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Streptococcus pneumoniae (pneumococcus) is a Gram-
positive commensal and human respiratory pathogen. How
this bacterium satisfies its nutritional iron (Fe) requirement in
the context of endogenously produced hydrogen peroxide is
not well understood. Here, we characterize a novel virulence-
associated Rrf2-family transcriptional repressor that we term
SifR (streptococcal IscR-like family transcriptional repressor)
encoded by spd_1448 and conserved in Streptococci. Global
transcriptomic analysis of a ΔsifR strain defines the SifR reg-
ulon as genes encoding a candidate catechol dioxygenase CatE,
an uncharacterized oxidoreductase YwnB, a candidate flavin-
dependent ferric reductase YhdA, a candidate heme-based
ferric reductase domain–containing protein and the Piu
(pneumococcus iron uptake) Fe transporter (piuBCDA). Pre-
vious work established that membrane-anchored PiuA binds
FeIII–bis-catechol or monocatechol complexes with high af-
finity, including the human catecholamine stress hormone,
norepinephrine. We demonstrate that SifR senses quinone via
a single conserved cysteine that represses its regulon when in
the reduced form. Upon reaction with catechol-derived qui-
nones, we show that SifR dissociates from the DNA leading to
regulon derepression, allowing the pneumococcus to access a
catechol-derived source of Fe while minimizing reactive elec-
trophile stress induced by quinones. Consistent with this
model, we show that CatE is an FeII-dependent 2,3-catechol
dioxygenase with broad substrate specificity, YwnB is an
NAD(P)H-dependent quinone reductase capable of reducing
the oxidized and cyclized norepinephrine, adrenochrome, and
YhdA is capable of reducing a number of FeIII complexes,
including PiuA-binding transport substrates. These findings
are consistent with a model where FeIII–catechol complexes
serve as significant nutritional Fe sources in the host.

Streptococcus pneumoniae (S. pneumoniae; pneumococcus)
is a low-GC Gram-positive aerotolerant anaerobe that is
naturally competent and highly genetically adaptable.
S. pneumoniae is a common commensal resident of the hu-
man upper respiratory tract, where it colonizes epithelial
mucosal surfaces of the host nasopharynx asymptomatically
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as part of a diverse microbial community (1). Myriad physi-
ological signals, from both bacterial and host origins,
including stress (2), trigger an incompletely understood
transition of S. pneumoniae into a life-threatening invasive
pathogen that can propagate in the middle ear, causing acute
otitis, the lower respiratory tract, and the lung, causing
pneumonia, the blood stream, causing bacteremia, and the
brain meninges, causing meningitis (1, 3, 4). S. pneumoniae
causes significant mortality annually worldwide and has
become increasingly resistant to antibiotics (5).

Bacterial virulence factors aid transition of S. pneumoniae
from a commensal to an invasive organism by adapting or
evading the host immune and inflammatory responses (1).
Among the strongest virulence factors is iron (Fe) acquisition
by S. pneumoniae. Early studies establish that S. pneumoniae
strains lacking both FeIII-uptake ABC-transporter systems, Pia
(pneumococcal iron acquisition) and Piu (pneumococcal iron
uptake), are strongly attenuated for virulence in pulmonary
and systemic infection murine models (6). The combination of
PiuA and PiaA soluble binding proteins induces protection
against systemic S. pneumoniae infections in mice and thus
were considered as early vaccine candidates (7). Note that Fe
uptake is a virulence determinant for nearly all bacterial
pathogens, and this is the foundational basis of “nutritional
immunity,” in which the infected host restricts Fe and other
critical transition metals from invading pathogens (8–11). As
such, successful pathogens have evolved numerous nonover-
lapping strategies to acquire both ferric iron (FeIII) as solubi-
lized FeIII chelates and ferrous iron (FeII) from the infected
host to meet nutritional Fe requirements (12–14).

In S. pneumoniae, Fe must be efficiently managed as a result
of its unusual physiology. S. pneumoniae is a fermentative
lactic acid bacterium that derives all its energy needs from
anaerobic glycolysis and the associated pyruvate node of aer-
obic metabolism, which interconverts lactate and acetyl
phosphate through pyruvate, via the action of the two en-
zymes, lactate oxidase (LctO) and pyruvate oxidase (SpxB)
(15). Both enzymes utilize O2 as a substrate and release
hydrogen peroxide (H2O2), a toxic reactive oxygen species
(ROS), as a byproduct; this is the primary mode of respiration
by the S. pneumoniae since the organism lacks the tricarbox-
ylic acid cycle and respiratory electron transfer chain. Access
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EDITORS’ PICK: SifR is a quinone sensor tied to FeIII–catechol uptake
to acetyl phosphate allows substrate-level phosphorylation of
ADP by acetate kinase to make a third molecule of ATP (16).
The absence of a tricarboxylic acid cycle and an electron
transfer chain significantly reduces the cellular quota of Fe-
requiring enzymes. A survey of predicted Fe–sulfur (S) pro-
teins revealed just 11 enzymes in S. pneumoniae compared
with ≈140 in Escherichia coli; most of which are expected to
function under strict anaerobic conditions (17). The quota of
heme and nonheme Fe enzymes in Spn is not well understood.
As such, S. pneumoniae is considered a “manganese-centric”
organism that accumulates approximately equal total con-
centrations of Fe and Mn when cultured in rich growth me-
dium (18, 19).

Fe homeostasis in S. pneumoniae is regulated by the orphan
response regulatory RitR (20–22), which regulates the
expression of piu genes, but does so by not responding to
reversible FeII binding. Instead, RitR employs a single redox-
sensitive Cys, C128, the oxidation state of which is reported
to modulate RitR DNA-binding activity (23). Under conditions
of low ROS, RitR exists as a reduced monomeric protein that
binds weakly to the DNA operator allowing for constitutive
expression of piuBCDA (23). As ROS levels rise, RitR forms a
number of oxidative forms, one of which is a disulfide-
crosslinked dimer that binds more tightly to the DNA-
triggering repression of piu expression and Fe uptake (23).
RitR deletion strains suffer from Fe toxicity that can be rescued
by exogenous addition of manganese (20).

In previous work, we reclassified the S. pneumoniae
PiuBCDA transporter and in particular, the ligand-binding
component of this ABC transporter PiuA, from a heme
transporter as had been commonly assumed (6, 24) to a
transporter that is specific for coordinatively unsaturated
FeIII–catecholate complexes (25, 26). S. pneumoniae PiuA is
structurally and functionally similar to Campylobacter jejuni
CeuE and Staphylococcus aureus SstD, each of which bind and
transport tetracoordinate FeIII–catecholate complexes using
two protein-derived ligands to complete the octahedral coor-
dination complex around the FeIII (25, 27–29). All three
transporters can bind either 2 mol eq of a monocatechol or a
single mole equivalent of a bis-catechol (25, 27). Both S. aureus
SstD and S. pneumoniae PiuA bind FeIII complexes of the host-
derived catecholamine stress hormone norepinephrine (NE),
and in the case of S. aureus, this contributes to its bacterial
virulence (29). Both S. aureus SstD and S. pneumoniae PiuA
can liberate and capture FeIII from host transferrin in the
presence of O2, which endows these organisms the ability to
scavenge Fe from important host sources that are generally
employed by the host to restrict access to this essential
micronutrient. We postulated that this chemistry may well be
a critical feature in the transition of S. pneumoniae from a
commensal to an invasive pathogen, since NE has been shown
to increase the growth and migration of S. pneumoniae to the
lungs (2, 30). This process is strongly impacted by PiuA, RitR,
and Fe binding properties of NE, as well as other bacterial
factors (2, 30, 31).

We reasoned that in order to effectively utilize FeIII–NE
complexes as nutritional sources of Fe during invasive disease,
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S. pneumoniae would have to avoid the toxicity associated with
accumulated bis-hydroxy catechols, which would spontane-
ously autooxidize to the semiquinone radical and the quinone
species in the presence of ambient O2 and H2O2. Quinones are
potent reactive electrophile species that react with abundant
cellular nucleophiles, including the extra cyclic amines of DNA
bases and amines and thiolates of the proteome (32). This
motivated a search for an uncharacterized transcriptional
regulator that, like piu, was a documented virulence factor and
that could be connected to Fe regulation or a reactive elec-
trophile species response. This led us to the protein encoded
by spd_1448 in S. pneumoniae serotype 2 D39. SPD_1448 is an
Rrf2-family transcriptional repressor (33) that is ubiquitous
among streptococci and entirely uncharacterized. In this study,
we rename spd_1448 encoding SPD_1448 to SifR (strepto-
coccal IscR-like family transcriptional repressor), define the
SifR regulon, and demonstrate that SifR is a monothiolate
quinone sensor. This activity contrasts sharply with IscR, an
Fe–S-containing regulator that senses Fe–S cluster status in
E. coli, or the myriad of nitric oxide sensors that allow adap-
tation of bacteria to reactive nitrogen species via Fe–S cluster
decomposition (34–36). Using genomic enzymology tools, we
place SifR in the context of the Rrf2 superfamily of tran-
scriptional repressors and present a biochemical character-
ization of nearly all identified key SifR-regulated gene
products. Our data taken collectively are consistent with a
regulatory model where SifR senses cellular quinones, thus
allowing bacterial cells to utilize simple host-abundant FeIII–
catecholamine complexes that are taken up through the
PiuBCDA transporter as a nutritional Fe source, all while
avoiding collateral quinone toxicity (37).
Results

S. pneumoniae SifR is a novel Rrf2-family repressor that
harbors a single conserved cysteine

Initial investigations of the literature suggest that
S. pneumoniae spd_1448 (renamed sifR here) encodes an Rrf2-
type family transcriptional regulatory protein we now term
SifR. The genomic neighborhood of sifR provided no clues as
to the function of SifR, except that the sifR gene is transcribed
from the opposite strand upstream and relatively adjacent to
spd_1450, which encodes a MnII-sensing metalloregulatory
protein PsaR (38, 39). Functionally characterized members of
the Rrf2 family fall into two general classes: (1) those that
harbor an atypical 4Fe–4S or 2Fe–2S cluster that senses
oxidative or nitrosative stress at the Fe–S site (35) and (2)
those not known to harbor a cluster but contain a pair of Cys
residues (40). The prototypical Rrf2-family repressor is pro-
teobacterial IscR, an Fe–S cluster regulator that contains a
2Fe–2S cluster ligated by three Cys and one His and controls
the biogenesis of Fe–S clusters in cells (34, 41, 42). A sequence
alignment reveals that SifR shares 42% identity and 63% sim-
ilarity to Bacillus subtilis YwnA (BsYwnA), encoded by ywnA
as part of the ywnAB operon (Fig. 1A). Although the structure
of B. subtilis YwnA is known (Protein Data Bank [PDB] code:
1XD7; Fig. 1B) and its expression is induced by exogenous



Figure 1. Sequence alignment and structural models of Bacillus subtilis YwnA (BsYwnA) and SpSifR. A, sequence alignment of SpSifR and B. subtilis
YwnA (locus tag: BSU36680) showing the secondary structure of YwnA (PDB code: 1XD7). The Cys in SpSifR is indicated with the conserved Cys in SpSifR and
BsYwnA highlighted. B, ribbon representations of the structure of BsYwnA (left, side view; right, DNA-binding face) with the secondary structures and
connector region highlighted for the one protomer. Inset, close-up of the CPV (Cys95-Pro96-Val97) region at the N-terminal end of the α5 helix, with a N-
capping H-bond shown. C, Alphafold2 (68, 92) model of SpSifR in putty representation, colored by residue conservation determined with ConSurf (93)
(maroon = conserved, cyan = variable), with one subunit in ribbon representation and the other in sausage representation with thickness corresponding to
sequence conservation (thick, high conservation). The β-winged helical domains, connector, and the dimerization domains are indicated. PDB, Protein Data
Bank; SpSifR, Streptococcus pneumoniae SifR.
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catechol (43), its function is unknown. S. pneumoniae SifR
(SpSifR) and BsYwnA would appear to represent a third major
class of Rrf2-family repressor that harbors a single conserved
cysteine (C102 in SpSifR in Fig. 1A) as documented below.

In general, Rrf2 repressors are dimers consisting of ≈150
residue subunits, with an N-terminal DNA-binding “winged
helical” domain connected to a C-terminal helical domain by
a ≈20-residue region of irregular secondary structure, as
shown in BsYwnA (Fig. 1B). The DNA-binding domain
contains the α1 helix followed by an irregular loop, the α2–α3
helix–turn–helix motif followed by the β1–β2 wing, which
often contains an RGxxGG “wing-tip,” and terminates with
the α4 helix. The α4 helix is followed by long “connector” that
links the winged helical domain with the α5 helix, which
forms an antiparallel α5–α50 coiled coil that provides much of
the dimerization interface; this is followed by a variable-
length α6 helix. The N-terminal region of an α5 helix from
one subunit packs against the winged helical domain of the
opposite subunit within the homodimer (Fig. 1B). In the case
of IscR, metal ligands are found in the C-terminal region of
the “connector” and residues in the α5 helix generally con-
forming to a Cys-X5-Cys-X5-Cys-X2-His sequence (41). In
other Fe–S cluster–containing Rrf2 repressors, metal ligands
are shared between this connector and the N-terminal α1
helix of the opposite subunit (35).

To obtain detailed insights into amino acid sequence con-
servation of SpSifR and place SifR in the context of other Rrf2-
family regulators, we subjected SifR to a sequence similarity
network (SSN) analysis (Fig. 2) (44, 45). We carried out these
analyses using the SpSifR sequence and the corresponding
InterPro Family (IPR000944) as query. To analyze the retrieved
sequences, we first used an alignment score of 26 to group
those sequences sharing ≥40% identity over 80% of the
sequence into a single SSN cluster. This constraint allows
SpSifR and BsYwnA to colocalize on a 50% representative node
(repnode50) map (Fig. S1). All known characterized Fe–S
cluster-harboring Rrf2 repressors are found in SSN cluster 1
and comprise 80.3% of all unique sequences in nonsingleton
clusters (see below). SSN cluster 2 corresponds to 15.9% of all
such sequences and includes SpSifR and BsYwnA (Fig. S1). All
sequences in the SSN cluster 2 harbor a single conserved
cysteine and are thus representative of a large subfamily of
monothiolate Rrf2 repressors not yet characterized.

In an effort to further segregate these sequences into iso-
functional SSN clusters, we analyzed these data with an
alignment score of 43 (where proteins with ≈50% identity over
J. Biol. Chem. (2022) 298(7) 102046 3



Figure 2. Sequence similarity network (SSN) analysis of Rrf2 superfamily of transcriptional regulators using SPD_1448 as query (InterPro Family:
IPR000944) with an alignment score of 43. SSN clusters with greater than seven metanodes are shown and ranked according to the number of unique
sequences in each SSN cluster (with one being the largest number of sequences) and arranged from upper left to lower right by decreasing numbers of
sequence nodes (each node contains sequences that are 80% identical over 90% of the sequence). SSN clusters for which there is a biochemically
characterized, functionally characterized, or a SwissProt-validated member (indicated by the yellow circle) are highlighted by “cluster #,” and those con-
taining validated members of known structure are further highlighted by “cluster #.” SSN cluster 6 (node cluster rank 5) harbors SpSifR characterized in this
work. See text for additional details and Tables S1 and S2 for a complete list of all clusters, singletons, and associated UniProt identifiers in this database. Bs,
Bacillus subtilis; Ec, Escherichia coli; Mt, Mycobacterium tuberculosis; Rl, Rhizobium leguminoserum; Sa, Staphylococcus aureus; Sc, Streptomyces coelicolor;
Sv, Streptomyces venezuelae; Syn, Synechocystis.
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80% of the sequence roughly group into single clusters).
Further restraining the sequence length to 100 to 200 residues
resulted in 1852 SSN clusters and 2306 singletons harboring
25,852 metanodes (with 80% sequence identity over 80% of the
sequence) (Fig. 2). IscR and CymR, the master regulator of
cysteine biosynthesis in S. aureus and B. subtilis (46, 47), are
found in distinct subclusters of SSN cluster 1 and comprise
≈20% of all sequences (Fig. S2). The next largest grouping of
Fe–S cluster–containing regulators is the global nitric oxide
stress response regulator NsrR, which harbors a subunit-
bridging 4Fe–4S center coordinated by D8, C93, C98, and
C105 in the Streptomyces coelicolor sequence (48) (Fig. S3A).
Characterized NsrRs from S. coelicolor, E. coli, and B. subtilis
are found in SSN clusters 9, 8, and 2, respectively (Fig. 2). SSN
cluster 13 consists of a group of regulators that harbor a labile
4Fe–4S cluster of unknown structure and includes the Fe-
responsive regulator RirA found in plant symbionts
(Rhizobia ssp.) and pathogens; a WebLogo plot of sequence
conservation reveals four invariant Cys residues in a ligating
arrangement reminiscent of NsrR (Fig. S3A). Redox sensor
RsrRs are grouped in SSN cluster 7. RsrRs harbor a highly
unusual subunit bridging 2Fe–2S cluster that reversibly cycles
between +2 and +1 oxidation states, the latter of which binds
weakly to DNA, and thus is a sensor of cellular redox status
(49, 50). In the Streptomyces venezuelae RsrR, the 2Fe–2S
cluster is coordinated by the highly conserved residues E8,
H12, C90, and C110, with W9 mediating the allosteric redox
switch (Fig. S3A) (49). Finally, this SSN analysis reveals three
large SSN clusters 3, 4, and 10, which account for 10.1% of all
4 J. Biol. Chem. (2022) 298(7) 102046
sequences (Fig. S2) that have distinct patterns of conserved
residues but remain uncharacterized (Fig. S3B). Furthermore,
two large SSN clusters 5 and 20 associated with mycobacterial
and cyanobacterial species, respectively, appear to lack
conserved Cys and His residues but do retain a number of
aromatic residues (Tyr/Trp) in key regulatory positions dis-
cusssed above (Fig. S3B).

Two functionally characterized dithiol Rrf2-family regula-
tors include the redox sensors SaiR from Bacillus anthracis
(cluster 15) (40) and HypR from S. aureus (cluster 43) (Fig. 2)
(51). SaiR conserves two Cys arranged in C-X7-C motif in the
C-terminal region of the connector, whereas HypR conserves
two Cys widely spaced in the sequence (Fig. S3C). The Cys in
SaHypR (C33 and C99) engages in reversible disulfide bond
formation in response to the potent oxidant, hypochlorite,
during host infection (51). Finally, this SSN analysis reveals
that BsYwnA and SpSifR segregate into subclusters within SSN
cluster 6 and as discussed previously are characterized by a
single conserved Cys residue in the N-cap position of the α5
helix as part of a conserved HxxPNPxC sequence (Fig. 1B,
inset; Figs. S1 and S3C). Cluster 6 sequences comprise 2.3% of
all Rrf2 sequences examined (Fig. S2) and are the subject of the
work presented here.
Candidate SifR-regulated genes are involved in Fe and
catechol/quinone metabolism

Working from the hypothesis that SifR is a transcriptional
repressor like other Rrf2-family members, we constructed a
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sifR-null deletion in encapsulated S. pneumoniae D39W
(ΔsifR) (Tables S4 and S5). WT and ΔsifR strains were grown
in rich medium under strict anaerobic conditions. We chose
anaerobic conditions so as to reduce any ROS stress interfer-
ence, since production of endogenous H2O2 is limited under
these conditions. This allowed us to focus on the impact of
ΔsifR on S. pneumoniae growth and global gene expression by
RNA-Seq (Table S5). Comparison of WT versus ΔsifR strains
reveals a handful of genes with differential expression at least
twofold that are candidate SifR regulatory targets (Fig. 3). The
most strongly differentially expressed gene (191-fold) is
spd_0072 that encodes an uncharacterized metal-dependent
catechol 2,3-dioxygenase, termed CatE (52). Two NAD(P)H-
dependent oxidoreductases were also identified. The first
oxidoreductase, YwnB (SPD_1440), has a homolog in
B. subtilis that is encoded in the same operon as the YwnA
candidate catechol sensor (43). The structure of pneumococcal
YwnB is known (locus tag SP_1627 in S. pneumoniae TIGR4;
PDB code: 4R01), but its function is not (see below). The
second oxidoreductase, YhdA (SPD_1375), which has a ho-
molog in B. subtilis, is a strong candidate for a ferric (FeIII to
FeII) (53) or quinone reductase (54, 55). An uncharacterized
integral membrane protein and putative diheme, extrac-
ytoplasmic reducing ferric (FRE) domain protein (spd_0527)
(56–58) is also a likely SifR target since it is upregulated in the
ΔsifR mutant. The sole thioredoxin reductase (trxB; spd_1287)
is increased approximately threefold in the ΔsifR strain relative
to WT, an extent similar to that of the persulfide sensor CstR
(spd_0073) (59). The repression of selected SifR-regulated
genes in a sifR strain that was repaired with a WT sifR allele
strain is recovered as measured by quantitative RT–PCR
(qRT–PCR) (Fig. S4A).

We note that expression of the high-affinity tetradentate
catechol–FeIII transporter and known RitR target piuBCDA is
increased in expression in the ΔsifR strain (21, 23, 60). This
suggests that SifR-regulated genes may serve an important role
in allowing access specifically to catechol-derived FeIII sources.
qRT–PCR was used next to confirm differential expression of
select genes found by RNA-Seq analysis, while also exploring if
SifR is an active repressor under microaerophilic conditions,
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complete list of differentially expressed genes and all genes detected, see Ta
where endogenous H2O2 levels can reach upward of 100 μM
(17). These gene expression data are broadly consistent with
the conclusions reached by RNA-Seq carried out under strict
anaerobic growth conditions (Fig. S4B). These data suggest
that SifR is an active repressor even under conditions of
endogenous H2O2 production (17) and must sense something
other than endogenous H2O2, as described later.
SifR binds to a canonical Rrf2 DNA operator upstream of
SifR-regulated genes

To identify SifR-regulated genes, we searched for an
approximately palindromic Rrf2-like DNA operator upstream
of candidate-regulated genes that possess similarity to the
core palindromic TGTAA-x9-TTACA motif known to bind
HOCl sensor S. aureus HypR (cluster 43; Fig. 2). This was
motivated by the uniquely high pairwise sequence similarity
of the α3 or reading head helix of the helix–turn–helix motif
in SifR versus HypR (Fig. S3C). This led to the identification
of a 19-bp near-palindromic operator sequence, TGTAA-
N9-TTACA (Fig. 4A). We then prepared dsDNA duplexes of
31 to 33 bps in the length with the DNA operator placed
approximately in the middle of its native genomic context
(Table S4) and measured SifR DNA-binding affinities using a
quantitative fluorescence anisotropy–based method (Fig. 4).
We attached a fluorescein probe to one end of a DNA duplex
encompassing the catE (spd_0072) DNA operator and titrated
in reduced WT or C84S SifR mutant protein (Fig. 4B). The
resulting data fit to single nondissociable homodimer-binding
model, which extracted a Ka of ≈108 M−1 under our condi-
tions (Table 1; 25 mM Tris–HCl, 150 mM NaCl, 2 mM
EDTA, 2 mM Tris(2-carboxyethyl)phosphine [TCEP], pH 7.5,
25 �C). We note that the WT, C84S, C102S, and C84S/C102S
mutants are all homodimers by analytical gel-filtration
chromatography (Fig. S5); however, any substitution of the
conserved C102 results in nonspecific binding of SifR to the
DNA or severe aggregation on the DNA (see later), thereby
preventing a quantitative analysis of these data (Fig. S8B). We
find that WT SifR binds tightly to the nearly perfectly sym-
metric catE operator, whereas the C84S SifR mutant binds
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fixed the value determined in B using DynaFit (91) with these parameters compiled in Table 1. Conditions: 25 mM Tris–HCl, 150 mM NaCl, 2 mM EDTA, 2 mM
TCEP (pH 7.5), 25.0 �C. CatE, catechol 2,3-dioxygenase; SpSifR, Streptococcus pneumoniae SifR; TCEP, Tris(2-carboxyethyl)phosphine.
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with equal or greater affinity, thus revealing that non-
conserved C84 (Figs. 1A and S3) is not required for DNA
recognition.

We then carried out the same anisotropy-based titrations
with WT SifR and catE operator DNA, but in the presence of
an equimolar, threefold or fivefold molar excess of an unla-
beled duplex, which harbors a distinct DNA operator (Fig. 4,
C–F). These competition-binding isotherms were then globally
analyzed to obtain Ka for all other DNA operators tested
6 J. Biol. Chem. (2022) 298(7) 102046
(Table 1). These experiments reveal a hierarchy of DNA-
binding affinities that tracks roughly with differential gene
expression (Fig. 3) and the degree to which the pseudopalin-
dromic operator tends toward near perfect twofold symmetry
(Fig. 4A). We find that the SifR binds most tightly to catE and
ywnB operators (log Ka ≈ 8.3), followed by yhdA and fre op-
erators (log Ka ≈ 7.4), and trxB (log Ka ≈ 7.1). These experi-
ments establish that the four most highly differentially
expressed genes (catE, ywnB, yhdA, and fre) in the ΔsifR strain



Table 1
DNA-binding affinities of WT S. pneumoniae SifR for duplexes
harboring DNA O/P sequencesa

Locus tag or gene name O/P Ka (×108) (M−1)b

catE (spd_0072) WT: 1.0 (±0.2); C84S: 4.8 (±1.5)
ywnB (spd_1440) 3.2 (±0.4)
yhdA (spd_1375) 0.23 (±0.04)
fre (spd_0527) 0.25 (±0.05)
trxB (spd_1275) 0.13 (±0.04)

a Sequence of the core operator regions shown in Figure 4A (see Table S4 for complete
sequences of the dsDNAs used here), with DNA-binding data shown in Figure 4.

b Upper limit for this competition assay under these conditions is 0.1 × 108 M−1.
Conditions: 25 mM Tris–HCl, 150 mM NaCl, pH 7.4, 25.0 �C.
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are direct SifR targets, whereas trxB remains only a potential
target possibly because it has essentially one half-site (Fig. 4A).
Interestingly, the SifR-binding site mapped upstream of
piuBCDA also contains a half-site with three substitutions in
the downstream TGTAA sequence, which partially overlaps
one of the RitR-binding sites (Fig. 4A). The functional signif-
icance is that this finding is unknown but suggests the possi-
bility that RitR and SifR collaborate or alternatively
differentially regulate piuBCDA expression.

Spd_0072 encodes a broad spectrum FeII-dependent catechol
2,3 dioxygenase

Sequence analysis suggests that spd_0072 encodes a cate-
chol 2,3 dioxygenase or CatE, a well-studied enzyme that
generally functions in the catabolism of aerobic aromatic
compounds (43, 52, 61). Catechol dioxygenases open the
catechol aromatic ring via either ortho (intradiol) or meta
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(extradiol) cleavage, catalyzed by a FeIII-dependent catechol
1,2 dioxygenase or an FeII- or MnII-dependent catechol 2,3
dioxygenase (C23O), respectively (Fig. 5A). The ring-opened
semialdehyde products are then further integrated into bac-
terial metabolism. We purified SPD_0072 to homogeneity, and
after loading with equimolar FeII under anaerobic conditions
and verified by inductively coupled plasma mass spectrometry
(MS), we first monitored its activity using UV–Vis spectros-
copy against freshly prepared catechol in the presence of
ambient O2 at pH 7.4, initiating the reaction with the enzyme
(Fig. 5B). An absorption peak at 375 nm appears within 20 s
with the reaction reaching at plateau after several minutes.
This change in absorbance is indicative of the production of
2-hydroxymuconate semialdehyde (62), with the mass of the
product consistent with extradiol cleavage of the substrate and
incorporation of two oxygen atoms (Δm = 31 Da for the [M–
H]– ion) (Fig. 5C and Table S8). Only the Fe(II)-reconstituted
enzyme is active, with no activity observed with Mn(II) (data
not shown). These experiments confirm that spd_0072 en-
codes an authentic C23O, and we therefore, rename this
enzyme CatE (catechol extradiol dioxygenase) (52).

As S. pneumoniae is unlikely to encounter catechol during
an infection, we evaluated the activity of SpCatE against a
number of other monocatechols and bis-catechols, including
two hydrolysis products of the tris-catecholate siderophore
enterobactin, 2,3-dihydroxybenzylserine (DHBS) and the
DHBS-dimer (data not shown), and a number of host-derived
catecholamines, including NE, epinephrine, and L-dihydrox-
yphenylalanine (Fig. S6) using an end point (5 min) assay
(Fig. 5, D–F). We note that the FeIII–catecholate transporter
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PiuA forms high-affinity complexes with NE, DHBS, and
di-DHBS, and thus, these may be bioavailable in the pneu-
mococcal cell (25); further, degradation of bacillibactin (a
catecholate FeIII-siderophore) in B. subtilis is known to involve
a C23O and is important in catechol recycling (52). We found
that the SpCatE can utilize each of these compounds as sub-
strates, with the exact masses of the products verified by MS
(Fig. 5, C–F, insets and Table S8). Since the catechol “side
chain” is ortho to one of the hydroxy substituents in DHBS and
meta in the catecholamines, this suggests that SpCatE has
rather broad substrate specificity and may well cleave the
unencumbered side of the dihydroxy substituent.

Spd_1440 (YwnB) encodes a versatile NAD(P)H-dependent
quinone reductase

The genes encoding YwnA and YwnB are adjacent in many
bacterial genomes, although not in S. pneumoniae. The
structure of SpYwnB has been determined (PDB code: 4R01;
SP1627 from S. pneumoniae TIGR4, identical to SPD_1440)
and shows an α/β dinucleotide binding fold, similar to that of
human biliverdin IXβ reductase, which catalyzes the NAD(P)
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H-dependent reduction of a range of biliverdin, flavin, pyrro-
loquinoline quinine, and ferric ion substrates (Fig. 6A) (63).
We therefore hypothesized that YwnB is likely a pyridine
nucleotide-dependent quinone reductase, given that SifR
senses quinones (see later) (64). Purified SpYwnB is colorless
upon purification, consistent with a lack of a tightly bound
cofactor. We tested both quinone reductase and flavin-
dependent ferric reductase activities and found that YwnB is
active against both a model 1,4-benzoquinone (p-BQ) as well
as adrenochrome (Adc; Fig. 6C), derived from the spontaneous
2-e– oxidation and cyclization of epinephrine (Fig. 6B). In
contrast, SpYhdA has detectable, but much lower, activity in
this assay under these conditions (Fig. 6C).

Spd_1375 (YhdA) encodes an authentic NAD(P)H-dependent
FMN ferric reductase

Sequence similarity suggests that SPD_1375 is a flavoprotein
and homolog of a thermostable B. subtilis NADPH:FMN azo-,
FeIII, and quinone reductase, YhdA. Another BsYhdA homolog
from Saccharomyces cerevisiae is also reported to possess ferric
reductase activity (65), analogous to that observed in other
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EDITORS’ PICK: SifR is a quinone sensor tied to FeIII–catechol uptake
flavin-requiring NAD(P)H oxidoreductases that can access the
semiquinone (1e– reduced) radical (53, 66, 67). An AlphaFold2
(68) structural model of SpYhdA closely resembles the struc-
ture of the Streptococcus mutans homolog (58% identical to
SPD_1375; PDB code: 3FVW), which has not been biochem-
ically characterized. However, the model is also similar to the
structure of BsYhdA, with two key catalytic residues, Y74 and
K83, aligned around what appears to be a solvated active site
(Fig. 6D). We therefore evaluated the ferric reductase activity
of SpYhdA and SpYwnB using three different FeIII complexes,
including two catecholates, the enterobactin hydrolysis prod-
uct, di-DHBS, and NE (Fig. 6E). We first used 100 μM FeIII–
nitrilotriacetic acid (NTA) as a model ferric Fe substrate (69),
evaluating FMN versus flavin adenine dinucleotide (FAD) as
electron donors, and NADH versus NADPH as reductants
(Fig. 6F). We find that SpYhdA has significant activity and
prefers FMN over FAD, like BsYhdA (55), with little depen-
dence on the nature of the pyridine nucleotide. SpYhdA also
has activity against the two FeIII–catecholate substrates. YwnB,
in contrast, shows detectable activity only with FMN and
NADPH with FeIII–NTA, albeit approximately sevenfold lower
than that of YhdA under these conditions, and no activity
against either catecholate–FeIII complex (Fig. 6F). We
0 50 100 250 300

0.0

0.2

0.4

0.6

0.8

1.0

H
201

C
5/d

5
(

oitar
noitalykla

ME
N

R
)

pulse time (s)

SifRC84S  + catE operator
SifRWT      + catE operator

R=e–kT

kC84S=0.12±0.01 s–1

R2=0.99

kWT    =0.15±0.02 s–1

R2=0.97

3625  3630   3635 m/z 3625   3630  3635 m/z

SifR WT SifR C84S 

N
or

m
al

iz
ed

 In
te

ns
ity

1.0

0.0

0.5

Cys102

N

H2
CH3C

O

O

S
N

D2
CD3C

O

O

SS
Cys102

+5 Da

0 s

5 s

0 s

5 s

A

B

D
0.0

0.5

H5 d5

light heavy

eerfeerf

pulsechase

Figure 7. Ratiometric pulsed alkylation-mass spectrometry analysis of C10
molecules used in the pulse (heavy, shaded red, d5) and chase (light, shaded gree
peptide before and after a 5 s pulse with d5-NEM for the WT (left) and C84S Sif
carried out with the SifR-catE operator-promoter containing DNA complex. D, k
constants shown by the dashed lines. Error bars represent the SD of triplicate
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SifR reacts with quinones via C102 leading to dissociation
from the DNA

The information presented suggests a regulatory model
where SifR employs a single cysteine residue, C102, to react
with catechol-derived quinones, thus allowing access to
nutritional FeII, while avoiding reactive electrophile stress.
Indeed, the known catechol sensor in B. subtilis, YodB, reacts
directly with a model quinone, methyl-p-BQ, using a
conserved cysteine thiol that results in transcriptional dere-
pression of the YodB regulon (52, 70). Many bacterial patho-
gens encode dedicated thiol-based quinone sensors, used to
combat host-derived oxidative stressors (37). We first evalu-
ated the intrinsic reactivity of C102 toward a neutral electro-
phile, N-ethylmaleimide (NEM), both on and off the DNA,
using a pulsed-chase derivatization strategy, in which an in-
cubation of pulse time, t, with heavy (d5) NEM, is followed by a
chase with a large excess of light (H5) NEM (60, 71). Samples
are then subjected to trypsin digestion and the peptides
resolved by MALDI–MS (Fig. 7). These data reveal complete
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Figure 8. LC–ESI–MS analysis of the products resulting from the reac-
tion of WT (A) or C84S (B) SifR with a 20-fold thiol excess of adreno-
chrome (Adc; red) or 1,4-benozoquinone (BQ; green) relative to
untreated protein (black). The masses of the resulting products are shown
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Insets, normalized dsDNA anisotropy change induced by quinone modifi-
cation of the WT (A) or C84S (B) SifR dimer. The anisotropy was monitored
continuously. Proteins or quinones were added to the indicated final con-
centration at the time point indicated by the vertical dashed lines. Triplicate
experiments were performed, with one representative dataset shown. ESI,
electrospray ionization.

EDITORS’ PICK: SifR is a quinone sensor tied to FeIII–catechol uptake
modification of C102 with a d5-NEM pulse time of 5 s when
free (unbound) in solution, and when bound to DNA,
detectable protection is observed, but with complete derivati-
zation occurring with d5-NEM pulse time of ≈60 s (Fig. 7, B
and C). Fitting these data to a first-order reaction scheme gives
rise to a rate constant, k = 0.12 (±0.01) s−1, with very similar
rates obtained with the WT and C84S SifR proteins bound to
DNA (Fig. 7D). Note that tryptic peptide containing C84 is not
detected in this experiment, likely because of poor ionization
efficiency. The structure of BsYwnA (Fig. 1B) suggests that the
reactivity of C102 in SifR (C97 in YwnA) may be enhanced by
accepting a hydrogen bond from the backbone NH of V104
(3.5 Å), which would lower the pKa of the C102 thiolate and
increase its nucleophilicity (Fig. 1B, inset).

We next carried out a series of end-point reactions (1 h, pH
7.5) of WT or C84S SifR with a 20-fold excess of BQ and Adc
and resolved these products by electrospray ionization (ESI)–
MS, and tandem LC–ESI–MS/MS to identify the site of
modification (Figs. 8 and S7). These reactions reveal that WT
SifR reacts quantitatively with the BQ to yield a 2:1 adduct,
whereas Adc reacts more slowly to yield some monoadducted
product and a trace of doubly adducted product (Fig. 8A and
Table S7). This reveals that the nonconserved C84 can react
with electrophiles, like the sensing thiolate C102. For C84S
SifR, only the monoadducted products are formed, again with
BQ much more reactive (Fig. 8B). Tandem LC–MS/MS anal-
ysis of the WT or C84S SifR-derived C102-containing tryptic
peptide is consistent with formation of a new C–S bond at
C102 using both electrophiles (Fig. S7).

We next wished to establish that quinone modification of
C102 in SifR was necessary and sufficient to dissociate SifR
from the DNA operator. We took two approaches to do this.
In the first, we simply added BQ and Adc to WT and C84S
SifR–catE operator complexes, which results in a rapid
dissociation of the complex as measured by a decreased fluo-
rescence anisotropy indicative of weaker binding (Fig. 8, in-
sets). In addition, we formed by the fully BQ-adducted WT and
C84S SifRs and titrated this into a fluorescein-labeled catE
operator DNA (Fig. S8A); this isotherm was significantly
shifted to the right and was not saturable, indicative of weak,
likely nonspecific binding. We see analogous behavior with
C102S and C84S/C102S SifR proteins (Fig. S8B), revealing that
the integrity of C102 is required for both DNA binding and
allosteric inhibition of binding as a result of quinone adduc-
tion. This finding is consistent with the finding that C102S SifR
is poorer repressor in cells than in cells expressing the WT or
C84S SifR alleles (Fig. S9).

Finally, we purified 15N-labeled WT SifR and subjected it to
1H,15N-transverse relaxation optimized spectroscopy (TROSY)
(Fig. 9). The spectrum of the reduced SifR homodimer is of
very poor quality and consistent with widespread intermediate
conformational exchange that broadens all, but the sharpest
cross peaks (likely from unstructured regions) beyond detec-
tion (Fig. 9, upper left). We next acquired a spectrum of SifR
bound to the fre operator, which was selected for this exper-
iment given identical half-sites (5-’TGTAA) and a nearly
perfect palindromic between them, would minimize cross-
10 J. Biol. Chem. (2022) 298(7) 102046
peak doubling for those amide groups close to the DNA.
Addition of stoichiometric fre DNA operator (23 bp; Fig. 4A)
dampens this conformational exchange considerably, giving
rise to significant chemical shift dispersion but still unassign-
able (Fig. 9, upper right). Subsequent addition of dimethox-
ybenzoquinone (DMBQ) gives rise to a spectrum that appears
intermediate between the bound and free states (Fig. 9, lower
right), but which compares well to the DMBQ-modified SifR
free in solution (Fig. 9, lower left) as well as to the unmodified
reduced SifR. We conclude that SifR, while conformationally
dynamic, forms a high-affinity complex with operator DNA
that is poised to rapidly react with an electrophile at C102,
thus mediating DNA dissociation and transcriptional
derepression.



Figure 9. 1H,15N-TROSY spectra obtained for the SifR homodimer free in solution (red crosspeaks, upper left), bound to a 23-bp fre operator duplex
(black crosspeaks, upper right), following addition of DMBQ to the DNA complex (gray crosspeaks, lower right), compared with the DMBQ adduct
alone (blue crosspeaks, lower left). In all cases, the spectrum to which the indicated spectrum is compared is its characteristic color, plotted at single
contour. The 23-bp duplex containing the fre DNA operator is shown (upper right), with the core operator (Fig. 4A) highlighted in red. DMBQ,
dimethoxybenzoquinone.
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Discussion
In this work, we present the discovery and functional

characterization of a new Rrf2-family transcriptional repressor
in S. pneumoniae D39 that we denote SifR, encoded by
spd_1448. We show that SifR is representative of a large SSN
cluster (Fig. 2, cluster 6) and is the founding member of Rrf2-
family monothiol quinone sensors, broadly conserved in
streptococci and other Gram-positive Firmicutes, including
Bacilli and Clostridia, and a few Actinobacteria (Fig. 2 and
Table S1). We have defined the SIfR operator sequence and
key functional features of the regulon that function to allow
S. pneumoniae access to chemically diverse coordinately un-
saturated FeIII–catecholate complexes, transported through
PiuBCDA (25), in order to meet the needs for nutritional Fe,
while avoiding the toxicity associated with catecholate-derived
quinine-reactive electrophile chemistry (37) (Fig. 10). This is
particularly important for S. pneumoniae, which is character-
ized by a comparatively small (≈2069 protein-encoding genes)
genome (72) without the ability to synthesize its own side-
rophores, and thus is entirely dependent on FeIII siderophores
secreted by other microorganisms in the community and/or
host-derived catecholamines. S. pneumoniae has evolved the
capacity to bring FeIII–ferrichrome (a hydroxymate side-
rophore) complexes through the Pia transporter (73), while a
more recent report describes a heme uptake system encoded
by SPD_1590 (74). The systemic production of NE upon
infection is a key feature of the antimicrobial response (31),
and NE stimulates growth by helping to strip Fe from trans-
ferrin (25), which may well be a signal to the pneumococcus to
disseminate to the lungs from the upper airway (2, 30).
Consistent with this model, NE can be taken up by pneumo-
coccal cells under these conditions, but it has not yet been
established that this is absolutely dependent on PiuA (2). SifR
is a virulence factor in the murine lung model of infection
using a serotype 4 pneumococcal strain (75). As such, we
propose from this work that virulence is further derived from
the ability of S. pneumoniae to fine-tune the expression of
genes controlling FeIII–catecholate assimilation during host
infection.

We further document here that enzymes encoded by three
of the most highly differentially expressed genes in a ΔsifR
mutant possess the anticipated broad spectrum FeII–catechol
2,3-dioxygenase activity (spd_0072; catE), quinone reductase
activity (spd_1440; ywnB), and ferric reductase activity
(spd_1375; yhdA) (76, 77). The first two activities in combi-
nation are expected to convert oxidized catechols, brought
into the cytoplasm as FeIII chelates, to the corresponding
2-hydroxy acid semialdehydes, whereas the third allows direct
assimilation of ferrous Fe (Fig. 10). The extent to which each
SifR-regulated gene product is required for FeIII–catecholate
J. Biol. Chem. (2022) 298(7) 102046 11
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assimilation was not determined in this work, nor do we mean
to imply an ordered pathway of FeIII assimilation and quinone
detoxification (Fig. 10). However, Tn-Seq screening shows that
while CatE and YhdA are not essential for pneumococcal
growth, a catE mutant is significantly attenuated in a murine
lung model of infection, with the yhdA mutant somewhat less
so (78). This is consistent with CatE and YhdA detoxification
and assimilation, respectively, of host-provided catechol–FeIII

complexes (Fig. 10). These findings are in contrast to YwnB,
where a ywnB mutant has no fitness defect in nasopharynx
colonization or lung infection (78). This suggests the possi-
bility that there may well be other quinone reductases that
function in place of YwnB in a ΔywnB strain, or YwnB has
other biochemical activities not captured by these
experiments.

One question left unanswered is the role of the integral
membrane protein SPD_0527, which belongs to the diheme
ferric reductase domain (56) or functionally analogous (79)
superfamily of enzymes that are generally thought to reduce
extracellular or periplasmic (in Gram-negative bacteria) FeIII

to FeII for import of FeII or an FeII complex across the plasma
membrane (80). In the plant symbiont Bradyrhizobium
12 J. Biol. Chem. (2022) 298(7) 102046
japonicum, the enzyme analogous to SPD_0527 is FrcB, which
is known to be under the transcriptional control of the global
Fe regulator Irr but in this case is induced under conditions of
low cellular Fe, as part of the Fe-scavenging response (58).
S. pneumoniae lacks a characterized ferrous ion Feo-like
transporter (80). However, it is known that a S. pneumoniae
D39 triple mutant lacking the Piu, Pia, and Pit ABC trans-
porters is still capable of obtaining Fe from a complex growth
medium. This is consistent with the idea that other as-yet
uncharacterized Fe acquisition systems exist in this organ-
ism, which may include SPD_1607-SPD_1609 and perhaps
SPD_1590 (74, 81). A candidate ferrous ion importer is the
NRAMP family MnII/FeII transporter (82) MntH (SPD_0161;
Fig. 10), which is uncharacterized in the pneumococcus, but
functions as an infection-relevant MnII transporter in other
streptococci and enterococci (83–86). The expression of
MntH is only slightly impacted by the loss of SifR (Fig. 3 and
Table S5), which might suggest the possibility that MntH plays
some role in response to changes in metal or catechol
metabolism.

Ongoing studies are directed toward the identification and
characterization of an NE sensing and degradation pathway in



EDITORS’ PICK: SifR is a quinone sensor tied to FeIII–catechol uptake
pneumococcal cells by leveraging an azido-NE derivative as a
sole transferrin-derived Fe source; this will allow us to identify
NE-interacting partners via implementation of a proteomics-
based capture and enrichment strategy and may well identify
new antimicrobial targets in this and related streptococcal
pathogens. In addition, experiments are underway to elucidate
the function of other gene products perturbed by the loss of
SifR in S. pneumoniae, including the streptococci conserved
operon (Fig. 3), which in some organisms is genomically linked
to a gene encoding SifR.

Experimental procedures

SSN analysis

The EFI-EST (https://efi.igb.illinois.edu/efi-est/) web tools
were used to generate SSNs using option A (sequence) with
SPD_1448 and added InterPro Family IPR000944 as query to
retrieve sequences. This resulted in the retrieval of 25,852
unique sequences in the UniRef90 dataset (79,708 accession
IDs), which were then subjected to SSN cluster analysis using
an alignment score (as) of 26 (sequences ≥40% identity will
cluster into a single SSN cluster; trial 1) or 43 (sequences ≥50%
identity will cluster; trial 2), with minimal and maximal
sequence lengths of 100 and 200 residues, respectively. Final
SSNs displayed and analyzed were 50% representative
(repnode 50) for trial 1 (as 26) or 80% representative (repnode
80) for trial 2 (as 43), collapsing sequences of 50% or 80%
identity over 80% of the sequence and visualized using Cyto-
scape 3.9 (http://www.cytoscape.org/) (87). Trial 2 was sub-
jected to detailed analysis. The composite FASTA file
containing all unique sequences associated with each SSN
cluster was used to generate a multiple sequence alignment
using Jalview (https://www.jalview.org) with sequences con-
taining long N- and C-terminal extensions on either side of a
core region, or those characterized by large insertions,
removed to facilitate comparison of sequences within an SSN
cluster. Multiple sequence alignments were then processed
with CIAlign (88) to remove insertions for easier visualization
prior to sequence logo generation by WebLogo 3 (89) that
characterize each SSN cluster of interest. The list of sequences
used to generate the logo plots (Fig. S3) is provided in
Table S1B.

Bacterial strain and plasmid construction

All primers are listed in Table S4. The ΔsifR mutant
(IU10991) strain was constructed using standard laboratory
practices for allelic replacement in WT S. pneumoniae sero-
type 2 D39W (IU1781) (Table S3). The various sifR repaired
strains (WT, C84S, and C102S alleles) were constructed by
allelic replacement in ΔsifR mutant (IU10991) with WT, C84S,
and C102S sifR as amplicons. All constructs were sequence
verified. For plasmid construction, genes encoding SifR
(spd_1448), CatE (spd_0072), YhdA (spd_1375), and YwnB
(spd_1440) were PCR amplified from S. pneumoniae D39
genomic DNA. Each gene was ligated into the pHis.parallel1
expression vector, transformed into E. coli DH5α, and selected
for ampicillin resistance (100 μg/ml). Mutant plasmid alleles
were prepared by PCR-based targeted site-directed mutagen-
esis using the parent expression plasmid as template. All
plasmid constructs were sequence verified prior to trans-
formation into E. coli BL21 (DE3) for protein expression and
purification.

RNA-Seq and qRT–PCR sample preparation and data analysis

Anaerobic growth experiments were performed in an anoxic
chamber (85% N2, 10% H2, and 5% CO2) at 37 �C, whereas
microaerophilic growth was conducted under an atmosphere
of 5% CO2. For RNA-Seq, overnight exponential anaerobic
S. pneumoniae cultures grown in brain heart infusion were
diluted into prewarmed brain heart infusion to an absorbance
of 0.005 at 620 nm, and growth was monitored over time. Cells
were harvested at approximately an absorbance of 0.2 at 620
nm. Triplicate RNA samples were prepared for both WT and
ΔsifR strains for RNA-Seq experiments. The RNA-Seq was
preformed by the Center for Genomics and Bioinformatics at
Indiana University, Bloomington. The RNA integrity number
was determined with TapeStation (Agilent). The rRNA was
removed using a Ribominus transcriptome isolation kit (Invi-
trogen; catalog no.: K1550), and a library was generated using a
TruSeq stranded mRNA library prep kit (Illumina). The results
of these experiments have been deposited in the Gene
Expression Omnibus database under GenBank accession
number GSE196501. Those genes with twofold change or
greater in transcription level and BH-adjusted p value <0.05
were considered to be changed significantly. A similar RNA
extraction procedure was followed for the qRT–PCR experi-
ments, but cells were grown in microaerophilic conditions.
Biological triplicate samples were prepared for each qRT–PCR
experiment. The total RNA was extracted with the analysis
carried out as described previously (90). PCR outcomes were
normalized to the gyrA gene, and relative transcription levels
were calculated by comparison of the ratio of mutant to WT.

Protein expression and purification

For biochemical experiments, E. coli BL21 (DE3) containing
target plasmids was grown in an LB medium supplemented
with 100 μg/ml ampicillin at 37 �C. M9 minimal medium
containing 100 μg/ml ampicillin and 1.0 g/l of 15NH4Cl
(Cambridge Isotope Laboratories) as the sole nitrogen source
was used to grow cells for NMR analysis. Protein expression
was induced with 1 mM isopropyl β-D-1-thiogalactopyranoside
at an absorbance of 0.8 at 600 nm and carried out overnight at
18 �C, after which cells were collected by centrifugation, cell
pellets resuspended in buffer A (25 mM Tris–HCl, 500 mM
NaCl, 2 mM TCEP, 10% glycerol, and 20 mM imidazole, pH
8.0), and lysed by sonication on ice. The crude lysate was
clarified by centrifugation, followed by 70% ammonium sulfate
precipitation. Precipitant containing target protein was resus-
pended in buffer A. Proteins were purified by Ni(II) affinity
chromatography (GE Healthcare) with a concentration
gradient moving from 100% buffer A to 100% buffer B (25 mM
Tris–HCl, pH 8.0, 500 mM NaCl, 2 mM TCEP, 10% glycerol,
and 500 mM imidazole). Pooled protein fractions were
J. Biol. Chem. (2022) 298(7) 102046 13
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incubated with tobacco etch virus protease (20 μg/ml) to
remove the hexahistidine tag during dialysis in buffer A con-
taining 2 mM TCEP at 4 �C. Tag-free proteins were injected
on to the Ni(II)-HisTrap FF column pre-equilibrated with
buffer A. The flow through was collected and concentrated by
centrifugation with a proper molecular weight cutoff filter
before further separating proteins by size-exclusion chroma-
tography using a Superdex-75 column pre-equilibrated with
buffer C (25 mM Tris–HCl, pH 8.0, 500 mM NaCl, 2 mM
EDTA, and 2 mM TCEP). Eluted proteins were pooled
conservatively to obtain preparations of ≥95% purity as esti-
mated by overloaded SDS-PAGE gels. The concentration of
each purified protein was measured using the estimated molar
extinction coefficient at 280 nm (ε280) of SifR (1490 M−1 cm−1),
CatE (42,860 M−1 cm−1), YhdA (22,460 M−1 cm−1), and YwnB
(12,950 M−1 cm−1). Purified proteins were routinely stored
at −80 �C until use.

Preparation of quinone-modified SifR protein mutants

All purified SifR protein mutants were buffer exchanged
into degassed 50 mM Tris–HCl, 200 mM NaCl, 2 mM EDTA,
pH 7.5 in an oxygen-free argon-filled glovebox (≤10 ppm O2)
and diluted to 30 μM SifR dimer concentration. Freshly made
10 mM quinone stocks were prepared in the same buffer inside
the glovebox. The buffer-exchanged proteins were reacted
with a fivefold molar protein thiol excess of the indicated
quinone compound for 1 h at ambient temperature. The
remaining quinone was removed from the sample using a
3 kDa cutoff microconcentrator by centrifugation. The con-
centration of the modified SifR protein alleles was estimated
using the Bradford assay since the quinone adduct impacts the
ε280 value.

Fluorescence anisotropy–based DNA–protein binding assays

The DNA oligonucleotides containing the SifR-binding site
associated with each SifR regulon are listed in Table S4. The
double-stranded 50-fluorescein-labeled catE operator/pro-
moter (O/P) DNA constructs were annealed as component
single strands and titrated as previously described (60) using
an ISS PC1 Spectrofluorometer equipped with an automatic
titrator unit. About 10 nM fluorescein-labeled dsDNA in
25 mM Tris–HCl, 150 mM NaCl, 2 mM EDTA, 2 mM TCEP,
pH 7.5 was titrated with SifR and SifR mutants with or without
quinone modifications. The fluorescein was excited at 495 nm,
and the polarization of the fluorescein fluorescence was
monitored with a 515 nm cutoff filter in the L-format. Each
data point collected was the average and standard deviation of
three measurements. Normalized r values for the fractional
saturation of catE O/P were calculated from (robs – r0)/(rcom-

plex – r0) from 0 to 1 where rcomplex represents the maximum
anisotropy obtained and r0 represents free dsDNA. Collected
data were fit to a nondissociable SifR dimer binding model
using DynaFit (Biokin, Ltd) (91). Similar titrations were done
using a competition assay, where protein was titrated into a
mixture of fluorescein-labeled catE operator DNA, and the
indicated unlabeled dsDNA duplex at 1:1, 3:1, or 5:1 molar
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ratio with the labeled DNA. The acquired data were fit to a
nondissociable SifR dimer binding model using a global fitting
script in DynaFit while fixing the Ka for the fluorescein-labeled
catE DNA to its independently determined value (Table 1) and
optimizing the Ka for the unlabeled duplex (Fig. S10). Simu-
lations reveal that this approach can estimate a Ka ≤ ≈10-fold
smaller than the catE O/P DNA, below which we obtain only
an upper limit on Ka.

Quinone modification–induced DNA–SifR dissociation ex-
periments were carried out by monitoring the change in
anisotropy upon direct addition of excess of quinone dissolved
in same binding buffer without TCEP. The anisotropy of
10 nM catE O/P DNA was recorded for 150 s, after which
time, stoichiometric (10 nM dimer) reduced WT or C84S SifR
was added, and the anisotropy was recorded for 150 s. Qui-
nones were added to a final concentration as 0.3 μM for BQ or
6 μM for Adc, and the anisotropy immediately recorded for
another 150 s. Triplicate experiments were performed, and the
raw anisotropy of a single representative experiment normal-
ized as described previously.

Catechol dioxygenase activity assay and product analysis

Purified SpCatE was exchanged into oxygen-free reaction
buffer of 25 mM Tris–HCl, 150 mM NaCl, pH 7.5 at a con-
centration of 500 μM protomer in the anaerobic glovebox. A
freshly prepared FeII stock solution was made by dissolving
ferrous ammonium sulfate in an oxygen-free reaction buffer.
The SpCatE was reactivated by addition of a 10-fold molar
excess of FeII in the glovebox for 4 h, with unbound FeII

removed with a 10 kDa cutoff spin column. CatE activity was
assessed with various catechols as substrates in 100 mM
phosphate buffer, pH 7.4, under ambient O2 and room tem-
perature with 5 μM SpCatE and 100 μM indicated catechol.
The UV–Vis spectra of the reaction mixture were monitored
continuously for 5 min, with the concentration of catechol
cleavage products estimated by absorption at 375 nm with an
extinction coefficient of 36,000 M−1 cm−1 (62). For analysis of
SpCatE-dependent degradation products, the enzyme was first
activated as described previously, and 1 h reactions were car-
ried out in 100 mM ammonium bicarbonate, pH 7.8, with
10 μM enzyme, 100 μM catechol, and 1 mM sodium ascorbate
at 37 �C. The enzyme in these reactions was removed using a
3 kDa cutoff microfuge cartridge with the yellow-colored flow-
through analyzed by high-resolution LC–MS.

Ferric reductase activity and quinone reductase activity assays

SpYhdA and SpYwnB (0.5 μM) were evaluated for ferric
reductase activity using 100 μM FeIII–NTA as the electron
acceptor and NADPH or NADH (100 μM) and FMN or FAD
(10 μM) as the reductant and electron donor, respectively (69).
The reaction was carried out in 50 mM Tris–HCl, 150 mM
NaCl, pH 7.5, 25 �C with 500 μM ferrozine. The chelation of
FeII by ferrozine was monitored by the absorption at 562 nm at
2 min following addition of FeIII–NTA in the reaction. Freshly
prepared 10 mM ferrous ammonium sulfate solution was
serially diluted into the reaction buffer to generate a standard
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curve to quantify the FeII generated in each reaction. The ferric
reductase activities of SpYhdA and SpYwnB with FeIII–di-
DHBS (50 μM) and FeIII–NE (50 μM) complexes as electron
acceptor were prepared as described previously (25).

The quinone reductase activities of SpYhdA and SpYwnB
were evaluated with 0.1 mM BQ or 0.1 mM Adc as electron
acceptors and 10 μM FMN (for SpYhdA assay only), 100 μM
NAD(P)H as reductant and electron donor, respectively, in
50 mM Tris–HCl, 150 mM NaCl, pH 7.5 for 5 min at room
temperature. The quinone reductase activity was evaluated
by consumption of NADPH at 340 nm over time and
quantified using an extinction coefficient of 6200 M−1 cm−1.
The background reaction rate without addition of enzyme
was also monitored and subtracted from the enzyme-
containing reaction prior to data analysis. The averaged
reductase activities were quantified as nmol FeII generated
(ferric reductase) or NAD(P)H consumed (quinone reduc-
tase) per minute per milligram enzyme in these single time-
point assays.
Ratiometric pulsed-alkylation MS analysis

Sample preparation for pulsed-alkylation MS was adapted
from a previous report and optimized for SifR (59). All exper-
iments were carried out anaerobically in a glovebox in a buffer
containing 10 mMHepes and 200 mMNaCl at pH 7.0. WT and
C84S SifRs with or without 1.5M excess of 30 bp S. pneumoniae
catE SifR O/P dsDNA oligo was reacted with a threefold molar
thiol excess of d5-NEM (pulse, Isotech). At discrete time points,
50 μl aliquots were withdrawn and quenched with an equal
volume of a solution containing a 900-fold thiol excess of
H5-NEM (chase) with 100 mM Tris (pH 8.0) and 8 M urea.
After a 40 min chase, quenched reactions were removed from
the glovebox and precipitated on ice with a final concentration
of 12.5% trichloroacetic acid for 1.5 h. Precipitated protein was
pelleted by centrifugation at 4�C. The supernatant was removed,
and the pellet was washed twice with ice-cold acetone. The
washed pellet was vacuum centrifuged to dryness at 45�C and
resuspended in 10 μl digestion buffer (20 mM ammonium bi-
carbonate, 10% acetonitrile, 50:1 protein:trypsin ratio, pH 8.2)
for 30 min at 37 �C. Tryptic digests were quenched with a final
concentration of 1% TFA and spotted on aMALDI plate with α-
cyano-4-hydroxycinnamic acid matrix using a 5:1 matrix:sam-
ple (v/v) ratio for this analysis.

MALDI-TOF mass spectra were collected and analyzed in
triplicate reactions using a Bruker Autoflex III MALDI-TOF
mass spectrometer with 200 Hz frequency-tripled Nd:YAG
laser (355 nm) and Flex Analysis software (Bruker Daltonics).
Cysteine-containing peaks were identified by their corre-
sponding monoisotopic masses (Table S5) and resolved
as alkylated with d5-NEM (+130.0791 Da) or H5-NEM
(+125.0477 Da) with little to no detectable unmodified pep-
tide detected under these conditions (data not shown). The
theoretical distribution and peak areas were determined using
the averaging algorithm (38) and quantified by summing the
total peak areas of the full isotopic distribution. Relative peak
areas were used to determine the mole fraction of H5-NEM–
labeled peptide, Θ(H5), as defined by Equation 1. A(H5) and
A(d5) correspond to the area (A) of the isotopic distribution
of H5-NEM or d5-NEM alkylated peptide, respectively. To
obtain the pseudo–first-order rate constant of alkylation, k,
Θ(H5) was plotted as a function of pulse time, t, and fit to
Equation 2. In some instances, a fit to a sum of two expo-
nentials was used, Equation 3. The second-order rate con-
stant was obtained by dividing k by the concentration of
d5-NEM in the pulse.

ΘðH5Þ¼ AðH5Þ
AðH5ÞþAðd5Þ (1)

ΘðH5Þ¼ΘðH5Þt0 � e�kt (2)

ΘðH5Þ¼ΘðH5Þt0�tslow
� e�kfastt þΘðH5Þt0�tfast

� e�kslowt (3)
Protein LC–MS and LC–MS/MS

The reducedWT and C84S SifR proteins were reacted with a
20-fold molar excess of 1,4-BQ or Adc in 25 mM Tris–HCl,
150 mM NaCl, 2 mM EDTA, pH 7.5, for 1 h at room tempera-
ture. The ESI–MS spectrum of reduced and quinone-modified
protein was recorded using an LC (C4 reverse phase)–MS
(Synapt G2S HDMS) instrument. Mass spectra were analyzed
using MassLynx, version 4.1 (Waters, Inc) and OriginPro 2018
(Origin Lab, Inc). The quinine-modified SifRWT and SifR C84S
were digested by trypsin following the same protocol as the
aforementioned MALDI-TOF sample preparation, and the
peptides were fragmented and characterized by a Thermo Sci-
entific Orbitrap Fusion LUMOS instrument. Peptides contain-
ing C102 with a 1.4-BQ adduct (+106.01 Da quinone
state, +108.02 Da hydroquinone state) or an Adc adduct
(+177.04 Da quinone state, +179.06 Da hydroquinone state)
were used to query the corresponding LC–MS/MS spectra.
Protein NMR spectroscopy

NMR samples contained 200 μM SifR (protomer) in various
allosteric states, with 25 mMMES (pH 6.5), 150 mMNaCl, and
10% v/v D2O, with 0.3 mM 2,2-dimethyl-2-silapentanesulfonic
acid as an internal reference. The protein–DNA complex
sample contained a slight molar excess of the nearly palin-
dromic 23-bp fre DNA operator (1:1) to ensure a similar
chemical environment for both SifR protomers and minimize
the likelihood of different chemical shifts for the same residue.
The quinone-modified protein–DNA sample was generated by
adding 400 μM DMBQ directly to the complex. A fourth
sample contained 200 μM SifR modified with 400 μM DMBQ.
15N,1H transverse relaxation optimized spectroscopy spectra
were recorded at 25 �C on a Bruker Avance Neo 600 MHz
spectrometer equipped with a cryogenic probe in the META-
Cyt Biomolecular NMR Laboratory. Data were collected, pro-
cessed, and analyzed as described in previous work (25).
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Data availability

All data described in the article are contained within the
article, with the RNA-Seq data deposited at https://www.ncbi.
nlm.nih.gov/geo/ under accession number GSE196501. The
SifR structural model is available in ModelArchive at https://
modelarchive.org/doi/10.5452/ma-6pz9c. The SpYhdA struc-
tural model is available in ModelArchive at https://www.
modelarchive.org/doi/10.5452/ma-2regv.

Supporting information—This article contains supporting informa-
tion (72).
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