of the MIC, 
stratifying on the other baseline measure, the low and high 
baseline groups not only differed in mean T1 scores but 
also in mean thresholds, in accordance with the simulated 
baseline dependency of the MIC (Table 2, columns 5–6). 
In both low and high baseline subgroups,  MICpredicted and 
 MICadjusted equaled both the mean observed change score 
and the mean of the first thresholds.  MICROC followed this 
pattern but showed some deviance from the mean observed 
change score and the mean of the first thresholds, first, 
because  MICROC can only take on values midway between 
discrete change scores (e.g., 6.5, 7.5, 8.5), and second, 
because  MICROC proves to be less precise than  MICpredicted 
and  MICadjusted [6].  MICmean also confirmed the existence of 
baseline dependency.

For method 3, the results for the total scale (Table 3, 
columns 1 and 6) demonstrate that the parallel tests indeed 
added up to the original PROM scale. In the absence of MIC 
baseline dependency, the MIC estimates did not differ across 
low and high baseline groups (Table 3, columns 2–3, and 
4–5). In contrast, in the presence of MIC baseline depend-
ency, the MICs were found consistently higher in the low 
baseline groups than in the high baseline groups (Table 3, 
columns 7–8, and 9–10). The adjusted MIC-A for the low 
baseline group was 4.2, which was the same for MIC-B in 
the low baseline group. These MICs added up to 8.4, which 
was identical to the sum of the mean observed change scores 
and the mean of the first thresholds in the low baseline sub-
groups. Similarly, the high baseline MICs (3.4 and 3.4) 
added up to 6.8, which was identical (within rounding error) 
to the sum of the mean observed change scores and the mean 
of the first thresholds in the high baseline subgroups.

Discussion

The proposed methods to avoid spurious baseline depend-
ency of the MIC rest on selecting severity subgroups on 
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the basis of a baseline measure that is not involved in the 
calculation of the MIC or, put more specifically, a base-
line measure whose measurement error does not end up 

in the change score that is used to calculate the MIC. The 
independent baseline measurement with the same PROM 
(method 1, i.e., a kind of “retest” measurement) might be 

Table 2  Results before and after baseline stratification through median-splitting on an independent baseline measurement

Statistic Without baseline-dependent MIC With baseline-dependent MIC

Total Low baseline High baseline Total Low baseline High baseline

Proportion improved 0.50 0.50 0.50 0.50 0.50 0.50
Proportion “a little better” 0.19 0.19 0.19 0.19 0.18 0.20
Mean threshold 1 7.5 7.5 7.5 7.5 8.2 6.8
Mean threshold 2 12.5 12.5 12.5 12.5 13.1 12.0
Correlation T1-change score 0.00 − 0.00 − 0.00 − 0.13 − 0.10 − 0.11
Correlation T1-threshold 1 0.00 − 0.00 0.00 − 0.80 − 0.73 − 0.72
Mean observed T1 score 50.0 43.9 56.1 50.0 43.9 56.1
Mean error T1 score − 0.0 0.0 − 0.0 − 0.0 0.0 − 0.0
Mean observed T2 score 57.5 51.3 63.6 57.5 52.1 62.8
Mean error T2 score − 0.0 − 0.0 − 0.0 − 0.0 − 0.0 − 0.0
Mean observed change score 7.5 7.5 7.6 7.5 8.2 6.8
Mean error change score 0.0 − 0.0 0.0 0.0 − 0.0 0.0
MICmean 9.9 9.9 10.0 10.0 10.6 9.4
MICROC 7.5 7.5 7.5 7.5 8.5 7.5
MICpredicted 7.5 7.5 7.6 7.5 8.2 6.8
MICadjusted 7.5 7.5 7.6 7.5 8.2 6.8

Table 3  Results before and after baseline stratification through median-splitting on one of the parallel tests’ baseline score (item-split method)

a Results for parallel test A, after stratification on the baseline measurement of parallel test B
b Results for parallel test B, after stratification on the baseline measurement of parallel test A
c Low BL: low baseline; High BL: high baseline
d Thresholds are in the metric of the total scale

Statistic Without baseline-dependent MIC With baseline-dependent MIC

Total Parallel test  Aa Parallel test  Bb Total Parallel test  Aa Parallel test  Bb

Low  BLc High  BLc Low  BLc High  BLc Low  BLc High  BLc Low  BLc High  BLc

Proportion improved 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
Proportion “a little better” 0.19 0.19 0.19 0.19 0.19 0.19 0.18 0.20 0.18 0.20
Mean threshold  1d 7.5 7.5 7.5 7.5 7.5 7.5 8.4 6.7 8.4 6.7
Mean threshold  2d 12.5 12.5 12.5 12.5 12.5 12.5 13.2 11.9 13.2 11.9
Correlation T1-change score 0.00 0.00 0.00 − 0.00 − 0.00 − 0.13 − 0.11 − 0.09 − 0.09 − 0.10
Correlation T1-threshold 1 0.00 − 0.00 0.00 − 0.00 0.00 − 0.80 − 0.69 − 0.70 − 0.69 − 0.70
Mean observed T1 score 50.0 21.3 28.2 21.3 28.2 50.0 21.3 28.2 21.3 28.2
Mean error T1 score − 0.0 0.0 0.0 0.0 − 0.0 − 0.0 − 0.0 − 0.0 0.0 − 0.0
Mean observed T2 score 57.5 25.1 31.9 25.1 32.0 57.5 25.6 31.5 25.6 31.5
Mean error T2 score 0.0 0.0 0.0 0.0 − 0.0 − 0.0 − 0.0 − 0.0 − 0.0 0.0
Mean observed change score 7.5 3.8 3.7 3.7 3.8 7.5 4.2 3.4 4.2 3.4
Mean error change score − 0.0 − 0.0 − 0.0 − 0.0 0.0 0.0 0.0 0.0 − 0.0 0.0
MICmean 9.9 4.9 4.9 4.9 4.9 10.0 5.4 4.7 5.3 4.7
MICROC 7.5 3.5 3.5 3.5 3.5 7.5 4.5 3.5 4.5 3.5
MICpredicted 7.5 3.7 3.7 3.7 3.7 7.5 4.2 3.4 4.2 3.4
MICadjusted 7.5 3.7 3.7 3.7 3.8 7.5 4.2 3.4 4.2 3.4



2780 Quality of Life Research (2021) 30:2773–2782

1 3

ideal but will often not be feasible in practice. An inde-
pendent baseline measurement with another PROM, which 
is correlated to the PROM of interest (method 2) can also 
be used to select the low and high baseline subgroups. 
The higher the correlation between the baseline PROM of 
interest and the other PROM, the better the groups will be 
separated on the baseline severity of the construct of inter-
est. If the correlation is relatively low, the approach may 
fail to clearly separate the subgroups on baseline sever-
ity, and consequently may fail to detect a truly existing 
MIC baseline dependency (type II error). However, the 
approach protects against spuriously detecting MIC base-
line dependency where it is truly absent (type I error). A 
significance test can be based on the calculation of boot-
strap intervals (as illustrated in Study 3).

Study 3

Methods

To exemplify the MIC baseline dependency methods, we 
analyzed a dataset from a study of 614 patients undergo-
ing knee arthroscopy (see the Supplementary material, sec-
tion 1, for a more detailed study description) [13]. Patients 
completed the Knee injury and Osteoarthritis Outcome 
Score (KOOS) before and 3  months after surgery. The 
KOOS comprises five scales, measuring Pain, Symptoms, 
Activities of Daily Living (ADL), Sport and Recreation 
(Sport/Rec), and Quality Of Life (QOL) [14]. The items 
are scored 0 (no problems) to 4 (extreme problems), and 
summary scores are reversed and transformed to a 0–100 
(extreme—no problems) scale (KOOS scoring guide, 2012, 
http:// www. koos. nu/). At 3 months of follow-up, patients 
also answered transition questions, specifically relating to 
the separate KOOS scales. The response options constituted 
a 7-point scale from 1 (“Better, an important improvement”) 
to 7 (“Worse, an important deterioration”).

The mean change score of the subgroup scoring 2 
(“Somewhat better, but enough to be an important improve-
ment”) was taken as  MICmean. In order to calculate the other 
anchor-based MICs, the transition ratings were dichotomized 
into “importantly improved” (transition ratings 1 and 2) and 
“not (importantly) improved” (transition ratings 3–7).

Baseline dependency of the MICs was assessed using 
the standard method and the alternative methods 2 and 3. 
For Method 2, we used one of the other KOOS scales that 
correlated highest with the scale under study. For Method 
3, the random splitting of the item set was performed five 
times and the results were averaged. We used bootstrapping 
(1000 bootstrap samples) to generate 95% confidence inter-
vals (95% CI) around the MIC estimates.

Results and discussion

The standard method yielded statistically significantly higher 
MIC values for the low baseline subgroups than for the high 
baseline subgroups, across all five scales and all four MIC 
types (Supplementary material, section 1, Tables S1–S5). 
Methods 2 and 3 suggested true MIC baseline dependency 
of the Pain, Symptoms, ADL, and Sport/Rec scales, but not 
of the QOL scale.

We recently published MIC values for the KOOS scales 
based on these data [15]. Had we tested for baseline depend-
ency of these MICs using the standard baseline stratifica-
tion method, we would erroneously have concluded that the 
MIC for the QOL scale was baseline dependent. Using the 
alternative methods, we have now established that the MIC 
of the QOL scale is not baseline dependent while the MICs 
of the other scales are. With respect to the precision of the 
MIC estimates, Method 3 appeared to perform as good as or 
even better than Method 2.

General discussion

Over the past few decades, several authors have suggested 
that the MIC was baseline dependent based on stratifica-
tion on the baseline PROM score. We have shown that this 
method is bound to produce spurious results because select-
ing subgroups based on high (or low) baseline PROM scores 
not only selects subgroups with high (or low) baseline true 
scores, but also on high (or low) baseline error scores, thus 
non-randomly redistributing the measurement error in the 
PROM change score across the subgroups. As a result, the 
mean change score in the low baseline group is spuriously 
increased and the mean change score in the high baseline 
group is spuriously decreased. When using commonly 
used MIC methods such as the mean change method, the 
ROC-based method, and the (adjusted) predictive modeling 
method, the spuriously increased or decreased change scores 
translate into spuriously increased MIC estimates in the low 
baseline group and spuriously decreased MIC estimates in 
the high baseline group. This yields a false impression of 
baseline dependency of the MIC even if there is no true MIC 
baseline dependency. With the three alternative methods we 
have proposed, this pitfall is avoided.

With respect to the validity of MIC estimates, we have to 
post a warning when using the proposed methods to assess 
baseline dependency. We simulated “ideal” data with nor-
mally distributed PROM (change) scores, and transition 
ratings that perfectly reflected change in the construct of 
interest. However, real data are often less ideal with skewed 
PROM (change) scores and transition ratings sometime 
poorly correlate with the change scores. Under these less 
than ideal circumstances, MIC estimates may become 

http://www.koos.nu/
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biased and/or imprecise (this is a largely understudied area). 
Assessing baseline dependency under such circumstances 
is likely to produce biased and/or imprecise MIC estimates 
as well. However, assessing baseline dependency using the 
“wrong” method will almost certainly add spurious baseline 
dependency to the already biased/imprecise results. Using 
the proper methods may result in correct conclusions regard-
ing baseline dependency of otherwise still biased/imprecise 
MIC estimates.

MIC values likely vary across individuals for various rea-
sons. One of the reasons might be baseline severity. Other 
potential reasons are gender, age, and treatment (e.g., surgi-
cal or non-surgical). Knowing some of the causes for MIC 
variability might provide more precise MIC estimates for 
specific situations.

Conclusion

Stratification on the baseline PROM score and estimat-
ing MICs in the low and high baseline subgroups yields 
a false impression of MIC baseline dependency. We have 
described three alternative methods to create low and high 
baseline subgroups, which do not carry the risk of biased 
MIC estimation.
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