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TNF-α augments intratumoural concentrations of
doxorubicin in TNF-α-based isolated limb perfusion in
rat sarcoma models and enhances anti-tumour effects

AH van der Veen, JHW de Wilt, AMM Eggermont, ST van Tiel, ALB Seynhaeve and TLM ten Hagen

Department of Surgical Oncology, University Hospital Rotterdam/Daniel den Hoed Cancer Center, PO Box 5201, 3008 AE Rotterdam, The Netherlands

Summary We have shown previously that isolated limb perfusion (ILP) in sarcoma-bearing rats results in high response rates when
melphalan is used in combination with tumour necrosis factor alpha (TNF-α). This is in line with observations in patients. Here we show that
ILP with doxorubicin in combination with TNF-α has comparable effects in two different rat sarcoma tumour models. The addition of TNF-α
exhibits a synergistic anti-tumour effect, resulting in regression of the tumour in 54% and 100% of the cases for the BN175-fibrosarcoma and
the ROS-1 osteosarcoma respectively. The combination is shown to be mandatory for optimal tumour response. The effect of high dose TNF-
α on the activity of cytotoxic agents in ILP is still unclear. We investigated possible modes by which TNF-α could modulate the activity of
doxorubicin. In both tumour models increased accumulation of doxorubicin in tumour tissue was found: 3.1-fold in the BN175 and 1.8-fold in
the ROS-1 sarcoma after ILP with doxorubicin combined with TNF-α in comparison with an ILP with doxorubicin alone. This increase in local
drug concentration may explain the synergistic anti-tumour responses after ILP with the combination. In vitro TNF-α fails to augment drug
uptake in tumour cells or to increase cytotoxicity of the drug. These findings make it unlikely that TNF-α directly modulates the activity of
doxorubicin in vivo. As TNF-α by itself has no or only minimal effect on tumour growth, an increase in local concentrations of
chemotherapeutic drugs might well be the main mechanism for the synergistic anti-tumour effects. © 2000 Cancer Research Campaign
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Low concentrations at the tumour site and dose-limiting syste
toxicity are common causes for failure of solid tumour treatm
with anti-tumour agents. As cytotoxic drugs typically exhibi
steep dose–response curve, increasing local concentration s
favour tumour response. In isolated limb perfusions (ILP) lo
drug concentrations are increased while systemic exposure 
drugs is minimal. In ILP melphalan is used most commonly,
other agents (e.g. doxorubicin and cisplatin) are also applied
varying success in perfusion of limb or organ (e.g. lung) (Tona
al, 1979; Klaase et al, 1989; Rossi et al, 1992; Weksler et al, 1
Abolhoda et al, 1997). Tumour necrosis factor alpha (TNF-α), a
cytokine with known anti-tumour activity, cannot be used syst
ically in dosages high enough to obtain a tumour response (A
et al, 1987; Fajardo et al, 1992). However, in ILP with TNFα,
tumours are exposed to concentrations of up to 50 times h
than those reached after systemic administration of the maxi
tolerated dose (MTD), without major side-effects (Benckhuij
et al, 1988). Previously it was demonstrated that the additio
TNF-α to melphalan in ILP could improve response rates
patients with multiple melanoma in transit metastases or 
sectable soft tissue extremity sarcomas (Lienard et al, 1992, 
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Eggermont et al, 1993, 1996a, 1996b; Lejeune et al, 1993). In bo
patient groups very high response rates of above 85% have
reported, with a limb salvage rate of more than 85%. In Eu
TNF-α was recently approved and registered for clinical us
patients for the treatment of locally advanced extremity soft ti
sarcomas by ILP with TNF-α and melphalan. Comparable resu
have been reported by us for ILP with the combination of TNα
and melphalan in soft tissue sarcoma and osteosarcoma-b
rats (Manusama et al, 1996a, 1996b; de Wilt et al, 1999). ILP with
TNF-α alone or melphalan alone at concentrations used in
clinical setting had negligible anti-tumour effects, whereas
combination showed strong synergistic anti-tumour efficacy.

TNF-α may potentiate the effects of chemotherapy in ILP
various ways. TNF-α has a broad spectrum of activities, wh
range from enhancement of proliferation to direct cytotoxicity
tumour cells, activation of inflammation and effects on endo
lium (Watanabe et al, 1988; Fajardo et al, 1992). The tumour-
ciated vasculature (TAV) responds to TNF-α with rounding of the
endothelial cells resulting in increased gaps, allowing 
passage of soluble materials and even cells (Smyth et al, 
Folli et al, 1993; Renard et al, 1995). Moreover, intraven
injection of TNF-α in human melanoma xenograft-bearing m
resulted in significant reduction of the interstitial fluid press
(IFP) of the tumours (Kristensen et al, 1996). This phenom
could increase localization of cytotoxic drugs in the tumour in
stitium and explain improved tumour response. Secondly, cli
and experimental results demonstrating massive destruction 
endothelial cells, which has also been shown in vitro an
angiograms in patients after ILP, suggest that the TAV is
973
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primary target for TNF-α and therefore that destruction of th
endothelial lining might be responsible for the anti-tumo
response (Sato et al, 1986; Watanabe et al, 1988; Olieman 
1997). This process was accompanied by inflammatory respo
and seemed to be dependent on infiltrating leucocytes (Manu
et al, 1998). Coagulative and haemorrhagic necrosis and des
tion of the endothelial lining was also seen when TNF-α was used
as a single agent in ILP, without significant effect, however,
tumour growth in rats. This indicates that the direct TNF-α effect
is most likely playing a minor role in the anti-tumour capac
(Manusama et al, 1996a; Nooijen et al, 1996a).

Although in the majority of the perfusions, especially for t
treatment of melanoma, melphalan is used, other agents migh
be successful. Anthracyclines are among the most active a
against solid tumours and doxorubicin is the most widely u
agent of this class (Budd, 1995; Bielack et al, 1996). Moreo
doxorubicin is the agent of choice for the treatment of sarco
and has shown good anti-tumour activity in clinical and exp
mental perfusion settings for the treatment of lung metast
(Weksler et al, 1994; Abolhoda et al, 1997), and could therefor
a suitable cytotoxic agent for ILP in sarcoma-bearing patients

In this study we undertook ILP with doxorubicin and TNF-α in
soft tissue sarcoma- and osteosarcoma-bearing rats to exami
effect of TNF-α on the anti-tumour activity of doxorubicin
Secondly, an attempt was made to unravel possible mechanism
which TNF-α potentiates the anti-tumour activity of doxorubicin

MATERIALS AND METHODS

Chemicals

Human recombinant TNF-α (specific activity 5 × 107 IU mg–1)
was kindly provided by Dr G Adolf (Bender Wien GmbH, Wie
Austria) and stored at a concentration of 2 mg ml–1 at –80°C 
or under liquid nitrogen. Endotoxin levels (LAL) were belo
0.624 EU mg–1. Doxorubicin (Adriablastina®) was purchase
from Farmitalia Carlo Erba (Brussels, Belgium).

Animals and tumour model

Male inbred BN rats were used for the soft tissue sarc
model (BN175) and WAG/RIJ rats for the osteosarcoma mo
(ROS-1). Rats were obtained from Harlan-CPB (Austerlitz, T
Netherlands) and weighed 250–300 g. Small fragments (3 m
of the syngeneic BN175 or ROS-1 sarcoma were implan
subcutaneously in the right hindleg as previously descri
(Manusama et al, 1996a; 1996b). Tumour growth was recorded b
calliper measurements and tumour volume calculated using
formula 0.4(A2 × B) (where B represents the largest diameter 
A the diameter perpendicular to B). All animal studies w
done in accordance with protocols approved by the Ani
Care Committee of the Erasmus University Rotterdam, 
Netherlands.

The classification of tumour response was: progressive dis
(PD), increase of tumour volume (> 25%) within 5 days; 
change (NC), tumour volume equal to volume during perfusio
a range of –25% and + 25%; partial remission (PR), decrea
tumour volume between –25% and –90%; complete remis
(CR), tumour volume less than 10% of initial volume.
British Journal of Cancer (2000) 82(4), 973–980
al,
es
a
c-

lso
nts
d
r,
a,
-
es
e

 the

 by

a 
l

) 
d 
d

e
d
 
l 
e

se

n
of
n

ILP protocol

Rats were perfused according to the ILP technique origin
described by Benckhuijsen et al (1982a) and adapted for the rat b
Manusama et al (Manusama et al, 1996a). Briefly, the femoral
artery and vein of anaesthetized rats were cannulated with s
tubing. Collaterals were occluded by a groin tourniquet and p
sion started when the tourniquet was tightened. The extracorp
circuit included an oxygenation reservoir and a roller pu
(Watson Marlow, Falmouth, UK). The perfusion was perform
with 5 ml Haemaccel (Behring Pharma, Amsterdam, 
Netherlands) and TNF-α (50µg) and/or doxorubicin (400µg
BN175 and 200µg ROS-1) were added as boluses to the oxyg
tion reservoir. Control rats (sham) were perfused with Haema
alone. The concentration of TNF-α was adapted from previou
animal studies and doxorubicin concentrations chosen ha
local toxicity and induced maximally stable disease after si
perfusion (Manusama et al, 1996a). ILP with lower doxorubicin
dosages or TNF dosages below 10µg resulted in comparable o
diminished tumour response (de Wilt et al, 1999). Perfusion
maintained for 30 min at a flow rate of 2.4 ml min–1. During the
perfusion the hindleg of the rat was kept at a temperatu
38–39°C with a warm water mattress. A washout with 2
oxygenated Haemaccel was performed at the end of the perf
Perfusion was performed at a tumour diameter of 12–15
which is around 7 or 10 days after implantation for BN-175 
ROS-1 respectively.

In vitro assessment of anti-tumour activity

BN175 soft tissue sarcoma cells or ROS-1 osteosarcoma
were added in 100µl aliquots to 96-well plates at a final conce
tration of 104 cells per well and allowed to grow as a monolaye
Dulbecco’s modified Eagle’s medium (DMEM) supplemen
with 10% fetal calf serum (FCS). Doxorubicin and/or TNF-α were
diluted in DMEM supplemented with 10% FCS, added to the w
and allowed to incubate for 3 days. The range of final drugs i
wells was 0.0005–100µg ml–1 for doxorubicin and 0–10µg ml–1

for TNF-α. A total of 5–6 separate assays were performed in t
cate and the percentage of growth inhibition calculated accord
the formula: percentage of tumour cell growth = (test well/con
well) × 100%. Percentage of tumour cell cytotoxicity was meas
using the sulphorhodamine B assay (Keepers et al, 1991).

In vitro assessment of doxorubicin uptake in tumour
cells

To determine if the observed anti-tumour response after ILP
cytotoxicity in vitro correlated with cellular uptake of dox
rubicin, cells were exposed to doxorubicin with and without T
α and intracellular doxorubicin levels determined by fl
cytometry as previously described (Luk and Tannock, 19
Briefly, BN175 soft tissue sarcoma cells or ROS-1 osteosarc
cells were added in 500-µl aliquots to 24-well plates at a fin
concentration of 5 × 104 cells per well and allowed to grow as
monolayer in DMEM supplemented with 10% FCS. Doxorub
and TNF-α were diluted in DMEM supplemented with 10% FC
and added to the wells, after which cells were incubated for 0
30, 60 and 120 min. The final drug concentration in the wells
© 2000 Cancer Research Campaign
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Table 1 Tumour response of BN-175 after ILP with doxorubicin and TNF-α
during 5 days after treatment

Response a Sham TNF-αb Doxorubicin Doxorubicin + TNF- α
n = 12 n = 10 n = 10 n = 13

PD 12 10 6 2
NC 4 4
PR 6
0, 0.1, 1.0 and 10µg ml–1 for both doxorubicin and TNF-α.
Thereafter monolayers were treated with trypsin–EDTA for 2 m
and the cell suspensions were washed two times in com
medium and resuspended in phosphate-buffered saline (P
Cellular uptake was measured on a Becton Dickinson FACS
using Cell Quest software on Apple Macintosh compu
Excitation was set at 488 nm and emission at 530
Fluorescence was corrected for cell size using the forward sc
(FSC) with the formula corrected fluorescence (FLcor) = fluor
cence at 530 nm (FL530)/FSC-FL530c/FSCc (FL530c and FSCc are
fluorescence and forward scatter with no drug added to the ce

Assessment of doxorubicin accumulation in solid
tumour and concentration in perfusate during ILP

To determine the influence of TNF-α on doxorubicin accumula
tion in tumours during ILP, tumours (and muscle) were surgic
removed after ILP and total doxorubicin content determined
previously described (Mayer et al, 1989). As the ILP include
thorough washout there was no intravascular doxorubicin pre
Briefly, after incubation in acidified isopropanol (0.075 N hydr
chloric acid in 90% isopropanol) for 24 h at 4°C, the tumours were
homogenized (PRO200 homogenizer with 10-mm generator,
Scientific, CT, USA), centrifuged for 30 min at 2500 rpm a
supernatants harvested. Samples were measured in a H
F4500 fluorescence spectrometer (excitation 472 nm and emi
590 nm) and compared with a standard curve prepared with kn
concentrations of doxorubicin diluted in acidified isopropan
Measurements were repeated after addition of an internal d
rubicin standard. Detection limit for doxorubicin in tissue w
0.1µg g–1 tissue.

For perfusate measurements samples were drawn from
perfusion vial at 0.5, 5, 15 and 30 min after ILP was star
Samples were centrifuged for 30 min at 2500 rpm and supern
measured for doxorubicin content as described above. Cell p
were incubated in acidified isopropanol and doxorubicin con
determined as described above.
© 2000 Cancer Research Campaign
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Figure 1 Growth curves of subcutaneous implanted soft tissue sarcoma
BN175 after isolated limb perfusion with medium alone (■), 50 µg TNF-α (▲),
400 µg doxorubicin (▼), or combination of TNF-α and doxorubicin (●). Mean
tumour volumes are shown ± s.e.m. Number of rats per group is shown in
Table 1
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Statistical analysis

The in vivo and in vitro results were evaluated for statistical si
ficance using the Mann–Whitney U-test with SPSS for windows
In vitro data were analysed by curve fitting using GraphPad Pr
P-values below 0.05 were considered statistically significant.

RESULTS

In vivo tumour response to doxorubicin and TNF- α

To evaluate the anti-tumour activity of doxorubicin wh
combined with TNF-α in an ILP setting, soft tissue sarcoma a
osteosarcoma-bearing rats were perfused with the ag
combined or alone. Figure 1 shows the tumour responses o
tissue sarcoma (BN175) in rats after ILP. Perfusion with buffe
TNF-α alone resulted in progressive disease in all anim
Although ILP with doxorubicin (400µg) alone resulted in a sligh
inhibition of the BN175 tumour growth when compared with 
sham control, none of the rats showed a tumour response (Tab
ILP with 400µg doxorubicin combined with 50µg TNF-α
resulted in increased anti-tumour activity with a response ra
54% (PR and CR combined; P < 0.01 compared with doxorubici
alone).

In osteosarcoma (ROS1)-bearing rats ILP with buffer 
doxorubicin (200µg) alone had no significant effect on tumo
growth (Figure 2). ILP with TNF-α alone resulted in significan
inhibition of tumour growth as compared with the sham perfus
British Journal of Cancer (2000) 82(4), 973–980

CR 1
Response rate (PR and CR) 54%

aResponses were scored as described in Materials and Methods. bTNF-α
and doxorubicin, 50 and 400 µg respectively, were added to the perfusate 
(5 ml) as boluses. cPD: progressive disease, NC: no change, PR: partial
remission, CR: complete remission.

Table 2 Tumour response of ROS-1 after ILP with doxorubicin and TNF-α
during 5 days after treatment

Response a Sham TNF-αb Doxorubicin Doxorubicin + TNF- α
n = 8 n = 9 n = 8 n = 10

PD 8 3 2
NC 3 6
PR 1 6
CR 2 4
Response rate (PR and CR) 33% 100%

aClassification of response rates is described in Materials and Methods.
bTNF-α and doxorubicin, 50 and 200 µg respectively, were added to the
perfusate (5 ml) as boluses. PD: progressive disease, NC: no change, PR:
partial remission, CR: complete remission.
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Figure 2 Growth curves of subcutaneous implanted osteosarcoma ROS-1
after isolated limb perfusion with medium alone (■), 50 µg TNF-α (▲), 
200 µg doxorubicin (▼), or combination of TNF-α and doxorubicin (●). Mean
tumour volumes are shown ± s.e.m. Number of rats per group is shown in
Table 2
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Figure 3 In vitro growth of (A) BN175 and (B) ROS-1 tumour cells as
function of the doxorubicin concentration in combination with 0 µg (●), 0.1 µg
(▲), 1.0 µg (▼) or 10 µg TNF-α per ml (■). The mean of 5–6 individual
experiments performed in triple is shown ± s.e.m.
and a response rate of 33% was observed (Table 2). ILP 
200µg doxorubicin combined with 50µg TNF-α further
increased the anti-tumour response with a response rate of 
(PR and CR combined; P < 0.05 compared with TNF-α alone).

In vitro assessment of anti-tumour activity of
doxorubicin and TNF- α

The in vivo experiments clearly demonstrate pronounced impr
ment of tumour response when doxorubicin was used in comb
tion with TNF-α. In vitro experiments were performed to furth
study the nature of this interaction. Exposure of soft tis
sarcoma BN175 or osteosarcoma ROS-1 tumour cells to d
rubicin resulted in a response curve with an IC50 of 0.1 and 
2.0µg ml–1 respectively (Figure 3). No significant cellular toxici
could be observed when BN175 cells were exposed to TNα
alone; however, a dose-dependent growth reduction was obs
when ROS-1 cells were exposed to TNF-α with a maximum
reduction of 38% at 10µg ml–1. Addition of TNF-α to doxorubicin
did not significantly alter the IC50 of doxorubicin in the BN-175
cell cultures, indicating that addition of TNF-α in vitro did not
influence the sensitivity of the cells to doxorubicin significan
On ROS-1 cells only an additive effect of TNF-α and doxorubicin
was observed. The curve only shifted downwards and not 
lower doxorubicin concentration, which indicates that the drug
not influence each other but have separate effects.

In vitro uptake of doxorubicin in tumour cells

Figure 4 shows that increased intracellular concentration
doxorubicin are observed in both cell types when cells were i
bated with increasing concentrations of doxorubicin. A tenf
higher doxorubicin concentration in culture supernatant (ran
from 1.0 to 10µg ml–1) resulted in 4.5-fold and 3.9-fold
augmented cellular uptake for BN175 and ROS-1 respecti
(P < 0.01 and P < 0.05). Addition, however, of TNF-α to the
culture medium did not influence intracellular doxorubicin cont
significantly for all the TNF-α concentrations tested, or even
slight but not significant reduction in uptake was noticed w
increasing concentrations of TNF-α (Figure 5).

Doxorubicin accumulation in solid tumour after ILP

Possibly the observed beneficial effect of TNF-α in vivo could be
explained by an increased extravasation of doxorubicin into
tumour interstitium, resulting in a higher local concentration 
accordingly in an improved anti-tumour activity. Therefo
concentrations of doxorubicin in tumour and surrounded tis
after ILP were determined. Figure 6 shows that measur
amounts of doxorubicin localized both in BN175 and RO
tumours after ILP, which correlates with an observed decline o
drug concentration in the perfusate (data not shown). Moreo
addition of TNF-α to the perfusate resulted in significant
enhanced accumulation of doxorubicin in both these tumours,
fold in the BN175 and 1.8-fold in the ROS-1 sarcoma, w
compared with ILP with doxorubicin alone. Addition of TNF h
no significant effect on doxorubicin accumulation in muscle of 
leg (P > 0.4). Strikingly, a significant discrepancy in drug leve
was observed between BN175 and ROS-1 tumours.
© 2000 Cancer Research Campaign
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Figure 4 Uptake of doxorubicin by (A and C) BN175 tumour cells, or (B and D) ROS-1 tumour cells in vitro as determined by flowcytometry after exposure of
the cells to 0, 0.1, 1.0 or 10 µg ml–1 doxorubicin for 2 h (A and B) or for various durations of time at a fixed doxorubicin concentration of 10 µg ml–1 (C and D).
The graphs are good representatives of the experiments performed
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Figure 5 Uptake of doxorubicin in (A) BN175 or (B) ROS-1 tumour cells in vitro at respectively 120 and 60 min of exposure to the agent in the presence of 0,
0.1, 1.0 or 10 µg TNF-α per ml. The mean of 5 experiments is shown ± s.d.
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Figure 6 Accumulation of doxorubicin in (A) soft tissue sarcoma BN175 or
(B) osteosarcoma ROS-1 in vivo during isolated perfusion. Rats were
perfused with doxorubicin (400 µg BN175 and 200 µg ROS-1) with 50 µg
TNF-α or without TNF-α, after which tumours and muscle were excised and
total doxorubicin content determined as described in Materials and Methods.
The mean of 6 rats is shown ± s.d.
DISCUSSION

In the present study we demonstrate that ILP in sarcoma-be
rats with doxorubicin in combination with TNF-α results in high
response rates in two different tumour models. These finding
in close agreement with our previous work using melph
(Manusama et al, 1996a, 1996b). Secondly, it is demonstrated f
the first time that TNF-α enhances intratumoural accumulation
doxorubicin, which is an attractive explanation for the augme
tumour response in TNF-α-based ILP. We speculate that TNFα
increases interstitial drug levels in the tumour as intravas
doxorubicin is washed out at the end of the ILP procedure
intracellular uptake of doxorubicin is not affected by TNF-α as
was shown in vitro.

Doxorubicin has been shown to be the most effective dru
treatment of sarcomas and therefore put forward as the dr
choice in the treatment of these malignancies (Budd, 1
Bielack et al, 1996). Here we demonstrate that perfusion 
doxorubicin alone is not, or only partially, effective, which is a
observed when melphalan is used as a single agent in the per
setting.

A striking observation is the augmentation of the doxorubi
induced anti-tumour response by TNF-α in vivo, which has also
been shown for melphalan and TNF-α in these tumour model
British Journal of Cancer (2000) 82(4), 973–980
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(Manusama et al, 1996a, 1996b). Strong tumour responses we
observed in both models after ILP with the combination ther
which cannot be explained by just adding up the responses
ILP with the single agents. An important observation is 
chemotherapy by itself is not, or partially, effective as shown 
and by others (Klaase et al, 1989). Secondly, it was previo
shown in our rat tumour model as well as in the clinic that 
with TNF-α alone had no effect on tumour growth althou
massive haemorrhagic necrosis and pathology was obs
(Posner et al, 1994; Manusama et al, 1996a; Nooijen et al, 1996)
These observations indicate that other mechanisms have 
identified to explain the interaction between TNF-α and
chemotherapy.

Several specific activities of TNF-α could potentiate the ant
tumour activity of chemotherapy. It has been postulated tha
increased tumour response observed after ILP with melphala
TNF-α is due to destruction of the TAV, resulting in haemorrha
necrosis, platelet aggregation and erythrostasis (Watanabe
1988; Nooijen et al, 1996). Moreover, it has been shown rec
that perfusion with melphalan in combination with TNF-α and
interferon gamma (IFN-γ) resulted in apoptosis of endothelial ce
of the TAV (Ruegg et al, 1998). Inflammatory events such as g
ulocyte infiltration were also suggested to play a role (Nooije
al, 1996; Manusama et al, 1998). These findings led to the s
lation that destruction of the TAV is the mechanism by wh
TNF-α potentiates cytotoxic agents. Watanabe et al demonst
toxic effects of TNF-α on newly formed tumour vasculature 
mice, resulting in haemorrhage, congestion and blood circul
blockage (Watanabe et al, 1988). Congestion and blockage 
blood circulation could result in impaired drainage of the tum
leading to the observed augmented tumour concentrations. O
suggested that TNF-α-induced thrombus formation played 
important role (Shimomura et al, 1988). However, these effect
also observed after perfusion with TNF-α alone (Nooijen et al
1996).

Recent studies show that perfusion of melanoma-be
patients with melphalan in combination with TNF-α and IFN-γ
results in detachment and apoptosis of endothelial cells o
tumour (Ruegg et al, 1998). Moreover, the in vitro experim
demonstrated an important role for TNF-α and IFN-γ mediated
down-modulation of the αvβ3 function, which is speculated to pla
a prominent role in the in vivo observations. These findings w
argue in favour for a TNF-α-mediated destruction of the vascu
ture. The in vitro observations also demonstrated the necess
IFN-γ for the induction of endothelial apoptosis. On the other h
it has been shown in our model, as well as in various clinical t
that tumour responses are only slightly improved by the add
of IFN-γ (Eggermont et al, 1996b; Lienard et al, 1992b). This
would argue against an important role for TNF-α-mediated
destruction of the TAV in the tumour response; it also indic
that endogenous produced IFN-γ is of major importance.

A consistent finding in our two models is the augmented a
mulation of doxorubicin in tumour tissue when TNF-α is added to
the perfusate. In both models this increase could very well ex
the improved efficacy. On the other hand, TNF-α may increase th
uptake of doxorubicin by the tumour cells. However, intracell
concentration of doxorubicin in vitro was not enhanced w
TNF-α was added in vitro. Moreover, TNF-α did not seem to
affect the in vitro cytotoxic activity of doxorubicin significantly. 
contradiction to these findings, synergy between TNF-α and
© 2000 Cancer Research Campaign
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doxorubicin in vitro has been shown in previous studies depen
on sensitivity of the cells to TNF-α, presence of multidrug resis
tance or order of exposure (Alexander et al, 1987; Bonavida 
1990; Soranzo et al, 1990; Fruehauf et al, 1991). This effec
also been shown without an increased intracellular accumul
of doxorubicin (Safrit et al, 1993). Others demonstrated that e
sure of tumour cells to TNF-α resulted in a reduced sensitivity 
these cells to doxorubicin (Prewitt et al, 1994). It is suggested
arrest of the cells in the G1/0 phase by TNF-α turns them insensi
tive to doxorubicin, which is a cell cycle-dependent cytoto
agent. In our study we did not observe such phenomenon whe
tumour cells were exposed to doxorubicin and TNF-α. These
observations suggest that in vivo TNF-α has an indirect effect o
the anti-tumour activity of doxorubicin. Therefore, we postu
that TNF-α augments the accumulation of doxorubicin in 
tumour by increasing the leakiness of the TAV, and by doing
increases the local drug level. Previously an increased leakine
the TAV as well as a reduction of the IFP in tumour has b
shown by others after systemic administration of TNF-α (Smyth et
al, 1988; Folli et al, 1993; Renard et al, 1995; Kristensen e
1996). In patients and in other experimental models, accumul
of doxorubicin in tumour was found to fluctuate between 1.0 
7.0µg g–1 tissue after intravenous treatment, but considera
higher when locally infused (around 20µg g–1 tumour), which is
comparable with our findings when ILP is performed with doxo
bicin alone (Lee et al, 1980; Ridge et al, 1988; Murdter e
1997). Moreover, increased drug accumulation in tumour 
previously been shown after systemic treatment with TNF-α when
a liposomal doxorubicin preparation was injected (Suzuki e
1990). It must be kept in mind that accumulation of drug in tum
not only depends on treatment procedure but also on the ty
tumour. Preliminary results from a clinical phase I–II trial w
doxorubicin and TNF-α in hyperthermic ILP demonstrate
comparable favourable outcome as is obtained with melphala
TNF-α (Di Filippo et al, 1998).

From our study we propose that the observed augmentati
the anti-tumour activity of doxorubicin by TNF-α is mainly due to
an increased accumulation of doxorubicin in the tumour du
ILP as is shown in both models. A direct effect of TNF-α on the
sensitivity of the tumour cells to doxorubicin was ruled out by
vitro examinations.
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