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Abstract

Robustness is considered a ubiquitous property of living systems at all levels of organization, and small noncoding RNA (sncRNA) is a

genuine model for its study at the molecular level. In this communication, we question whether microRNA precursors (pre-miRNAs)

are actually structurally robust, as previously suggested. We found that natural pre-miRNAs are not more robust than expected under

an appropriate null model. On the contrary, we found that eukaryotic pre-miRNAs show a significant enrichment in conformational

flexibility at the thermal equilibrium of the molecule, that is, in their plasticity. Our results further support the selection for functional

diversification and evolvability in sncRNAs.
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Introduction

Robustness is the ability of genotypes to display the same

phenotype in presence of genetic or environmental perturb-

ations (de Visser et al. 2003; Kitano 2004; Wagner 2005).

Robustness is considered a fundamental feature of biological

systems at all levels of organization, from single molecules to

large networks. Therefore, the study of robustness, the mech-

anisms by which it evolved, and its implications to adaptation

are central topics in nowadays research in evolutionary biology

(Draghi et al. 2010; Wagner 2011). In that way, the relation-

ship between the sequence and folding of small noncoding

RNAs (sncRNAs) appears as a genuine and biologically

grounded model (Eddy 2001) for tackling the above ques-

tions. However, whether sncRNAs show the property of struc-

tural robustness or not has turned out to be highly

controversial. Furthermore, it is also not clear to what extent

conformational flexibility (Tokuriki and Tawfik 2009) is signifi-

cant for natural sncRNAs to modulate structural robustness

and to manage their interactions with partners.

Seminal studies already addressed the robustness of RNA

molecules (Wagner and Stadler 1999; Ancel and Fontana

2000) by using the predicted secondary structure as a model

to link phenotype (structure) and genotype (sequence). Recent

work focusing on microRNA precursors (pre-miRNAs) has re-

ported that pre-miRNAs show a significant enrichment of mu-

tational robustness (Borenstein and Ruppin 2006; Shu et al.

2007; Szöllo00 si and Derényi 2009). In particular, Szöllo00 si and

Derényi (2009) revisited the initial work of Borenstein and

Ruppin (2006) attempting to refine the null model, showing

that pre-miRNAs are still robust to both single-point mutations

and variations in temperature (used to simulate environmental

perturbations), then suggesting a pattern of congruent evolu-

tion between mutational and environmental robustness

(sensu plastogenetic congruence; Ancel and Fontana 2000).

However, latest work proposed that pre-miRNAs secondary

structure evolved under purifying selection and that these

RNAs have not been selected (directly or congruently) for

robustness but for function (Price et al. 2011). In this direction,

Rodrigo and Fares (2012) reported that bacterial sncRNAs

are not more robust than expected from an unbiased null

model, advocating further exploration in the case of

pre-miRNAs.

Results and Discussion

Here, we follow a computational approach to calculate

the structural robustness landscape for the pre-miRNAs from

four different model organisms: Epstein–Barr virus (EBV),

Caenorhabditis elegans (CEL), Homo sapiens (HSA), and

Arabidopsis thaliana (ATH) (table 1 and supplementary data

set S1, Supplementary Material online). We distinguish be-

tween two types of robustness. Mutational robustness (Rm)

accounts for structural changes after single-point mutations in
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the pre-miRNA sequence, whereas environmental robustness

(Re) accounts for structural changes after alterations in the

energetic parameters implemented in the thermodynamic

model for base pair interactions (Layton and Bundschuh

2005). We also account for plasticity (Pt), which quantifies

the variability of structures within the thermodynamic ensem-

ble (conformational flexibility), because one sequence can fold

into many different structures (Wuchty et al. 1999). The null

model sequences used to assess the statistical significance of

natural pre-miRNAs share the minimal free energy (MFE) struc-

ture of these molecules (structural analogs) and were obtained

by subjecting inverse folded sequences to a random neutral

evolution allowing to change single and paired nucleotides

(fig. 1 and supplementary fig. S1, Supplementary Material

online). Mann–Whitney U tests were carried out to compare

the set of natural pre-miRNAs against the whole set of artificial

elements, whereas z tests were applied for each pre-miRNA

against its particular structural analogs. To perform the

computation over RNA secondary structures, we used the

ViennaRNA package (Hofacker et al. 1994).

We calculated Pt, Rm, and Re for the set of natural

pre-miRNAs and the artificial ones. Table 1 presents, for

each organism, the percentage of molecules that are signifi-

cantly more and less robust/plastic (structural robustness land-

scape) than expected under the null model. The distributions

for each variable are shown in figs. 2 and 3. Contrary to pre-

vious reports (Borenstein and Ruppin 2006; Shu et al. 2007;

Szöllo00 si and Derényi 2009), we observed that pre-miRNAs are

not, on average, significantly more robust to mutations than

expected under the null model (P>0.05 in all cases; fig. 2A),

being the fraction of significantly robust molecules lower than

5% in all cases. We neither observed significant enrichment

on environmental robustness (P>0.05; fig. 2B), and the frac-

tion of robust molecules is as low as in the previous case.

Therefore, we concluded that natural pre-miRNAs are not

more robust than random structural analogs. However, we

observed a non-negligible percentage of fragile molecules

(with robustness values lower than expected from their struc-

tural analogs), being also the pre-miRNAs of HSA and ATH

significantly fragile to environmental changes (P< 0.005 in

both cases). This discrepancy with previous analyses (see also

supplementary fig. S2, Supplementary Material online) is due

to the appropriate derivation of the null model, because

the structural robustness landscape can indeed vary with

this (Szöllo00 si and Derényi 2009; Rodrigo and Fares 2012).

Following our metrics, we can recover similar values of enrich-

ment of robustness as previously reported when using other

null models, indicating that the null model of structural

analogs results in the Achilles’ heel for determining the struc-

tural robustness of sncRNAs. In addition, the pre-miRNAs that

exhibit higher/lower levels of Rm also have higher/lower levels

of Re (P< 0.005 in all cases except for EBV; supplementary fig.

S3, Supplementary Material online). This correlation is still sig-

nificant when taking into account the phylogenetic related-

ness existing among the four organisms (supplementary fig.

S3, Supplementary Material online), and it may support an

eventual pattern of congruent evolution (Ancel and Fontana

2000; de Visser et al. 2003; Shu et al. 2007; Szöllo00 si and

Derényi 2009; Rodrigo and Fares 2012).

Table 1

Summary of Structural Robustness Landscape (See Values in supplementary data set S1, Supplementary Material online)

Organism No. Pre-miRNAs Analyzed % High Rm % Low Rm % High Re % Low Re % High Pt % Low Pt

EBV 25 4 4 0 8 12 0

CEL 100 0 10 0 11 17 0

HSA 450 2 12.9 1.3 17.6 24.4 0.7

ATH 110 0 16.4 0.9 16.4 50.9 0

NOTE.—High or low refers to statistical significance assessed with one-tailed z test (P< 0.05), which was applied for each pre-miRNA against its structural analogs. We
took from the online database miRBase (Kozomara and Griffiths-Jones 2011) the sequences of all pre-miRNAs analyzed in this work.
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FIG. 1.—Scheme to illustrate the construction of the null model. From

random start sequences, the RNAinverse program (from the ViennaRNA

package) can generate sequences with a desired MFE structure by sto-

chastic minimization. However, these sequences present lower than aver-

age neutrality. This way, a random walk on the neutral network associated

to the MFE structure can be implemented as sort of sequence drift to avoid

the optimization bias. This walk can rely, at each step, on just single-point

mutations or on both single-point and base pair mutations. The former

could deepen not much on the neutral network and then still produce

sequences with lower than average neutrality.
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Moreover, we found that the pre-miRNAs of CEL, HSA, and

ATH are on average significantly more plastic than expected

from the null model (P< 0.0001; fig. 3) and that the fraction

of significantly plastic and fragile molecules increases in the

same way, reflecting a negative association between plasticity

and robustness. An analysis of covariance indicates that this

association depends on the organism (P<0.0001; supple-

mentary fig. S4, Supplementary Material online), and the over-

all trend is still significant after considering the underlying

phylogenetic relationship between species (supplementary

fig. S4, Supplementary Material online). Nevertheless, we

did not observe a significant enrichment of plasticity in the

case of EBV (P>0.05; fig. 3). The fraction of significantly plas-

tic molecules increases from 12% for EBV, to 17% for CEL, to

24.4% for HSA, which might indicate a trend with organism

complexity (measured as the total number of genes). This

fraction is even higher, 50.9%, for ATH. Because the GC con-

tent among organisms is variable (P<0.0001; supplementary

fig. S5, Supplementary Material online), the fact that ATH has

the lowest one might entail minor thermal stability or, in other

words, major levels of Pt (Fang et al. 2001), but we found no

correlation between the GC content and Pt. We also observed

that the average lengths of the pre-miRNAs of EBV, CEL, and

HSA are 83, 87, and 84 nucleotides, respectively, whereas

the pre-miRNAs of ATH are much longer (173 nucleotides

on average), and this difference in length may capture, at

least in part, the elevated levels of Pt found for ATH (supple-

mentary fig. S6, Supplementary Material online). In addition,

we can compare robustness among organisms to show that,

although the pre-miRNAs of ATH are not overall highly robust

to mutations with respect to their structural analogs, they

appear to be more robust than the pre-miRNAs of HSA

(P< 0.0001; fig. 1A). The difference in length can explain,

as for bacterial sncRNAs, the higher levels of Rm in that case

(Rodrigo and Fares 2012).
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FIG. 2.—Distributions of mutational and environmental robustness for pre-miRNAs of four different organisms. Statistical significance assessed by

Mann–Whitney U tests: (A) P¼ 0.666 (EBV), P¼ 0.46 (CEL), P¼ 0.01* (HSA), and P¼ 0.05* (ATH); (B) P¼0.50 (EBV), P¼ 0.26 (CEL), P<0.0001* (HSA),

and P¼0.0031* (ATH). Solid lines represent the null models. *Median of natural pre-miRNAs< null model median, so it indicates marginal statistical

significance for fragility and not for robustness.

F
re

qu
en

cy
 (

%
) 

Plasticity 

0 0.2 0.4 0.6
0

10

20

0 0.2 0.4 0.6
0

10

20

0 0.2 0.4 0.6
0

5

10

0 0.2 0.4 0.6
0

5

10

EBV 

CEL 

HSA 

ATH 

FIG. 3.—Distributions of plasticity for pre-miRNAs of four different

organisms. Statistical significance assessed by Mann–Whitney U tests:

P¼ 0.10 (EBV), P< 0.0001 (CEL), P< 0.0001 (HSA), and P< 0.0001

(ATH). Solid lines represent the null models.

Plasticity of Pre-miRNAs GBE

Genome Biol. Evol. 5(1):181–186. doi:10.1093/gbe/evs132 Advance Access publication December 28, 2012 183

http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs132/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs132/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs132/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs132/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs132/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs132/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs132/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs132/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs132/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs132/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs132/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs132/-/DC1


Early work (Borenstein and Ruppin 2006) challenged the

current population genetics theory (de Visser et al. 2003; Orr

2005) by pointing to directional selection for mutational ro-

bustness in populations of small effective size as the mechan-

ism for the evolution of robustness. However, directional

selection for robustness, in theory, requires high mutation

rates, as it occurs with viruses (Sanjuán et al. 2007) but not

with higher eukaryotes. We now report the enrichment of

plasticity in populations of eukaryotic pre-miRNAs (table 1)

and that robustness (neither mutational nor environmental)

did not evolve in these populations, which agrees with the

theoretical prediction (de Visser et al. 2003). Consistently, one

could suggest that plasticity, which is a trait that could pro-

mote evolvability in sncRNAs (Ancel and Fontana 2000) and

which is also extensible for proteins (Tokuriki and Tawfik

2009), evolves to counteract the low genetic variability in com-

plex organisms (Lynch and Conery 2003). This could also entail

that eukaryotic pre-miRNAs have the potential for producing

diverse mature miRNA sequences (Starega-Roslan et al. 2011)

after a flexible interaction (Tokuriki and Tawfik 2009) with

Dicer proteins.

In this work, we have relied 1) on the use of the secondary

structure as a fitness-related magnitude, which certainly is an

oversimplification to the problem and 2) on the ability of the

ViennaRNA package (Hofacker et al. 1994) to produce reliable

structures, which may be a limitation. Future work could aim

at determining the robustness to changes, instead of in the

pre-miRNA structure, in the maturation rate in the cytoplasm

by accounting for the interaction between the pre-miRNA and

Dicer proteins (Lee et al. 2002), and even use a more accurate

model, although at a high computational cost, with the

three-dimensional structure of RNA molecules (Parisien et al.

2009). A biologically more relevant fitness function that in-

corporates both the binding rate to the target transcript and

its degradation rate (the final biological function of the mature

miRNA molecule) might be considered as well, because some

pre-miRNAs with altered structures could still be processed

and active for targeting their transcripts with high affinity.

To compare natural RNAs against structural analogs, we

could also incorporate into the null model the nucleotide com-

position of the natural pool (Clote et al. 2005). Even though

randomly generated sequences of pre-miRNAs do not account

for the evolution in short sequence distance (Nozawa et al.

2010). Price et al. (2011) have already dealt with this situation

and have shown, on average, a small, yet marginally signifi-

cant, decrease in mutational robustness and a likewise small

increase in plasticity for Drosophila pre-miRNAs over millions

of years of evolution. According to our own results, we would

expect an overall increase of Pt from ancestors, which may

result in side effects on Rm and Re.

In conclusion, our study provides a quantitative, new

recharacterization of the robustness landscape of pre-

miRNAs. We have shown that pre-miRNAs are not as robust

as previously stated when properly compared with unbiased

structural analogs obtained by combining inverse folding

and neutral walk. However, pre-miRNAs are significantly

enriched in plasticity, supporting the hypothesis that they

have been predominantly selected for functional diversifica-

tion and evolvability. By virtue of a particular evolutionary his-

tory, certain pre-miRNAs will be more plastic than others.

These results for pre-miRNAs are in agreement with those

reported for bacterial sncRNAs (Rodrigo and Fares 2012),

where plasticity appears as a fundamental variable.

Accordingly, we suggest that plasticity in pre-miRNAs could

be a mechanism to promote phenotypic variability, either to

enlarge the functional repertoire of a single molecule (e.g.,

isomiRs; Neilsen et al. 2012) or to promote evolvability

(Ancel and Fontana 2000) in organisms that have small effect-

ive population sizes. Our results can strengthen the under-

standing of the evolution of robustness and plasticity in

sncRNAs and warrant further experimental exploration

in the field.

Materials and Methods

Thermodynamic Model

For a given pre-miRNA sequence (of length L), there is a

thermodynamic ensemble (�) that contains the optimal

(MFE) and several suboptimal structures, each with a

given free energy (Gi). Thus, the probability that the

pre-miRNA folds into the structure i is given by

�i ¼ expð�Gi=kT Þ=Z, where Z is the partition function and

reads Z ¼
P

i2� expð�Gi=kT Þ. We took T¼37�C, then

kT¼0.616 kcal/mol. For comparing two different sequences,

we balanced the two ensembles of structures, instead of just

comparing the MFE structures. In addition, to evaluate the

difference between two structures, we used the base pair

distance (dBP) (Gruber et al. 2008), given by the number of

base pairs not shared by them. We also considered the mag-

nitude introduced in that report accounting for the structural

variability within � (Si denotes structure i) given by

d0 ¼
P

i2�

P
j2� dBPðSi , SjÞ�i�j (i.e., how heterogeneous is

�). To calculate d0, we used ViennaRNA (Hofacker et al.

1994), which implements a dynamic programming algorithm

for efficient computation of � and Z (McCaskill 1990). Using

the ViennaRNA function to calculate dBP between two ensem-

bles of structures, we calculated d0, as well as d1 and de (see

later).

Defining Plasticity and Robustness

We here define plasticity (Pt) as conformational flexibility,

given by the probabilistically averaged distance between all

possible structures in which an RNA molecule can fold.

Higher plasticity also indicates higher temperature sensitivity.

This way, Pt quantifies the inherent ability to fluctuate at the

equilibrium between several phenotypes (in this work, struc-

tural conformations), which can turn out into functional
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promiscuity (Tokuriki and Tawfik 2009). For defining mathe-

matically Pt, we used d0 (Rodrigo and Fares 2012), because

higher values of d0 correspond to systems in which there

are many different, possible states in � (folds), whereas

lower values indicate that � is predominantly governed

by the MFE structure. More plastic is a sequence, more

structural fluctuations present at the equilibrium, then we

defined plasticity as Pt ¼
2d0

L . On the other hand, mutational

robustness (Rm) accounts for the ability of maintaining

the ensemble of structures (not only the MFE structure)

after mutations in the sequence. Using an analogous formula-

tion as before, the average distance between structural

ensembles after one single-point mutation (d1) reads

d1 ¼
P

i2�

P
j2�1

dBPðSi , SjÞ�i�j � d0 (where �1 is the

ensemble of mutants and �j is calculated using the partition

function of �1, denoted by Z1). d0 is subtracted to eliminate

the intrinsic variability of the ensemble. Thus, d1

� �
is the

average structural distance after one single-point mutation

computed by stochastic sampling (L calculations of d1), and

then we defined mathematically mutational robustness as

Rm ¼ 1�
2 d1h i

L . In addition, environmental robustness (Re)

quantifies the ability of maintaining the ensemble of

structures, as Rm, but after perturbations that model changes

in the environment where the cell that expresses the pre-

miRNAs lives. These changes could be physical, chemical, or

thermal. We calculated the distance between ensembles after

one environmental perturbation (de) simulating a random

Gaussian variation (up to 20%) over the value of all the ener-

getic parameters that define the model for base pair interac-

tions (i.e., base pairing and stacking). Hence, being de

� �

the average structural distance after an environmental pertur-

bation computed by stochastic sampling (1,000 calculations of

de), we defined environmental robustness as Re ¼ 1�
2 deh i

L .

All three d0, d1

� �
; and de

� �
were rescaled by L/2 to

have dimensionless variables and then define Pt, Rm, and Re,

respectively.

Generating the Null Model

Structural robustness and plasticity were tested for signifi-

cance by comparing them with a distribution of these values

generated from a large set of artificially constructed

sequences. The natural and artificial sequences shared the

property of yielding the same MFE structure, although their

thermodynamic ensembles were different. This allows com-

paring robustness and plasticity between sequences that are

supposed to be equally fit. For each pre-miRNA, we generated

100 random sequences with the same phenotype (i.e., MFE

structure) as a null model. For that, we first solved the corre-

sponding inverse folding problems using different initial

sequences with the ViennaRNA package (default energetic

parameters, dangles¼ 2, MFE objective; Hofacker et al.

1994). However, Szöllo00 si and Derényi (2009) identified

lower than average neutrality in sequences obtained by mini-

mization, then proposing a random neutral walk in structure

as sort of sequence drift to obtain a null model with

more relevant values of neutrality (fig. 1). Subsequently, to

minimize the bias introduced by the optimization method,

we performed a neutral evolution, introducing L mutations

that did not change the MFE structure. If the nucleotide was

not paired in the MFE structure, a neutral single-point muta-

tion was applied. On the contrary, if it was paired, a neutral

base pair mutation (changing the selected nucleotide and its

pair) was applied. This allowed enlarging considerably the

sequence space and avoiding efficiently the bias produced

by inverse folding methods. A walk with only single-point

mutations could deepen not much on the neutral network

and then still produce sequences with lower than average

neutrality (Rodrigo and Fares 2012). The difference in statisti-

cal significance of robustness when using a null model

obtained with a neutral walk with base pair mutations or

not is shown in supplementary figure S2, Supplementary

Material online.

Selecting the Pre-miRNA Sequences

We took from the online database miRBase (Kozomara and

Griffiths-Jones 2011) the sequences of all pre-miRNAs for

EBV, CEL, HSA, and ATH. Among all sequences available,

we randomly selected a subset of them to carry out our

analyses. For EBV, we took 25 pre-miRNAs (100%), for CEL

100 (47%), for HSA 450 (32%), and for ATH 110 (47%).

Supplementary Material

Supplementary figures S1–S6 and data set S1 are available at

Genome Biology and Evolution online (http://www.gbe.

oxfordjournals.org/).
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