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a b s t r a c t

4-hydroxynonenal (HNE) is a lipid hydroperoxide end product formed from the oxidation of n-6
polyunsaturated fatty acids. The relative abundance of HNE within the vasculature is dependent not only
on the rate of lipid peroxidation and HNE synthesis but also on the removal of HNE adducts by phase II
metabolic pathways such as glutathione-S-transferases. Depending on its relative concentration, HNE can
induce a range of hormetic effects in vascular endothelial and smooth muscle cells, including kinase
activation, proliferation, induction of phase II enzymes and in high doses inactivation of enzymatic
processes and apoptosis. HNE also plays an important role in the pathogenesis of vascular diseases such
as atherosclerosis, diabetes, neurodegenerative disorders and in utero diseases such as pre-eclampsia.
This review examines the known production, metabolism and consequences of HNE synthesis within
vascular endothelial and smooth muscle cells, highlighting alterations in mitochondrial and endoplasmic
reticulum function and their association with various vascular pathologies.

& 2013 The Authors. Published by Elsevier B.V. All rights reserved.
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HNE production in the vasculature

The oxidation and subsequent β-cleavage of n-6 polyunsaturated
fatty acids (PUFAs) by H+ abstracting agents (e.g. hydroxyl radicals,
OHd) yields a variety of lipid hydroperoxide products [1]. Of these,
the alkenal 4-hydroxy-2-trans-nonenal (HNE) is considered one of
the most abundant and bioactive species [1,2] and has been studied
extensively both in the context of physiological as well as patholo-
gical vascular events. HNE can form adducts with DNA [3,4] but is
also highly reactive with phospholipids (containing PUFAs such as
linoleic and arachidonic acid) and nucleophilic amino acids
(e.g cysteine, histidine and lysine residues, [5]), making lipid mem-
branes particularly vulnerable to HNE modification. Furthermore,
HNE Michael additions can induce further cross-linking and/or other
HNE conjugates, with roles in physiology and pathophysiology [6]. In
addition to the plasma membrane, specific organelles, such as the
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susceptible to HNE-induced damage, with propagating lipid perox-
idation ultimately resulting in organelle dysfunction and loss of
redox homeostasis Fig. 1.

It is estimated that free HNE concentrations in the plasma of
healthy individuals range between 0.3 and 0.7 mM [7]. HNE levels
increase significantly in plasma and tissues during aging [8] and in
diseases associated with oxidative stress such as atherosclerosis and
diabetes [9]. As a lipid peroxidation derived product, HNE is highly
associated with the generation of reactive oxygen species (ROS), and
hence levels of HNE and HNE conjugates in plasma, tissues and urine
are frequently used as markers of oxidative stress. In disease states,
levels of HNE within the lowmicromolar range (∼1–20 mM) have been
reported, although conceivably far higher concentrations (∼100 mM)
may be achieved in discreet areas such as the plasma membrane [1].
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ultimately pro-apoptotic signaling.
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In vitro incubation of vascular cells with linoleic and arachidonic acid
directly increases HNE formation [10], with HNE also known to
accumulate indirectly within vessels via macrophage infiltration.
Cholesterol consumption reportedly increases HNE synthesis [11],
with HNE inducing low-density lipoprotein oxidation and increased
uptake by macrophages [12], and HNE accumulation within athero-
sclerotic plaques [13].
Metabolism of HNE in vascular cells

The half-life of HNE is relatively short within cells, with HNE
rapidly removed by phase II reactions, allowing for excretion of
water soluble conjugates [14]. HNE modified proteins can also be
removed by autophagic and proteasomal degradation pathways
[15–17]. Although HNE can form Michael adducts directly with the
abundant cellular antioxidant glutathione (GSH), HNE conjugation
is accelerated by enzymatic systems [14]. HNE conjugation is
catalyzed by enzymes including glutathione-S-transferases (GST),
alcohol dehydrogenases and aldehyde dehydrogenases, leading to
the formation of glutathionyl HNE (GS-HNE), 1,4-dihydroxynonene
and 4-hydroxy-2-nonenoic acid, respectively. Among them, GST
mediated conjugation of HNE to glutathione (GSH) accounts for
approximately 60% of the total degradation in vascular cells
[18,19]. The GST isoform GST-4 displays a high selectivity for α,β
unsaturated aldehydes and overexpression of GST-4 has been
shown to protect endothelial cells from HNE-mediated apoptosis
[20]. In human endothelial and vascular smooth muscle cells
(SMCs), the primary HNE-glutathione conjugate can be further
converted to glutathionyl-1,4 dihydroxynonene (GS-DHN) by
aldose reductase (AR, AKR1B1), a member of the aldo-keto
reductase superfamily and the rate-limiting enzyme involved in
metabolizing glucose via the polyol pathway [18]. These metabo-
lites may then be exported for secondary degradation [21].

In hepatocytes, the half-life of 100 μM HNE is only 5 min [22].
Srivastava et al. reported that in human endothelial cells incubated
with 5 μM HNE, 95% of the compound was metabolized after
30 min [18]. Following addition of 25 μM HNE to bovine aortic
endothelial cells (BAEC), intracellular HNE levels peak at 4 h and
decline by 50% after 6 h [23]. In contrast, vascular smooth muscle
cells may be more resistant to HNE modification. Hill et al.
reported that exposure of primary rat aortic SMCs to HNE con-
centrations below 50 mM fails to induce widespread cellular accu-
mulation of HNE protein adducts, with adducts only apparent after at
least 30 min incubation with 50 mM HNE [15]. Thus, clearance is
faster in SMCs than endothelial cells, with complete removal of HNE
adducts in SMC treated with 50 mM HNE occurring within ∼8 h [15].

The rate of HNE metabolism is critically dependent on cellular
levels of GSH and relevant enzyme activity, reflecting the anti-
oxidant capacity of different cells [24,25]. SMCs are known to
induce rapid synthesis of intracellular GSH from cysteine or
extracellular GSH [26], and basal GSH levels are markedly higher
in SMCs compared with endothelial cells [27]. Furthermore, SMCs
exposed to HNE promote the induction of aldose reductase (AR)
activity and expression, increasing GS-HNE metabolite clearance
and promoting cell survival [28,29]. Collectively, the enhanced
induction of these clearance pathways within SMCs may account
for the apparent increased sensitivity of endothelial cells to HNE.
Downstream effects of HNE production on cellular function

Although the majority of HNE is rapidly removed from cells,
approximately 1–8% of HNE may remain bound to functional
amino acid groups including cysteine, histidine and lysine and
thereby continue to exert cellular effects [19]. Among them,
cysteine residues display the highest reactivity with HNE at their
C-3 electrophilic center [30]. Effects of HNE on endothelial and
smooth muscle cells are summarized in Tables 1 and 2, respec-
tively. For a more comprehensive overview of the biochemistry
and general cell signaling of lipid peroxidation products we refer
readers to existing reviews [14,31,32]. In biological systems, lipid
peroxidation products have been referred to as ‘second messen-
gers’ of free radicals, as they are more stable and diffuse easily to
affect distant targets enabling participation in a diverse number of
cellular events. Cellular effects of HNE may evoke both damaging
and hormetic cytoprotective actions. Whilst high concentrations of
HNE can inhibit cellular processes inducing widespread cellular
damage ultimately resulting in apoptosis [1,33], a range of rela-
tively low concentrations of HNE produced in response to mild
oxidative challenge appear to modulate normal physiological
processes including upregulation of endogenous antioxidant
defense pathways [34,35].
Targeted signaling induced by HNE within the vasculature

Instead of a mere by-product of oxidative stress, both reactive
oxygen species and resulting lipid hydroperoxide products (e.g.
HNE) are capable of modifying nucleophilic residues and are now
recognized as signaling agents participating in a wide array of
cellular pathways. Key pathways targeted by HNE in vascular cells
include tyrosine kinase receptor (TKR) activation and modulation
of transcriptional activity.

Enzyme and receptor targets of HNE signaling

A classical signaling pathway known to be induced by HNE is
the activation of TKRs, with limited data also supporting their
activation in vascular endothelial and SMCs. HNE (0.1 mM) is
reported in a human endothelial cell line to modify and induce
autophosphorylation of the epidermal growth factor receptor
(EGFR) which is associated with activation of intrinsic tyrosine
kinase activity and implicated in cell proliferation/differentiation
[36]. The formation of HNE protein adducts with sulfhydryl
groups, lysine and histidine is a probable mechanism accounting
for the activation of TKRs triggering pleiotropic regulatory path-
ways. In bovine aortic endothelial cells, Natarajan et al. also
demonstrated protein tyrosine phosphorylation is responsible for
the activation of phospholipase D (PLD) by HNE, although the
concentration of HNE (50 mM) in their treatments may be some-
what higher than reported pathophysiological levels [37]. Activa-
tion of PLD is recognized as a trigger to generate the intracellular
lipid messenger phosphatidic acid and the latter is associated with
diverse cellular functions including reorganization of the cytoske-
leton, intracellular membrane transport and cell signaling which is
reviewed elsewhere [38].

Interestingly, modulation of intracellular thiol levels, either by
supplementing with a thiol rich compound (N-acetyl-L-cysteine)
or treatment with a GSH chelating compound (L-buthionine-(S,R)-
sulfoximine, BSO), attenuates or enhances PLD activation by HNE
respectively, implicating a potential competitive role of intracel-
lular reactive free thiols in modulating PLD activation [39]. These
findings highlight the importance of basal redox status in deter-
mining the various physiological or pathological consequences of
HNE exposure. In SMCs relatively low concentrations of HNE
(1–2.5 mM) also lead to platelet-derived growth factor (PDGF)
receptor activation, preceding metalloproteinase-1 and extracellular
signal-regulated kinase 1/2 (ERK1/2) activation [40]. HNE activation
of extracellular matrix degrading matrix metalloproteinases-1 and
-2 [40–42] is essential for SMC proliferation [43], as is the activation
of ERK1/2 [43,44] which occurs within 5 min of HNE stimulation.



Table 1
Effects of HNE and 15d-PGJ2 on endothelial cells.

Cell type Treatment Conc.n (μmol/L) Time Main findings References

RTK and MAPK activation
HEC HNE 0.1 3 h HNE (0.1 mM) and oxLDL (200 mg/ml)↑EGFR activation [36]

oxLDL [49]
BLMVEC HNE 10–100 2 h ↑Phosphorylation of ERK, JNK, p38 MAPK
MPEC HNE 20 0–2 h ↑p∼JNK within 30 min,2p∼p38, p∼ERK1/2 [20]
BLMVEC HNE 25 30 min ↑MAPK activation [88]
BPAEC HNE 50 30 min ↑Phospholipase D activation via protein tyrosine phosphorylation [37,141]
HUVEC 15d-PGJ2 10 2 h ↑Phosphorylation of MAPK JNK (2 h) [142]

Transcriptional
activity
HUVEC HNE 5 12 h ↑HO-1 and NQO1 via Nrf2, protects HUVEC from tBHP attack [55]
HUVEC HNE 1–10 12 h 2NFκB activation, ↓IL-8 and ICAM-1 production in a concentration dependent manner indicating

↓inflammatory responses
[10]

HUVEC 15d-PGJ2 2.5 2–8 h ↑Nrf2 nuclear accumulation, ↑HO-1, ↑NQO1, ↑adducts with Keap1 at cysteines residues in IVR
region, which may mediate shear induced Nrf2 activation

[143]

BAEC 15d-PGJ2 2 16 h ↑GSH, HO-1, ↑Keap1 adduct formation [144]
HUVEC 15d-PGJ2 5 24 h ↑GSH, ↑GCLC, ↑GCLM, ↑resistance to oxidative stress which relies on de novo GSH synthesis, ARE

responsible for GCLC induction, Cys273 and Cys278 of Keap1 conjugated by 15d-PGJ2
[52,145]

Oxidative stress and protein adduct clearance
BAEC HNE 5 1 h Modifies thioredoxin-1 at cys-73 and ↓activity, ↑ROS, ↓GSH [90]
HAEC HNE 5 24 h Protects HAEC from 6-hydroxydopamine induced cell death
BAEC HNE 25 4 h Proposed ↑proteasomal degradation of GTPCH and Hsp90 [23]

Cellular
dysfunction
BLMVEC HNE 10–100 2 h ↑Endothelial permeability; ↑Michael adducts formation, actin fiber remodeling via

phosphorylation of ERK, JNK, p38 MAPK
[49]

BLMVEC HNE 25 30 min Induces actin rearrangement, ↓GSH, ↑cell adhesion and surface integrins; ↓tyrosine
phosphorylation of FAK,↑MAPK activation, ↑Michael adducts with ↑focal adhesion & adherens
junctional proteins, reversed by pretreatment NAC

[88]

BAEC HNE 5 1 h ↑Monocyte adhesion [90]
BAEC HNE 10 5 d ↑Membrane phospholipid perturbation, ↑prostacyclin, ↑monocyte migration [146]
BAEC HNE 10 6–8 h ↓Junctional communication [87]
BAEC HNE 25 4 h ↑ROS, ↓NO, GSH, ↑apoptosis involving caspase-3 activation which can be attenuated by BH4

supplementation. ↓BH4 by ↓GTPCH leading to ↑eNOS uncoupling, ↓HSP90 leading to ↓eNOS
phosphorylation, proposed ↑proteasomal activity and proteasomal degradation of BH4 and HSP 90

[23]

Mitochondrial
function
BAEC HNE 5–10 4–16 h ↑GSH and HO-1 at 16 h, ↑ROS from mitochondria after 4 h [71]
HUVEC 15d-PGJ2 2.5 24 h ↑GSH, ↑complex I activity in cell extracts, dependent on de novo protein synthesis in response to

ROS but independent of GSH depletion
[94]

BAEC 15d-PGJ2 10 16 h ↑HO-1, ↓mitochondrial membrane potential ↑Nrf2 nuclear accumulation, blocked IBTP, a
mitochondrial-targeted thiol reactive compound.

[53]

ER stress
HUVEC HNE 25 30 min

– 2 h
↑Protein adduction (HSP90, HSP70,PDI), ↑xBP-1 splicing, ↑PERK, p∼eIF2α, and ATF6 translocation;
↑Grp78 and HERP, ↑ICAM-1, cell adhesion, TNF-α, IL-6, and IL-8; activation of endothelial cells
mediated by ↑ER stress, noting depletion of GSH cannot ↑ER stress

[107]

HMEC HNE 20 24 h ↑PERK and ATF6; ↑p∼IRE1 and p∼eIF2α; ↑ER stress, which is prevented by pretreatment with NAC [108]
HMEC HNE/

oxLDL
0–25 (HNE)/
200 mg/ml oxLDL

14–18 h Forms adducts with PDI,↓PDI activity and↓cell viability. ↑CHOP and xBP1s mRNA as indicators of
↑ER stress. Loss of PDI activity and reduced viability prevented by NAC.

[110]

Apoptosis
HUVEC HNE 10–50 3 h ↑Cell death and ↓growth capacity but this effect is affected by serum in the medium [147]
HUVEC HNE 10 12 h ↑Apoptosis, ↓protein synthesis [10]
PCEC HNE 1–50 3 h ↑Chromosomal aberrations and micronuclei formation [113]
BAEC HNE 25 4 h ↑ROS, ↓NO,↓GSH, ↑apoptosis involving caspase-3 activation which can be attenuated by BH4

supplementation.
[23]

↓BH4 resulting from ↓GTPCH and ↓HSP90 levels leads to ↑eNOS uncoupling and ↓eNOS
phosphorylation. Proposed ↑proteasomal activity towards GTPCH and HSP 90 underlies impaired
NO production

MPEC HNE 40 8 h ↑p∼JNK leading to ↑p53 and Bax expression and↑apoptosis. Abolished by GST4 overexpression [20]
HUVEC 15d-PGJ2 10 2–16 h ↑ROS (1 h), ↑phosphorylation of MAPK and JNK (2 h), ↑p53 expression and phosphorylation (8 h),

↑caspase associated apoptosis
[142]

Cell type abbreviations: MPEC, mouse pancreatic islet endothelial cells; HEC human endothelial cell line CRL-1998; BAEC, bovine aortic endothelial cells; BLMVEC, Bovine lung
microvascular vein endothelial cells; BPAEC, bovine pulmonary arterial endothelial cells; HMEC, human microvascular endothelial cells; HUVEC, human umbilical vein
endothelial cells; PCEC, porcine cerebral endothelial cells.
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Although in SMCs, ERK1/2 appears to be the principal kinase
pathway activated by physiological concentrations (0.1–1 mM) of
HNE, presumably indirectly via activation of upstream mitogen-
activated protein kinase kinase 1/2 (MEK 1/2), several other kinase
pathways are HNE sensitive. In SMCs, HNE (1 mM) promotes rapid
protein kinase B (Akt) [41], p38 MAPK [42] as well more latent



Table 2
Effects of HNE on vascular smooth muscle cells.

Cell type [HNE]
μmol/L

Time Findings References

RTK, MAPK and PI3K/Akt activation
MASMC 0.1 10–90 min In young but not aged animals↑p∼ERK1/2,2p∼p38, p∼Jnk [44]
RASMC 1 5 min ↑p∼ERK1/2 [43]
HCSMC 10 10 min ↑p∼PDGFR, ↑p∼ERK1/2 [40]
MASMC 1 5–120 min ↑p∼ERK1/2 that was maximal within 60 min,↑p∼p38 maximal within 30 min and p∼JNK reduced after

30 min of HNE treatment
[42]

RASMC 1 5–120 min Dose-dependent↑Akt activity [41]
RASMC 1 4 h ↑PKC activation, abolished by AR inhibition [45]

Proliferation
RASMC 0.1–1 12–24 h Dose-dependent↑MMP-2 activity, mRNA and protein expression, which was dependent on Akt

activation
[41]

MASMC 1 24 h ↑MMP-2 expression and activity which was dependent on HNE-induced ERK activation [42]
MASMC 0.1–10 24 h 0.1 mM HNE ↑cell density in cells from young but not aged mice,↑ERK1/2 activation and downstream

cyclin D1 mRNA expression. Higher doses 1–10 mM HNE↓cell density
[44]

0.1 mM HNE ↑cell survival in cells from young but not aged mice. Aged cells showed↑ROS generation in
response to HNE, with NAC↑survival in aged cell populations

RASMC 0.1–10 24 h HNE and HNE conjugates (e.g. GS-HNE) o1 mM↑cell proliferation, with higher doses↓cell density.
Aldose reductase activity required for cell survival/proliferation. Inhibition of HNE conjugate removal
by RLIP76 transporter↑cell growth

[45]

HCSMC 2–20 24 h Dose-dependent ↑MMP-1 requiring HNE-induced PDGFR and downstream ERK1/2 activation [40]
RASMC 1 48–72 h ↑Cell proliferation, attenuated by growth factor PDGF receptor autoantibodies [43]

RASMC 2.5 48 h ↑Proliferation [74]
HASMC 2.5 72 h ↑Cell proliferation, dependent on aldose reductase activity [29]

Transcriptional activity
HASMC 1 0.5–6 h 30 min following HNE exposure↑IκBα phosphorylation without inducing IƙB degradation. ↑NFκB DNA

binding was also increased from 30 min of HNE stimulation
[72]

RASMC 1 4 h ↑NFκB and AP-1 activation [45]
RASMC 1 12 h ↑NFκB activity but no change in AP-1, c-jun or CREB activity. NFƙB activation was dependent on

mitochondria derived superoxide mediated Akt activation which and proceeds MMP-2 expression
[41]

RVSMC 0–5 24 h Dose-dependent ↓NFκB activation, with 50 mM HNE shown to prevent LPS/IFN induced proteasomal
IκBα degradation. Accordingly, HNE dose-dependently (0–5 mM) ↓LPS/IFN induced nitrite production,
with doses >12.5 mM↓iNOS expression

[73]

RASMC 1–10 3 h ↑Elk1, c-jun, CHOP and AP-1 activity, ↑c-jun and c-fos mRNA [74]
RASMC 2.5 1–2 h ↑c-fos and c-jun expression, ↑AP-1 DNA binding [43]
MASMC 20 0–5 h ↑Nrf2 nuclear accumulation and downstream HO-1, Prx1 and A170 mRNA, absent in cells derived from

Nrf2 knockout mice
[54]

Phase II metabolism
HASMC 0.05 30 min ↑Aldose reductase metabolized GSH conjugates [29]

2.5 8–12 h ↑Aldose reductase mRNA (8 h) and protein (12 h) expression
RASMC 1 5 min ↓Cellular thiol content [43]
RVSMC 5–10 0–24 h ↑Aldose reductase mRNA (7 h), protein (12 h) and activity (12–24 h) [28]
RASMC 0.1–10 24 h HNE and HNE conjugates (e.g. GS-HNE) o1 mM↑cell proliferation, with higher doses↓cell density.

Aldose reductase activity required for cell survival/proliferation. Inhibition of HNE conjugate removal
by RLIP76 transporter↑cell growth

[45]

Oxidative stress and
protein adduct clearance
HASMC 1 0–12 h ↑8-isoprostane induced following 9 h HNE treatment [72]
RASMC 50 30 min ↑Autophagy but not proteasomal HNE degradation [15]
RVSMC 50 4 h ↓LPS/IFN induced proteasomal IƙBα degradation [73]
RBASMC 0–3000 4.5 h ↓Recognition and clearance of LDL with increasing [HNE] [12]

Cellular dysfunction
PBMS 10–100 0 min ↓Carbachol induced relaxation [148]
RVSMC 0–5 24 h HNE dose-dependently (0–5 mM) ↓LPS/IFN induced nitrite production, with doses >12.5 mM↓iNOS

expression
[73]

Mitochondria
RASMC 1–30 10–60 min HNE dose-dependently↑ROS production measured by DCF fluorescence with inhibitors of mitochondria

abolishing HNE-induced superoxide generation
[96]

RASMC 1 30 min ↑Mitochondria derived superoxide [41]
RASMC 20 20–180 min ↓Oxygen consumption rate (OCR),2extracellular acidification rate (ECAR) [97]

Apoptosis
RASMC 1–30 24 h HNE >10 mM↑apoptosis, with 30 mM HNE also increasing necrosis [44,96]
RVSMC 5–15 6 h HNE dose-dependently↑apoptosis, with AR inhibition↑HNE-induced apoptosis [28]
HASMC 0–100 6 h 100 mM HNE induced DNA fragmentation [72]

Cell type abbreviations: HCSMC, human coronary smooth muscle cells; HASMC, Human aortic smooth muscle cells; RVMC, rat vascular smooth muscle cells; RASMC, rat aortic
smooth muscle cells; RBASMC, rabbit aortic smooth muscle cells MASMC, mouse aortic smooth muscle cells; PBMS, pig bladder muscle strips.
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protein kinase C (PKC) [45] activity, whereas c-jun N-terminal
kinase (JNK) signaling appears to be suppressed [42,44].

The downstream effects of Akt, p38, PKC and JNK activation in
SMC function in response to low concentrations of HNE are not
well characterized, and the predominant activation of ERK is
somewhat surprising given the well characterized induction of
cysteine rich PKC in non-vascular cell types [46–48]. As high-
lighted in Table 2, studies assessing kinase activation in SMC
following challenge with pathological concentrations of HNE
(∼10 mM) are limited. In contrast, in vitro studies with endothelial
cells have largely used rather high HNE concentrations (410 mM)
to demonstrate upregulation of JNK, ERK1/2 and/or p38 [20,49].
Interestingly, both HNE and its conjugates (e.g. GS-HNE) appear to
be bioactive and participate in cell signaling [45]. Furthermore,
based on proliferative responses of SMCs to a range of HNE
concentrations, it is notable that low ‘signaling’ doses (∼1 mM) of
HNE elicit proliferative or ‘pro-survival’ responses in SMCs,
whereas stimulation with higher and pathological levels of HNE
(∼10 mM) cause apoptosis in both endothelial and SMCs (see
Apoptosis Section).

Transcriptional targets of HNE

HNE can also induce the activation of a number of transcription
factors. Due to its integral role as a mediator of oxidative stress, the
best described role of HNE mediated transcriptional regulation is its
activation of nuclear factor-E2-related factor 2 (Nrf2) antioxidant
defenses. Biphasic effects of HNE are characterized by an initial
decrease in GSH levels over 1–2 h and a later rebound upregulation
of GSH (12–24 h) and other antioxidant enzymes, including heme
oxygenase 1 (HO-1), NAD(P)H:quinone oxidoreductase (NQO1), glu-
tamate cysteine ligase catalytic subunit (GCLC), glutamate cysteine
ligase modifier subunit (GCLM) and the cystine/glutamate amino
acid transporter (xCT), all of which enhance cellular defenses against
further oxidative stress [34,50]. These cytoprotective enzymes pos-
sess an antioxidant response element (ARE)/electrophile response
element (EpRE) in their promoter region which binds Nrf2, a key
transcription factor regulating redox homeostasis [34,51]. Lipid
peroxidation derivatives significantly increase nuclear accumulation
of Nrf2 [35,52–54] and knockdown of Nrf2 with siRNA almost
completely abolishes the adaptive upregulation of GSH by HNE
[55], highlighting the importance of this transcriptional pathway in
HNE triggered cellular responses.

Nrf2 is a member of the CNC (‘cap n collar’) family of transcription
factors which possesses a b-Zip binding motif [56]. Nrf2 deficient
mice are more susceptible to vascular damage due to diminished
glutathione levels and an impaired compensatory induction of GSH
synthesis (Chan & Kwong, 2000), highlighting a fundamental role for
Nrf2 in antioxidant defenses against oxidative stress. Activation of
Nrf2 is mainly regulated by its cytosolic inhibitor Kelch-Like ECH-
Associated Protein 1 (Keap1), which under basal conditions targets
Nrf2 for ubiquitin-dependent proteasomal degradation [57–59].
Keap1 is a cysteine rich protein that serves as a key redox sensor
[60]. Modification of cysteine residues on Keap1 by electrophiles,
particularly Cys 151 in the BTB (Broad complex Tramtrack, and
Bric–brac) domain and Cys 273 and Cys 288 in the central interven-
ing region (IVR) domain, suppress Keap1 mediated degradation of
Nrf2 [61,62]. Although the exact residues modified by HNE have yet
to be determined, Michael addition of HNE to Keap1 has been
demonstrated [52]. When the level of Nrf2 exceeds the sequestration
capacity of Keap1, excess Nrf2 can accumulate in the nucleus where it
initiates transcription [56].

In addition to the genes mentioned above, the Nrf2 inducible
enzymes aldo–keto reductase (AR) [63,64] and GSTs including
GST4 [65,66] are critical in neutralizing HNE in vascular cells.
Increased levels of GSH can detoxify HNE conjugated proteins such
as protein disulfide isomerases (PDIs), heat shock protein 72
(Hsp72) and restore their function [67]. Interestingly, knockdown
of Nrf2 results in increased HNE accumulation in tissues of aged
(424 months) mice [68], and in aged humans elevated HNE levels
correlate with diminished Nrf2 activity [30,69]. However, the
mechanisms underlying loss of Nrf2 function during aging remain
to be elucidated. Because activation of cytoprotective pathways
could be enhanced by HNE treatment, moderate doses of HNE may
thus exert beneficial effects on cell survival, overcoming its initial
detrimental damage. In SMCs, HNE challenge increases AR activity,
mRNA and protein expression [28,29], which is associated with
increased cell survival [45]

Moreover, Chen et al. reported that pre-treatment of human
arterial endothelial cells with 5 μM HNE for 24 h significantly
improved cell survival following oxidative stress induced by
6-hydroxydopamine [70]. Consistent with these findings, 5 μM HNE
markedly reduced tert-butyl hydroperoxide-induced cytotoxicity in
human umbilical vein endothelial cells, which was accompanied by
increased expression of HO-1 and NQO1 and activated Nrf2/ARE
signaling [55]. In addition, pretreatment of 15-deoxy-Delta (12,14)
prostaglandin J2 (15d-PGJ2), another peroxidation product with a
highly reactive electrophilic center that shares common functions
with HNE, also enhanced cell resistance to oxidative stress via a
similar mechanism [71], indicating hormetic actions of HNE in
endothelial cells.

Surprisingly, whilst the transcriptional effects of HNE in endothe-
lial cells seem to be predominantly confined to Nrf2, in SMCs the
effects of HNE appear to be more diverse. In SMCs relatively low
concentrations of HNE (∼1 mM) also promote IκBα phosphorylation,
leading to rapid (30 min) nuclear factor kappa B (NFκB) DNA binding,
with NFκB activation maintained for at least 12 h and promoting
SMC proliferation [41,45,72]. In contrast, higher concentrations of
HNE (5–50 mM) inhibit IκB-α degradation via the proteasome [73],
consistent with reduced proliferation observed in response to higher
concentrations of HNE [44,45]. In contrast to SMCs, HNE (10 mM) fails
to modulate NFκB signaling in endothelial cells [10]. Furthermore,
other transcription factors and transcriptional activators including
activator protein-1 (AP-1), cAMP response element-binding protein
(CREB) and ETS domain-containing protein (Elk1) are acutely (1–4 h),
albeit transiently, activated in SMCs in response to HNE [43,45,74]
but similar reports for endothelial cells are to our knowledge lacking.
Whether HNE directly activates redox sensitive transcription factors
such as AP-1, or whether this occurs as a consequence of perturba-
tions within the cell redox environment remains to be established.
Restoration and clearance pathways

In addition to inducing the expression of HNE-responsive GSTs
(e.g. GST4) and aldo–keto reductases (e.g AR) to metabolize HNE
(see Section 2), export of GS-HNE conjugates in many cell types
predominantly via the non-ABC transporter RLIP76 is also known
to modulate HNE-induced cell signaling [75]. Chemical or antibody
based inhibition of RLIP76 has been shown to prevent GS-DHN
removal and to potentiate low dose HNE-induced SMC prolifera-
tion [45]. These findings highlight a specific signaling rather than
cytotoxic role for low physiological concentrations of HNE and its
conjugates in the vasculature, a finding confirmed in many other
cell types [76]. The export of HNE conjugates by RLIP76 can be
saturated, with purified RLIP76 shown to have a Km ∼2.5 mM for
GS-HNE conjugates [77]. Exposure to high levels of HNE, exceeding
the capacity of RLIP76, may be a critical factor mediating the
hormetic actions of HNE. Indeed, inhibition of RLIP76 in vitro has
been shown to induce HNE accumulation and activation of JNK
mediated apoptosis [78]. In RLIP76−/− mice, HNE and GS-HNE
metabolites accumulate in tissues [79] and, whilst the activity of



S.J. Chapple et al. / Redox Biology 1 (2013) 319–331 325
RLIP76 in aging has yet to be determined, increased RLIP76
autoantibodies have been found in other vascular diseases and
are implicated in metabolic syndrome [78,80].

Failure to induce HNE clearance can lead to the accumulation of
HNE protein adducts, which below a certain threshold can be
removed via proteasomal or autophagic degradation pathways to
restore redox balance. In the cytosol, the proteasome largely
consists of a 20S catalytic core, capped by regulatory subunits
19S (PA700) and/or 11S (PA28) subunits [81]. The 20S core is
capped at either end by a 19S subunit, collectively termed the 26S
proteasome, and has been shown to be key for normal turnover of
cellular proteins in an ubiquitin-dependent manner. Oxidized
proteins are a poor substrate for the 26S proteasome, but detach-
ment of the 19S regulatory subunits allows oxidized proteins to be
degraded by the 20S proteasome independent of ubiquitin con-
jugation [81]. It is generally accepted that whilst mild HNE-
induced protein oxidation stimulates 20S proteasomal clearance,
extensively oxidized and cross-linked proteins are more resistant
to proteasome degradation leading to the accumulation of oxida-
tively modified and cytotoxic protein aggregates [17]. The protea-
some itself may also be a target for HNE adduction, with HNE at
concentrations as low as 10 mM shown to directly bind specific
subunits within the 20S proteasomal catalytic core inhibiting their
activity [82] and potentially exacerbating HNE-modified protein
accumulation.

In endothelial cells, Vieira et al. reported that exposure to
50–200 mg/ml oxLDL induced protein adduct formation which
was replicated by 1 mM HNE treatment [83]. Protein oxidation
coinsided with elevated proteolysis peaking within 3–5 h and was
inhibited by the proteasomal inhibitors LLnL and PSI and partly
dependent on the previous ubiquitination of substrates [83].
Whitsett et al. also proposed that increased proteasomal degrada-
tion in response to HNE (25 mM) underlies loss of guanosine
triphosphate cyclohydrolase I (GTPCH) in bovine aortic endothelial
cells [23]. In SMCs, there is limited information on the effects of
HNE on proteasomal activity and autophagy, however proteasomal
activity appears limited following exposure to pathological concen-
trations of HNE [15], perhaps due to extensive protein crosslinking.
Studies by Hill et al., demonstrate that treatment of rat aortic SMCs
with 50 mM HNE induces widespread protein-adduction, with
inhibitors of autophagy (3-MA) but not the proteasome (lactacystin)
further increasing the presence of adduct, suggestive of an active
autophagic response in SMCs to remove HNE-adducts [15]. In other
studies, HNE (50 mM) was shown to prevent IκB proteasomal
degradation in response to LPS/IFN treatment, with similar results
obtained using the proteasomal inhibitor MG115 [73]. Collectively,
these findings support an increase in HNE clearance pathways as a
necessary step to prevent widespread and aberrant HNE modifica-
tions, ultimately resulting in cellular dysfunction and activation of
pro-apoptotic signaling pathways.

More recently, in addition to increasing phase II metabolism,
a role for Nrf2 has been implicated in the induction of protea-
somal genes in response to oxidative stress. Hydrogen peroxide
and a range of dietary Nrf2 inducers have been shown to
increase the expression of 20S proteasomal and immunopro-
teasomal subunits, resulting in a rebound increase in oxidized
protein degradation capacity [51,84]. Although, as reviewed
elsewhere [51], not all Nrf2 inducers have the capacity to
modulate proteasomal gene expression, it is likely given the
known role of HNE in modulating proteasomal activity that
HNE may indeed be able to do so. Studies monitoring the effects
HNE on proteasomal activity in normal and Nrf2 deficient cells
have yet to be conducted to confirm this, but the effects of HNE
on proteasomal/autophagic clearance remains a potential factor
influencing the transition from physiological to pathological
HNE-induced cellular events.
Aberrant HNE modifications and misguided targets of lipid
peroxidation

Whilst relatively low doses of HNE can orchestrate cell signaling
events, higher concentrations of HNE appear to modify a further set of
target proteins, inhibiting or dysregulating previously functional
cellular processes and organelle functions. In particular, endothelial
cells, which form the primary vascular interface for potentially
oxidized circulating components, appear to be highly susceptible to
HNE induced damage [10,85]. HNE can exert a range of pathophysio-
logical effects, including interfering with the synthesis and release of
vasoactive mediators, breakdown of the endothelial barrier function
and inducing a pro-inflammatory phenotype within the vessel wall.

Loss of vasoprotection

Although not directly reactive with nitric oxide (NO), HNE is
able to reduce bioavailability of the key vasoactive agent NO via
modulation of nitric oxide synthase (NOS) activity. In BAEC treated
with HNE, Whitsett et al. showed an elevation of peroxynitrite and
uncoupled endothelial nitric oxide synthase (eNOS) with reduced
tetrahydrobiopterin (BH4) levels and eNOS phosphorylation,
resulting from a loss of guanosine triphosphate cyclohydrolase I
(GTPCH) and heat shock protein 90 (HSP90) [23]. Reduced GTPCH
and HSP90 induced by HNE can be reversed by proteasomal
inhibition, suggesting accelerated proteasomal degradation of
these proteins following HNE adduction [23,86]. However, as no
additional studies were conducted to assess whether these pro-
teins are adducted by HNE or whether HNE is modulating
proteasomal activity, the mechanism mediating these effects
remains uncertain. In SMCs, HNE also inhibits the production of
nitrite from NO through modulating gene expression, decreasing
expression of inducible nitric oxide synthase (iNOS) following
inhibition of NFκB activation [73].

Elevated plasma levels of HNE also damage endothelial barrier
function [10,87] due to impaired cell–cell communication and
inhibition of membrane associated enzymes [85]. Treatment of
endothelial cells with HNE increases Michael additions to adhesion
and adherens junction proteins, reduces surface integrin expression
and phosphorylation of focal adhesion kinase (FAK) and redistributes
tight junction proteins, leading to impaired focal adhesion and
intercellular gap formation [88]. Intracellular F-actin arrangement
may also be remodeled by HNE, contributing to gap formation and
barrier dysfunction [49]. Notably, all these changes can be inhibited
by pre-treatment of cells with the thiol protectant N-acetylcysteine,
indicating an underlying redox sensitive mechanism [49,88]. It has
been suggested that sulfhydryl groups (e.g. Cys374 on actin regulat-
ing polymerization) are potential targets of HNE addition [89].
Moreover, lipid peroxidation products induce inflammatory
responses and increase the adhesion of monocytes to endothelial
cells [88,90], with HNE also reported to modify LDL leading to
increased uptake and reduced clearance of oxLDL from SMCs [12].
As discussed in Section 6, these processes may be active contributors
towards the development of vascular diseases.

Organelle specific effects—mitochondrial dysfunction

Mitochondria are a major energy source in cells and generate
reactive oxygen radicals (e.g. superoxide which can be rapidly
dismutated to hydrogen peroxide) via the electron respiratory chain,
and thereby not only contribute to cell signaling but also to the
development of disease [91]. Mitochondrial membranes are rich in
protein thiols which make them potential targets for lipid peroxida-
tion products [92]. Similar to other non-vascular cell types, reviewed
elsewhere [31], HNE is reported to increase cellular generation
of reactive oxygen species in both endothelial and SMCs, with
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superoxide generated by the mitochondria the predominant source.
Landar et al. reported that in BAECs, HNE (5 mM) evokes an increase
in mitochondrial reactive oxygen species generation measured by
DCF fluorescence [71]. However, in our studies, acute treatment with
HNE (20 mM) fails to induce superoxide generation in human
umbilical vein endothelial cells measured by lucigenin and L-012
chemiluminescence. Although no studies have yet determined the
effects of mitochondrial inhibitors in endothelial cells in response to
HNE evoked superoxide generation, rotenone, a complex I inhibitor,
can inhibit 15-deoxy-Delta (12,14) prostaglandin-J2 (15d-PGJ2)
induced mitochondrial ROS generation [93]. Similarly, in BAEC
treated with 15d-PGJ2 for an extended time period, mitochondrial
membrane potential is reduced [53] with elevated complex I activity
[94], perhaps suggestive of mitochondrial uncoupling providing a
feedback mechanism in mitochondria to combat sustained HNE
stress [95]. In SMCs, HNE has been shown to dose-dependently
increase ROS generation, with inhibition of mitochondrial complex I
preventing HNE-induced superoxide generation [44,96]. Interest-
ingly, exposure of SMCs to relatively high (20 mM) HNE concentra-
tions fails to induce any change in O2 consumption [97], indicating
that rather than exerting a direct effect on the respiratory chain HNE
may be modulating clearance of reactive oxygen species by GSH or
other antioxidant pathways.

Although yet to be investigated, it is worthwhile highlighting
the role that mitochondria may play in HNE induced activation of
the Nrf2 defense pathway. Using immunofluorescence, Lo et al.
have shown that cytosolic Keap1 is closely associated with
mitochondria [98]. Modulation of the mitochondrial redox status
in endothelial cells has been proposed as a necessary step in the
activation of Nrf2 signaling by lipid peroxidation products [53] and
shear stress [99], although a specific role for mitochondria in
HNE-induced Nrf2 activation in endothelial or SMCs has yet to be
established. Addition of a mitochondrial targeted thiol reactive
compound 4-iodobutyl-triphenylphosphonium abolishes hemin
and 15d-PGJ2 induced Nrf2 signaling [53] without interfering with
Nrf2-Keap1 dissociation, indicating an intermediate role for mito-
chondrial thiols. Interestingly, using modified 15d-PGJ2 specifically
targeted to mitochondria, Diers et al. found that the modified
compound caused profound mitochondrial reactive oxygen species
generation and apoptosis, with minimal induction of HO-1 or
adaptive increases in GSH. These findings suggest that both
cytosolic and mitochondrial modifications induced by lipid perox-
idation products are required for activating Nrf2 [100]. Moreover,
modulation of redox regulating enzymes rather than altered ROS
generation in mitochondira may be responsible for the activation of
Nrf2/ARE signaling, as overexpression of mitochondrial thiol reduc-
tive enzyme thioredoxin 2 (Trx2) can abrogate the induction of this
pathway [101]. Although HNE-induced modification of Trx2 has yet
to be determined, inhibition of thioredoxin 1 by HNE conjugation
has been previously reported [90] in aortic endothelial cells, and
may thus serve as a mechanism for the activation of Nrf2 by HNE.

Organelle specific effects - endoplasmic reticulum (ER) stress

ER stress and the subsequent unfolded protein response (UPR)
are emerging as key mechanisms determining the fate of cells and
may contribute to the development of atherosclerosis, diabetes
and neurodegenerative disorders. Oxidative stress (e.g from mito-
chondria), lipid peroxides such as HNE and elevation of intracel-
lular Ca2+ are known activators of ER stress [102]. In eukaryotic
cells, the ER regulates chaperone-assisted protein folding, which
requires tight regulation of its internal redox environment to
prevent mis-directed disulfide bond formation and accumulation
of misfolded proteins [103]. ER stress, induced by excessive
accumulation of misfolded proteins, results in activation of the
UPR to (i) transiently reduce ER load and induce chaperones to
enhance correct folding capacity, (ii) degrade misfolded proteins
via proteasomal and autophagy ER assisted degradation (ERAD)
pathways and (iii) induce antioxidant responses to restore redox
homeostasis and reduce ER stress [102,104]. If a balanced folding
capacity cannot be achieved, induction of pro-apoptotic signaling
(e.g. C/EBP-homologous protein, CHOP transcription) triggers pro-
grammed cell death. The UPR is activated by the disassociation of
Grp78 (BiP) from ER transmembrane UPR effectors and its associa-
tion with accumulated misfolded proteins, allowing activation of
transmembrane ER effectors [105] inositol requiring enzyme 1
(IRE1), RNA-dependent protein kinase-like endoplasmic reticulum
kinase (PERK) and activating transcription factor 6 (ATF6), and
down-stream signaling cascades including the phosphorylation of
eukaryotic translation initiation factor 2α (eIF2α) and xBP-1 spli-
cing [102,106].

Similar to mitochondria, ER proteins are also thiol abundant
and targets of lipid peroxidation products [107]. Whilst not
affecting intracellular Ca2+, incubation of endothelial cells with
20 μM HNE for 24 h significantly elevates phosphorylation of IRE1
and eIF2α, which is effectively inhibited by pre-treatment with
NAC, indicating increased ER stress by HNE is thiol dependent
[107,108]. Moreover, depleting GSH alone with tert-
butylhydroperoxide (tBHP) cannot trigger ER stress [107], impli-
cating a direct modification of ER proteins by HNE. Liquid
chromatography–mass spectrometry analysis has shown that cha-
perones including Grp78, protein disulfide isomerases (PDIs), and
heat shock proteins including HSP90 and HSP70 are predomi-
nantly conjugated by HNE (25 μM, 30 min) in human umbilical
vein endothelial cells [107]. It is presently unclear whether HNE
Michael addition via lysine residues to Grp78 is alone sufficient to
trigger UPR activation, but it is likely that HNE adduction to PDI
may trigger activation. PDI is a key ER-resident enzyme catalyzing
the formation and rearrangement of disulfide bonds, and thus
determines protein unfolding capacity in ER. Activity of PDI can be
inhibited by HNE in a concentration dependent manner due to
cysteine modifications [67], leading to accumulation of unfolded
proteins and consequential ER stress [109,110]. Fortunately, PDI
modification is reversible by physiological concentrations of GSH
[67] allowing for eventual resolution of ER stress.

Secondary to ER stress, activation of the UPR by HNE is
evidenced by the upregulation of ER regulators and chaperones
(e.g. Grp78 and homocysteine inducible ER protein (HERP)) to
enhance overall protein folding capacity [107]. It worth noting that
Nrf2 has been identified as a direct downstream signaling target
activated by PERK phosphorylation [111], suggesting that HNE-
induced Nrf2 activation may also occur secondary to ER stress as
well as a consequence of cytosolic or potentially mitochondrial
oxidation. Depletion of Nrf2 renders cells more susceptible to ER
stress, and Nrf2 activation in response to ER stress activators has
been shown to be critical for cell survival [109,111]. These findings
highlight that, in addition to enhancing protein folding capacity,
restoration of redox homeostasis through activation of Nrf2
mediated induction of GSH related genes, phase II enzymes,
antioxidant enzymes and potentially 20S proteasomal gene
expression and oxidized protein clearance, is necessary for cellular
recovery from HNE stress. Together these Nrf2-mediated
responses prevent continued ER stress and activation of apoptotic
signaling cascades. Unfortunately, information concerning ER
stress in SMCs is extremely limited and to our knowledge there
are no reports on whether HNE is capable of inducing ER stress in
SMCs. However, induction of ER stress in SMCs by non-lipid
peroxides has been reviewed [112] and, as highlighted in this
review, a causative relationship between ER stress and apoptosis is
lacking in SMCs. Notably, ER stress has important implications for
diseases such as atherosclerosis and diabetes in which it has
actively been assigned a role in disease pathogenesis.
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Apoptosis

Failure to remove HNE adducts following exposure to patholo-
gical concentrations of HNE results in cellular dysfunction and
oxidative damage in organelles such as mitochondria and the ER in
vascular cells. In human endothelial cells, pathological concentra-
tions of HNE increase caspase activation and induce apoptosis [23].
Similarly in SMCs, HNE has been shown to increase mitochondrial
generation of reactive oxygen radicals and induce apoptosis [96],
which was augmented by AR inhibition and reduced HNE clear-
ance [28]. DNA adduction and subsequent fragmentation has also
been reported to occur following HNE treatment of both endothe-
lial and SMCs [72,113].

In most studies, pathological concentrations of HNE are required to
initiate apoptosis, with the hormetic effects of HNE highlighted in the
proliferation responses of SMCs. Whilst low physiological levels of
HNE (0.1–1 mM) dose-dependently increase protein synthesis and SMC
proliferation, exposure to higher concentrations 41 mM progressively
inhibit protein synthesis and induce cell apoptosis. It has recently been
suggested that detoxification of HNE through GSH phase II reactions
may represent an important buffering systemwithin cells to limit and
create specificity in lipid peroxide signaling by preventing aberrant
HNE modifications [31]. Indeed, the capacity of cells to remove HNE
and HNE-damaged proteins (via GSTS, AR, RLIP76, proteasome,
autophagy, UPR etc.) clearly plays a critical role in determining cell
fate. Moreover, in vascular diseases in which cells may be exposed
chronically to elevated levels of HNE, it could be argued that HNE-
induced apoptosis can occur not only as a result of accumulative
damage but as a loss of normal cell signaling (e.g NO production, TKR
activation and downstream kinase signaling) inducing progressive
endothelial dysfunction ultimately resulting in programmed cell death.
Role of HNE in vascular diseases

Lipid peroxide induced damage is widely thought to be an active
contributor to a number of vascular diseases, including, atherosclero-
sis, neurodegenerative disorders, diabetes and pregnancy diseases
such as pre-eclampsia and gestational diabetes. Unlike reactive oxygen
species, lipid peroxides are generally more stable allowing them to
diffuse through membranes and affect distant organelles or tissues
including fetal tissues following transplacental transfer [1,114,115].
Indeed, HNE-modified oxLDL accumulates in atherosclerotic plaques
[13,116], with HNE adducts and associated peroxides also reported
pancreatic beta cell islets [117], neuronal tissue [118] and in circulating
cord blood [119]. Notably, and as highlighted below, whilst HNE
accumulation in many vascular disease models is well documented,
evidence directly linking HNE to cellular dysfunction is in most cases
associative rather than causal, underlining the need for further in vitro
studies to assess the specific effects of HNE on cellular organelles.

In utero diseases

Lipid peroxides including HNE have been extensively implicated
in the pathogenesis of in utero diseases such as pre-eclampsia
through the induction of pro-inflammatory signaling cascades [120]
in the maternal as well as fetal vasculature. Moreover, as reviewed
elsewhere [119,120], enhanced HNE formation appears to correlate
with alterations in fatty acid metabolism and co-insides with
impairments in antioxidant defenses, with these changes ultimately
resulting in systemic vascular dysfunction. Commonly, central to the
role of HNE in disease is the dysregulation of organelles such as
mitochondria and the ER. Whilst PE appears to have a vast
inflammatory component associated with its etiology, markers of
ER stress and mitochondrial dysfunction have been detected.
Activation of UPR effector pathways is clearly evidenced in the
placentas of PE pregnancies [121], although no causative link has
yet been made to suggest that ER stress occurs secondary to lipid
peroxidation. Furthermore, ER stress remains to be assessed in the
fetal vasculature, although markers of mitochondrial dysfunction
are found in fetal endothelial cells [122] and are well documented
in the placenta to co-inside with markers of oxidative stress [123].

Atherosclerosis

In atherosclerosis and cardiac disorders, there are indications
that HNE-induced mitochondrial dysfunction and ER stress may play
a key role in disease pathogenesis through the modulation of
vascular cells. In spontaneously hypertensive rats, HNE adducts to
mitochondrial NADP+-isocitrate dehydrogenase and reduced enzy-
matic activity have been reported and shown to enhance cardiac
hypertrophy [124]. Furthermore, in vitro oxLDL has been shown to
lead to endothelial HNE accumulation and the induction of ER stress
through the inhibition of PDI activity, consequent downstream
effector signaling (e.g xBP-1 splicing) and endothelial caspase
activation and apoptosis [110]. In vivo, endothelial ER stress in vessel
regions associated with low or disturbed shear stress have also been
reported [125,126] and even to precede loss of Nrf2 [126]. ER stress
appears to have a negative effect on endothelial cell stability [125],
which may in part account for plaque susceptibility to rupture
through ER stress-mediated apoptosis, promoting loss of the
endothelial layer covering the plaque. Without direct confirmation
that HNE can induce ER stress within SMCs, it is more difficult to
assess whether this vascular cell type can also be destabilized during
atherosclerosis as a consequence of oxLDL/HNE accumulation.

Diabetes

ER stress has also been implicated in diabetic pathologies,
including in beta cell death [102,127] and vascular dysfunction in
diabetic retinopathy [128]. Whilst there is little information regard-
ing the potential role of lipid peroxides in inducing ER stress within
pancreatic beta cells, ER stress markers have been found in the
retinas of human diabetic patients [128] and may be as a conse-
quence of oxidative stress or elevated HNE production. In vitro
human retinal capillary pericytes treated with oxLDL or HNE exhibit
markers of ER stress and mitochondrial dysfunction [128], with ER
stress also found in human retinal Muller cells following oxLDL or
HNE exposure [129]. Athough not well characterized in diabetes, it is
likely that the vascular endothelium may also be affected, since
treatment of healthy human endothelial cells with HNE induces ER
stress [107]. Similarly, mitochondrial dysfunction and the resulting
elevation of reactive oxygen species generation has been implicated
in the pathogenesis of diabetes [50], and there is evidence to support
HNE-induced mitochondrial dysfunction in vascular diabetic pathol-
ogies. In diabetic rat hearts HNE adducts formed with complex II
subunit SDHA have been shown to result in reduced mitochondrial
respiration, with insulin administration able to prevent HNE adduc-
tion and loss of mitochondrial function [130]. Conversely, in diabetic
skeletal muscle biopsies reduced mitochondrial respiration has been
detected with the absence of HNE accumulation in tissue, suggesting
that in diabetes mitochondrial dysfunction may be induced inde-
pendently from lipid peroxide generation [131].

Neurodegerative diseases

In neurodegenerative diseases associated with amyloid, α-
Synuclein or transthyretin protein deposition such as Alzheimer’s
disease, Parkinson’s disease or familial amyloidotic polyneuropa-
thy (FAP), indirect associations have been made between HNE-
induced oxidative stress and downstream ER stress/UPR activation
or mitochondrial dysfunction. HNE colocalises with Lewy body
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protein accumulations present within brain tissues, such as in
Parkinsons disease [118], indirectly implicating HNE in the patho-
genesis of these diseases. In addition, HNE has been shown to
directly form Michael additions with proteins such as α-Synuclein
implicated in familial Parkinson’s [132], however the oligomers
formed, whilst toxic, are not fibrilar implying that HNE alone
cannot account of the formation of Lewy bodies. In Parkinson’s
patients, the accumulation of HNE [118] and markers of ER stress
such as the upregulation of UPR target HERP have been reported in
Lewy bodies present within the substantia nigra [133]. Whilst not
providing a definite link, in retinal Muller glial cells HNE has been
shown to induce ER stress in vitro [129] in agreement with the
possibility that in the brain HNE-induced ER stress may be a cause
rather than consequence of neuronal injury. In FAP, use of anti-
oxidant scavengers was able to reduce HNE accumulation and
markers of ER stress in stomach tissue and reduce transthyretin
accumulation [134], suggestive of an active role of redox regula-
tion in transthyretin deposition. Conversely, transthyretin has
been shown to directly activate ER stress, though whether this is
through HNE accumulation remains unknown [135]. Furthermore,
following neuronal injury such as in stroke, HNE concentrations
are increased in plasma and positively correlate with homocys-
teine concentrations [136]. Whilst not directly implicating HNE in
the pathogenesis of stroke, spontaneously hypertensive stroke
prone rats exhibit higher circulating levels of HNE [136] and
HNE has also been shown form Michael additions to various
adhesion molecules inducing breakdown of endothelial barrier
function, which may have important implications for blood-brain
barrier integrity [88]. Consistent with a role for HNE in inducing
mitochondrial dysfunction, Sompol et al. have reported that in an
animal model of Alzheimer’s disease, HNE accumulation is asso-
ciated with reduced mitochondrial membrane potential in neuro-
nal cells [137]. As overexpression of MnSOD or use of a SOD
mimetic was able to partially restore mitochondrial function, it is
likely that HNE modulates mitochondrial superoxide output either
directly by adduction to the respiratory chain or indirectly through
inhibition of antioxidant proteins such as Trx2.
Concluding remarks and future research prospectives

Bioactive lipid peroxides such as HNE are increasingly becoming
recognized as exerting hormetic actions within the vasculature (Fig. 1).
Low physiological levels of HNE appear to positively modulate the cell
cycle and proliferation of vascular cells [44] and, by inducing non-toxic
protein oxidation, can induce long-term cytoprotection though the
activation of Nrf2 antioxidant defenses protecting against later oxidant
insults [55]. Indeed, oxLDL, containing 0.5 mM free HNE, and 5 mMHNE
alone have been shown in human endothelial cells to upregulate a
variety of Nrf2-dependent genes with a similar transcriptional profile
to laminar shear stress [138], arguably the ultimate vasoprotective
stimulus exerted in the vasculature. In endothelial cells, there is
limited information concerning the effects of physiological concentra-
tions of HNE (o1 mM) on endothelial function, which may have
important implications for regulation of basal transcriptional activity
and thus merits further investigation. Progressively higher concentra-
tions of HNE, extending into the pathological range, are well docu-
mented to exert opposing effects. At high doses, HNE induces
widespread oxidation of cellular proteins [1], particularly those located
within cholesterol rich membranes or in organelles with a high thiol
content such as the mitochondrial or the ER [71,107]. Modification of
such proteins can not only induce a pro-inflammatory phenotype or
disrupt endothelial barrier function [88], but can also precipitate
further oxidative stress by disrupting protein folding and potentially
mitochondrial function, which if not counteracted by Nrf2 antioxidant
defenses ultimately results in apoptosis [10,71,107]. Further studies
using both physiological and pathological HNE concentrations will
enhance our understanding of the extent and effects of HNE adduction
to mitochondrial or ER associated proteins in vascular endothelial and
SMCs, and will have important implications for targeting endogenous
antioxidant defense pathways to prevent or limit the progression of
vascular diseases.

Levels of HNE within tissues are dependent not only on the rate
of fatty acid oxidation and thus HNE production, but also on its
removal by phase II metabolic pathways. Key to the removal of
HNE is its conjugation to the abundant thiol GSH, which in
vascular cells is primarily mediated via GST-4 [20]. Whilst GSH
conjugation is essential for removal of HNE, importantly some
HNE conjugates such as GS-DHN produced by AR are also bioactive
and may perhaps help to prolong the biological actions of short-
lived HNE following low-dose HNE stimulation [45]. Interestingly,
whilst modulation of some HNE degradation pathways such as the
HNE-conjugate transporter RLIP76 appear to have a clear role in
disease pathologies such as in atherosclerotic lesions or metabolic
syndrome [78,80], others such as AR are less clearly defined. Thus,
when considering redox modulating therapies, there is a need to
consider both the hormetic effects of HNE in vascular pathologies
and other potential off-target effects following HNE exposure.

Whilst studies clearly demonstrate short-term inhibition of AR
is able to upregulate low dose HNE proliferative effects within
vascular cells, AR activity is also critical in promoting cell survival
following aberrant HNE modifications in response to higher HNE
doses [45]. Moreover, in diseases such as diabetic retinopathy
associated with HNE accumulation [139], AR activity is reportedly
higher [140], presumably in part to increase HNE clearance and
combat oxidative stress. Whilst elevated AR activity may be of
benefit in removing HNE conjugates, increased AR activity also
increases glucose metabolism to sorbitol, resulting in osmotic
stress and cytotoxicity [140]. In such instances where it is clear
that dampening AR activity may be of overall benefit in terms of
restoring redox homeostasis via relieving glucose-induced cyto-
toxicity, increasing HNE degradation by other means may provide
an alternative strategy to alleviate HNE-induced oxidative injury.

In conclusion, HNE is capable of modulating both survival and pro-
apoptotic pathways within vascular endothelial and SMCs. Aging or
disease pathologies associated with HNE accumulation may be due to
both elevated HNE synthesis and/or decline in phase II metabolic
pathways required to remove HNE, inducing aberrant HNE protein
oxidation and resulting in vascular dysfunction. Whilst HNE can form
widespread protein adducts, specific organelles including the plasma
membrane, mitochondria and ER clearly more susceptible to HNE
modification, and thus the convergence of HNE concentration and
activation of clearance pathways within these organelles may be the
critical determinant as to whether cells can induce adaptive antiox-
idant defenses via Nrf2 to counteract HNE modifications or ultimately
undergo apoptosis. Targeting of endogenous antioxidant defenses such
as Nrf2-linked genes to remove HNE adducts may be of therapeutic
benefit, but considerations concerning the effects on parallel metabolic
pathways should considered when pursuing this strategy.
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