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Abstract

Background: High throughput sequencing technology enables the both the human genome and transcriptome to
be screened at the single nucleotide resolution. Tools have been developed to infer single nucleotide variants
(SNVs) from both DNA and RNA sequencing data. To evaluate how much difference can be expected between
DNA and RNA sequencing data, and among tissue sources, we designed a study to examine the single nucleotide
difference among five sources of high throughput sequencing data generated from the same individual, including
exome sequencing from blood, tumor and adjacent normal tissue, and RNAseq from tumor and adjacent normal

tissue.

Results: Through careful quality control and analysis of the SNVs, we found little difference between DNA-DNA
pairs (1%-2%). However, between DNA-RNA pairs, SNV differences ranged anywhere from 10% to 20%.

Conclusions: Only a small portion of these differences can be explained by RNA editing. Instead, the majority of
the DNA-RNA differences should be attributed to technical errors from sequencing and post-processing of RNAseq
data. Our analysis results suggest that SNV detection using RNAseq is subject to high false positive rates.

Keywords: DNA-RNA difference, RNA editing, Single nucleotide variant

Background

Single nucleotide variants (SN'Vs) are often measured in
human specimens to correlate with other phenotypic
variables. In general, there are two major classes of
SNVs: germline mutations, which are inherited with one
allele from each parent (also known as germline), and
somatic mutations which are acquired at late stage of
life. Germline mutations are usually used to assess the
risk of developing certain diseases. Somatic mutations
are often associated with tumorigenesis. Both germline
and somatic mutations have been studied extensively in
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biomedical research. Single nucleotide polymorphisms
(SNPs) describe germline mutations at population level.
The detection of SNVs can be achieved through a var-
iety of methods, including real time polymerase chain
reaction (RT-PCR), genotyping array, Sanger sequencing,
and high throughput sequencing. All of these methods
use genomic DNA as the input source. For example,
genome wide association studies (GWAS) typically use
DNA extracted from blood to infer SNPs due to the easy
collection and storage of blood. Somatic mutations
occur in tumor tissues and are usually identified by com-
paring the DNA sequences of tumor tissue to blood or
adjacent normal tissue. One of the most basic assump-
tions of human DNA is that in the absence of somatic
mutations, every cell in the body is essentially identical.
A study in 2009 by Gottlieb et al. challenged this con-
ventional paradigm by identifying three SNPs in tissues
that were not present in blood [1]. This finding received
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great attention, while simultaneously receiving criticism
for the inaccuracy of the analyses [2].

High throughput sequencing technology enables in-
vestigators to screen for SNVs in the entire genome
or exome at a reasonable cost. Over the same time
period, the development of RNAseq technology has
replaced microarrays as the primary tool for gene ex-
pression profiling [3-6]. Unlike microarrays, RNAseq
is based on high throughput sequencing technology,
and thus investigators can now also examine RNA
genomic sequences at a single nucleotide resolution.
RNAseq technology introduces an opportunity to
compare the genomic sequences of DNA and RNA at
an unprecedented large scale.

RNAseq data is often thought to be a less-than-
ideal source for SNV detection due to higher false
positive rates [7]. The higher false positive rates can
be attributed to several reasons, including higher
complexity in alignment due to the RNA splicing [8],
random errors introduced during reverse transcrip-
tion, PCR [9] and RNA editing [9]. Numerous at-
tempts have been made to overcome these difficulties
[8, 10, 11] with only moderate success.

The differences between DNA and RNA sequences
have been previously documented. For example, Li et al.
[12] reported that they observed widespread differences
between the RNA and DNA sequences of the same hu-
man cells. Since its publication, three other independent
follow-up studies [13—15] challenged the conclusion by
Li et al, arguing that the differences found by Li et al.
are attributed to alignment artifacts, RNA editing, etc.
To address this controversy, a more in-depth analysis of
sequence data is required to discern the true differences
between RNA and DNA sequences.

To date, there is no clear consensus on how much
genomic difference we should expect to see between
blood and tissue, and between DNA and RNA of the
same subject. Answering these questions can greatly
contribute to the accuracy of SNV and somatic mutation
identification from multiple sources.

Methods

To fully understand the single nucleotide differences be-
tween blood-tissue and DNA-RNA pairs, we conducted
a thorough study that compared the nucleotide se-
quences between each sample-sequencing pair type,
using a unique set of sequencing data from TCGA. From
TCGA, we obtained sequencing data of 50 samples from
10 breast cancer patients. Each patient had five samples
collected and sequenced: 1) DNA exome sequencing on
blood (DNA-NB), 2) DNA exome sequencing on tumor
primary tissue (DNA-TP), 3) DNA exome sequencing on
adjacent normal tissue (DNA-NT), 4) RNAseq on tumor
primary tissue (RNA-TP), 5) RNAseq on adjacent
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normal tissue (RNA-NT). Data for all samples were
downloaded from the Cancer Genomics Hub in aligned
BAM format [16]. Since the DNAseq data and RNAseq
data were processed by different facilities, to ensure data
integrity, we converted all BAM files to raw FASTQ for-
mats and performed alignment against the human gen-
ome reference (HG19) using BWA [17] for DNAseq
data and TopHat 2 [18] for RNAseq data. The alignment
statistics can be found in Table 1. Next, we marked du-
plicates using Picard [19], then performed local realign-
ment and local recalibration using the Genome Analysis
Toolkit (GATK) [20] developed by the Broad Institute.

Genotypes were inferred by HaplotypeCaller from
GATK. GATK best practice filters were used to filter out
potential false positive SNPs. For the five sample-
sequencing types—DNA-NB, DNA-NT, DNA-TP, RNA-
NT, and RNA-TP—there are 10 possible pairs. For each
pair of samples, we computed the heterozygous geno-
type consistency as follows: the number of consistent
heterozygous genotypes between sample A and sample B
divided by the total number of heterozygous genotypes
in sample A or in sample B. We only considered gen-
omic positions covered with at least 10 reads in both
samples of the pair (denoted as “callable” sites). Also, we
focused our study on haploid genomes (chromosome 1—
22). Chromosome X, Y and mitochondrial DNA were
not considered in this study.

The identification of an alternative allele at a certain
genomic location is highly dependent on the depth of
coverage. For a heterozygous position, the reads that
support the alternative allele should ideally follow a bi-
nomial distribution,Binomial(D, 0.5). Thus, we expect to
observe an alternative allele at 50% allele frequency. The
probability of observing an alternative allele increases as
the depth increases (Fig. 1a). As seen from this figure,
setting the depth threshold at 10 allows a higher prob-
ability to observe an alternative allele. However, the dis-
tribution of the alternative-allele frequency among the
reads produced by a sequencing dataset usually follows a
normal distribution (Fig. 1b). Thus, there are some ge-
notypes with extremely high or low allele frequencies
that deviate from 50%. Also, during sequencing align-
ment, reference preferential biases can also skew the dis-
tribution of allele frequencies by 2 to 5% toward the
reference allele [21]. Reference preferential bias is a type
of alignment artifact, since most aligners will penalize
the alignment of a read based on the number of mis-
matches within that read. A true SNP is counted as a
mismatch during alignment, thus the aligner preferen-
tially prefers reads with no mismatches in the alignment
and slightly undercounts the reads containing alternate
alleles. Furthermore, four of our five sample types are
extracted from tissues in or around the tumor with ac-
quired somatic mutation, which may contain some
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Table 1 Alignment summary

Sample Total reads  Mapped reads Unmapped reads
TCGA-A7-AOD9-DNA_NB 142,860,012 136,174,786 6,685,226
TCGA-A7-AOD9-DNA_NT 158,844,243 155,372,460 3,471,783
TCGA-A7-AOD9-DNA_TP  138,383452 136,764,896 1,618,556
TCGA-A7-AOD9-RNA_NT 141,376,864 134,152,483 7,224,381
TCGA-A7-AOD9-RNA_TP 1492200610 141,630,167 7,570,443
TCGA-BH-AOB3-DNA_NB 211,311,809 209,315,407 1,996,402
TCGA-BH-AOB3-DNA_NT 170,360,878 165,875,755 4,485,123
TCGA-BH-AOB3-DNA_TP 159,731,541 158,253,223 1478318
TCGA-BH-AOB3-RNA_NT 164,452,329 156498369 7,953,960
TCGA-BH-AOB3-RNA_TP 164,079,925 155,833,920 8,246,005
TCGA-BH-AOB8-DNA_NB 171,951,966 170,021,858 1,930,108
TCGA-BH-AOB8-DNA_NT 143,464,049 140,389,068 3,074,981
TCGA-BH-AOB8-DNA_TP 216,218,230 213,713,105 2,505,125
TCGA-BH-AOB8-RNA_NT 152,562,120 143,571,886 8,990,234
TCGA-BH-AOB8-RNA_TP 128,002,634 122,243,005 5,759,569
TCGA-BH-AOBJ-DNA_NB 147,410,868 145,768,369 1,642,499
TCGA-BH-AOBJ-DNA_NT 162,172,150 158,678,527 3,493,623
TCGA-BH-AOBJ-DNA_TP 143,442,013 141,770,778 1,671,235
TCGA-BH-AOBJ-RNA_NT 138,807,984 131,847,427 6,960,557
TCGA-BH-AOBJ-RNA_TP 149,966,756 144,440,232 5,526,524
TCGA-BH-AOBM-DNA_NB 159,310,853 156,835,192 2475661
TCGA-BH-AOBM-DNA_NT 165,501,253 162,838,285 2,662,968
TCGA-BH-AOBM-DNA_TP 119,192,355 117,149,967 2,042,388
TCGA-BH-AOBM-RNA_NT 149,007,565 138,576,725 10,430,840
TCGA-BH-AOBM-RNA_TP 117,977,848 100,498,089 17,479,759
TCGA-BH-AOCO-DNA_NB 176,208,298 173,440,163 2,768,135
TCGA-BH-AOCO-DNA_NT 177,261,968 172,796230 4,465,738
TCGA-BH-AOCO-DNA_TP 143,339,652 141217919 2,121,733
TCGA-BH-AOCO-RNA_NT 189,543,380 180,211,183 9,332,197
TCGA-BH-AOCO-RNA_TP 125,992,620 118,740,948 7,251,672
TCGA-BH-AODK-DNA_NB 160,749,783 158,782,935 1,966,848
TCGA-BH-AODK-DNA_NT 158,654,513 155,523,188 3,131,325
TCGA-BH-AODK-DNA_TP 178,103,631 175,051,156 3,052,475
TCGA-BH-AODK-RNA_NT  191,328391 184,115,083 7,213,308
TCGA-BH-AODK-RNA_TP  143,488953 136,143,128 7,345,825
TCGA-BH-AODP-DNA_NB 157,712,348 155,347,716 2,364,632
TCGA-BH-AODP-DNA_NT 167,557,587 163,348,435 4,209,152
TCGA-BH-AODP-DNA_TP 168,097,321 165,554,381 2,542,940
TCGA-BH-AODP-RNA_NT 169,655,182 159,641,615 10,013,567
TCGA-BH-AODP-RNA_TP 136,210,380 129,171,483 7,038,897
TCGA-BH-AOEO-DNA_NB 151,357,163 141,201,519 10,155,644
TCGA-BH-AOEO-DNA_NT 159,040,104 156,614,176 2,425,928
TCGA-BH-AOEO-DNA_TP  130,825/456 129,444,757 1,380,699
TCGA-BH-AOEO-RNA_NT 146,561,149 136,899,519 9,661,630
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Table 1 Alignment summary (Continued)

TCGA-BH-AOEO-RNA_TP 111,749,610 105,126,617 6,622,993
TCGA-BH-AOH7-DNA_NB 170,784,467 168,285,144 2,499,323
TCGA-BH-AOH7-DNA_NT 173,665,210 169,363,318 4,301,892
TCGA-BH-AOH7-DNA_TP 156,659,296 154,959,185 1,700,111
TCGA-BH-AOH7-RNA_NT 154,651,936 146,599,114 8,052,822
TCGA-BH-AOH7-RNA_TP 186,962,558 179,990,244 6,972,314

tumor cells carrying somatic mutaitons. For these rea-
sons, the percentage of mutated alleles at a genomic lo-
cation does not strictly follow the Binomial(D,0.5)
distribution. It is possible that only a small percentage of
reads support mutated alleles. To take this into consid-
eration, we also computed a loose genotype consistency
between a pair of samples. The loose genotype
consistency is computed in the same way as described
above, with the exception that consistent heterozygous
genotypes between samples A and B are defined as the
genotypes that are consistent if they have the same alter-
native allele supported by at least one read that passed
the quality filter (base quality >20). Thus, the actual
genotype call by the HaplotypeCaller is irrelevant in this
calculation.

We studied the pattern of potential RNA editing by
examining the flanking sequences of the different RNA-
DNA sites and the frequency of the RNA-DNA nucleo-
tide change types. Motif analysis was carried out using
HOMER [22]; cluster analysis was performed using
Heatmap3 [23]. Additional annotation on the different
RNA-DNA sites was done using previously reported
editing sites, as described in the databases RADAR [24]
and DARNED [25].

Results

The heterozygous consistency analysis results showed
high consistency rates (0.96-0.99) (Fig. 2, Table 2) be-
tween sequencing data pairs of DNA samples from all
three tissue sources. After RNA data was introduced
into the pairings, the heterozygous consistency rate
dropped substantially (0.79-0.90). As expected, the loose
heterozygous consistency is higher in comparison to the
regular heterozygous consistency, achieving a range of
0.97-0.99 for DNA-DNA pairs, and a range of 0.82-0.91
for DNA-RNA pairs. Due to the occurrence of errors
and noise during library preparation, sequencing, and/or
alignment, there will always be nucleotide differences
even between DNA sequencing data of technically-
replicated samples. The minor differences observed be-
tween DNA-NB and DNA-NT can also be contributed
to tumor contamination in the adjacent normal tissue.
The large differences observed between the DNA-RNA
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pairs confirm previous findings that large amounts (10—
21%) of callable nucleotides are observed differently in
DNA as compared to RNA sequencing data. We demon-
strate the DNA-RNA difference using one example by
Integrative Genomics Viewer (Additional file 1).

We performed dinucleotide distribution analysis. First,
we computed the global dinucleotide frequencies for the
human genome (Fig. 3). The most preferred dinucleotide
is TT (9.78%) and AA (9.75%), and the least preferred
dinucleotide is CG (1.00%), followed by GC (4.29%). For

genotype consistencies

Red = Strict genotype

consistencies

Fig. 2 Genotype consistencies between any two pairs of sequencing data
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Table 2 Heterozygous genotype consistencies

b

Strict® Loose
Sample sample Consistency Consistency Consistency Consistency
A B A B’ A B¢
DNA-NB DNA-NT 0.99 0.97 0.99 0.98
DNA-NB DNA-TP 098 0.99 0.99 0.99
DNA-NB RNA-NT 0.90 0.80 091 0.83
DNA-NB RNA-TP  0.84 0.83 0.87 0.85
DNA-NT DNA-TP 096 0.98 097 0.99
DNA-NT RNA-NT 0.89 0.79 0.90 0.82
DNA-NT RNA-TP 082 0.83 0.86 0.85
DNA-TP RNA-NT 0.90 0.79 0.91 0.82
DNA-TP  RNA-TP  0.84 0.83 087 0.85
RNA-NT RNA-TP 082 087 0.86 091

Strict means if two genotypes are consistent, their genotype call from
Unifiedgenotyper has to agree

PLoose means if two genotypes are consistent, their alternative alleles has to
be supported by at least 1 read with BQ > 20 at that position

“The genotype consistency is computed with the number of heterozygous
genotypes of sample A as denominator

%The genotype consistency is computed with the number of heterozygous
genotypes of sample B as denominator

all of the SNV differences that we observed between any
sample-sequencing type of the same subject, we ex-
tracted the up- and down-stream dinucleotides of the
site, then we normalized them to the human genome
background dinucleotide frequencies. Clean patterns
emerged when we used the normalized dinucleotide fre-
quencies in cluster analysis. For the two nucleotides up-
stream and downstream of the discordant genotype
sites, two major clusters were formed by sample-
sequence types: a smaller cluster containing two pairs
involving only DNA samples, and a larger cluster

Percentage (%)

) BEEEEEEE R oEEE

O QO = O < O < = < = =
8(3(0080!—'—200%’—0(??—

Fig. 3 Background dinucleotide distribution computed from GRCh37
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containing eight pairs, in which seven involve RNA
samples (Fig. 4). The most preferred dinucleotides both
up- and down-stream were GG (upstream: 12%, down-
stream: 14%), followed by CC (upstream: 10%, down-
stream: 11%). These findings suggest GC content plays a
role in the mismatched genotypes. The least preferred
dinucleotide for both upstream and downstream was AT
(upstream: 3.1%, downstream: 2.9%). For the upstream
two nucleotides, pairs with RNAseq data had higher fre-
quencies for CC (t test p = 1.03E-5) and CG (t test
p = 0.001), while pairs with only DNA sequencing data
had higher frequencies in AA (t test p = 0.0008) and TT
(t test p = 0.002). For the downstream two nucleotides,
pairs with RNAseq data had higher frequencies for GG
(t test p = 7.56 x 107°) and CG (t test p = 1.41 x 107°),
while pairs with only DNA sequencing data had higher
frequencies in AA (t test p = 2.25 x 107%) and TA (t test
p =252 x 107%). The detailed allele frequencies and ana-
lysis are presented in Tables 3 and 4. Next, we examined
whether or not a pattern could be observed in the DNA-
RNA difference. We took 10 nucleotides up and down-
stream of the DNA-RNA difference sites and identified
no significant motif using Homer [22].

We also performed cluster analysis using the allele
change frequencies between all possible pairs of the
sample-sequencing types. With the four possible nucleo-
tides, there are six possible changes (A-C, A-T, A-G, C-
T, C-G, and G-T). Similar to the cluster analysis using
the frequency of two upstream and downstream nucleo-
tides, cluster analysis showed that pairs with only DNA
sequencing data form one cluster, while pairs with RNA-
seq data form another cluster (Fig. 5). Transition
changes were clearly more preferred than transversion
changes (t test p = 6.04E-14). The average Ti/Tv ratio of
the DNA-RNA difference sites was 1.98 (range: 1.71—
2.86). The Ti/Tv ratio has been shown to be strongly re-
lated to genomic region and often serves as a quality
control measurement [26-28]. Our Ti/Tv ratio result
suggested that the DNA-RNA differences were not ran-
dom. The detailed change frequencies and analysis are
presented in Table 5.

Lastly, we categorized the differences between DNA
and RNA. The overall DNA-RNA differences per
DNA-RNA pair category can be view in Fig. 6a.
There are thousands of differences per category,
which agrees with previous finding from Li et al. [12].
Out of all of these DNA-RNA differences, there were
a total of 41,529 unique sites. Only a small portion of
these sites, 877, have been documented in existing
RNA editing databases; and 14,876 sites are recorded
in dbSNP (Fig. 6b). Because we required both samples
in the DNA-RNA comparisons to have a depth of 10
or higher, the majority of the differences are located
in exonic regions (Fig. 6¢, Table 6). Of these exonic
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differences, a majority of them (61.3%) are nonsynon-
ymous (Fig. 6d, Table 7).

Discussion

It has been proposed that single nucleotide variants,
such as SNPs and somatic mutations, can be detected
using RNAseq data [8, 29]. At the same time, strong
evidence demonstrates large differences of detected

nucleotides between DNA and RNA sequencing data [7,
12]. To further examine the genotype differences in-
ferred from high throughput sequencing data between
DNA and RNA, and among various sample sources, we
designed a study to compare the genotypes obtained
from five types of high throughput sequencing data that
were generated from ten individuals. With thorough
analysis, we observed large differences between the

Table 3 Upstream dinucleotide distribution

Dinucleotide DNA NB DNA NB DNA NT DNA NB DNA NB DNA NT DNA NT DNA TP DNA TP RNA NT
DNA NT DNA TP DNA TP RNA NT RNA TP RNA NT RNA TP RNA NT RNA TP RNA TP
CcC 9.37% 9.45% 9.33% 10.05% 10.29% 9.84% 10.07% 10.00% 10.17% 10.33%
AA 557% 5.78% 537% 3.77% 3.65% 3.89% 3.82% 3.88% 3.73% 4.14%
CG 6.54% 7.71% 7.04% 10.51% 11.27% 10.11% 10.39% 10.16% 10.69% 9.03%
GC 6.97% 7.73% 7.14% 9.53% 10.06% 947% 9.78% 9.54% 10.17% 9.82%
T 5.29% 4.60% 511% 341% 3.21% 357% 343% 347% 332% 3.99%
TA 4.87% 4.29% 5.00% 3.06% 297% 3.15% 3.08% 3.06% 2.99% 3.48%
AC 6.24% 7.32% 6.58% 7.52% 7.33% 7.49% 7.26% 7.69% 7.31% 8.11%
CA 5.25% 5.89% 5.37% 4.79% 5.30% 4.86% 5.29% 4.90% 5.36% 5.15%
TG 6.20% 5.25% 6.15% 5.54% 5.22% 5.72% 5.34% 552% 5.26% 5.02%
AT 3.14% 3.83% 3.22% 3.06% 3.03% 2.97% 2.98% 3.08% 3.04% 3.37%
TC 6.14% 6.83% 6.26% 6.57% 6.86% 6.44% 6.78% 6.47% 6.84% 7.10%
cT 4.21% 5.26% 4.34% 3.94% 4.43% 391% 4.34% 4.06% 4.48% 4.62%
GG 15.93% 10.01% 14.95% 13.14% 11.31% 13.42% 1241% 12.94% 11.34% 10.51%
GA 5.20% 5.77% 5.12% 5.55% 543% 5.53% 5.44% 5.58% 5.56% 5.39%
AG 5.09% 5.62% 5.04% 5.34% 5.34% 542% 5.33% 541% 5.40% 5.23%
GT 4.00% 4.67% 3.97% 4.23% 4.31% 4.22% 4.27% 4.25% 4.36% 4.72%
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Table 4 Downstream dinucleotide distribution
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Dinucleotide DNA NB DNA NB DNA NT DNA NB DNA NB DNA NT DNA NT DNA TP DNA TP RNA NT
DNA NT DNA TP DNA TP RNA NT RNA TP RNA NT RNA TP RNA NT RNA TP RNA TP
AA 5.15% 511% 5.18% 3.17% 3.23% 3.34% 341% 3.26% 3.33% 3.67%
TA 4.35% 4.31% 4.31% 2.45% 2.54% 2.53% 2.70% 251% 2.59% 2.89%
GG 10.55% 10.20% 10.50% 15.58% 14.40% 15.24% 14.17% 15.56% 14.50% 17.17%
CG 6.55% 7.40% 6.60% 13.10% 12.98% 12.62% 11.97% 12.74% 12.62% 11.28%
T 5.25% 5.05% 5.19% 3.27% 3.24% 3.45% 3.46% 3.33% 3.29% 3.33%
TG 5.65% 5.98% 5.82% 4.37% 5.04% 4.50% 511% 4.49% 5.06% 4.73%
TC 5.34% 557% 561% 4.73% 5.24% 4.81% 5.27% 4.78% 5.30% 4.17%
GC 6.95% 7.68% 7.14% 8.97% 9.27% 8.79% 8.77% 8.99% 9.16% 9.22%
AT 347% 4.00% 351% 243% 251% 2.45% 2.52% 244% 2.50% 2.73%
cT 4.95% 5.65% 5.05% 4.20% 4.64% 4.29% 4.63% 4.24% 4.62% 3.99%
CA 5.76% 5.05% 5.59% 5.12% 4.67% 521% 4.86% 5.13% 4.71% 4.82%
AG 4.50% 5.29% 4.61% 4.11% 4.23% 4.05% 4.27% 4.14% 4.27% 5.04%
GT 6.71% 7.62% 7.04% 6.44% 7.00% 6.46% 6.78% 6.48% 7.10% 6.34%
CcC 14.57% 9.65% 13.68% 11.98% 10.15% 12.20% 11.42% 11.84% 10.15% 9.18%
GA 6.18% 6.70% 6.33% 6.20% 6.73% 6.26% 6.63% 6.18% 6.67% 7.23%
AC 4.06% 4.73% 3.86% 3.87% 4.13% 3.82% 4.02% 3.88% 4.14% 4.22%

genotypes inferred from DNA and RNA sequencing
data, which agrees with Li et al.’s findings [12]. However,
Li et al. asserts these observed differences are the true
differences between DNA and RNA, not accounting for
differences introduced by technical errors. The study
was conducted using TCGA data. Since we do not have
access to the original samples, we could not perform at
qPCR validation of the DNA-RNA differences.

DNA-RNA differences can be attributed to two cat-
egorical factors: biological and technical. The biological
factors can be summarized as RNA editing and polyade-
nylation, which are a part of the natural biological
process. RNA editing is the process that results in RNA
nucleotide sequences that differ from the DNA template.
Polyadenylation is the addition of a Poly(A) tail to the 3’
end of the mRNA during the transcription of DNA to
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Table 5 Nucleotide difference between any two pairs of samples from same subject

DNA-RNA DNA NB DNA NB DNA NT DNA NB DNA NB DNA NT DNA NT DNA TP DNA TP RNA NT
Difference DNA NT DNA TP DNA TP RNA NT RNA TP RNA NT RNA TP RNA NT RNA TP RNA TP
A-C 16.52% 11.98% 15.64% 11.70% 10.34% 12.06% 11.42% 11.52% 10.42% 7.25%
A-G 25.52% 29.60% 26.36% 27.93% 30.00% 27.87% 29.34% 2821% 30.19% 32.46%
AT 6.52% 7.70% 6.53% 521% 4.86% 5.14% 4.82% 5.25% 4.88% 4.72%
C-G 9.83% 9.87% 9.83% 8.15% 8.57% 8.39% 8.77% 8.09% 8.48% 6.33%
CT 24.36% 28.73% 2531% 35.70% 36.01% 35.04% 34.86% 35.81% 35.92% 41.61%
GT 17.25% 12.11% 16.34% 11.30% 10.22% 11.51% 10.80% 11.12% 10.12% 7.63%

RNA. Technical factors include reverse transcription er-
rors, sequencing errors, and alignment errors, which are
technical difficulties that we have yet to overcome. Re-
verse transcription errors occur during the reverse tran-
scription from RNA to cDNA—a mandatory step for
RNAseq. Sequencing errors can result from the high
throughput sequencing technology, as all types of high
throughput sequencing technologies have known limits
and advantages. For example, [llumina’s high throughput
sequencing technology is known to be sensitive to GC

content [30, 31], while 454 Life Sciences’ sequencing
technology produces low quality reads with long Poly
(A) and (T) tracts. Alignment errors often occur while
finding the best genomic locations for a read. The
current alignment algorithm is largely based on the Bor-
rows Wheeler Transformation, an algorithm that is used
in computer science to compress repeated strings that
contain repeated characters. Even though alignment can
happen at a global level, the human genome is too com-
plicated and contains a vast number of homologous
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Table 6 Regional Categories of DNA-RNA differences

Categories Number
downstream 160
exonic 27,073
intergenic 3623
intronic 2839
ncRNA_exonic 958
NcRNA_intronic 663
ncRNA_splicing 7
splicing 42
upstream 160
UTR3 5319
UTR5 644

regions, and, alignment of RNA reads to a DNA refer-
ence sequence requires that splicing of the gene exons
be taken into account. All of these factors can substan-
tially convolute the RNA alignment process and intro-
duce potential alignment errors. Since 2001, there have
been 20 reference human genomes released. Substantial
improvements have been made with each new release
providing more precise descriptions of the transcrip-
tome, which in turn increases the accuracy of alignment
of RNA reads. It is possible that with further advance-
ments to the reference human genome, we will observe
fewer DNA-RNA differences.

In our analysis, we also observed differences between
adjacent normal tissue and blood in DNA, which are
both considered to be germline. Some of these differ-
ences can be explained by tumor contamination of the
adjacent normal tissue, and/or technical errors. Our re-
sults support Gottlieb’s finding that there are potential
SNP differences between normal tissue and blood [1].

Conclusion

In conclusion, based on our analysis results, there are
large differences (10%) between genotypes inferred from
DNA and RNA sequencing data of the same individual.
At the present time, it is difficult to assess what portion
of these differences are due to biological processes and
what portion of the differences are the result of technical

Table 7 Functional Categories of DNA-RNA differences

Categories Number
Nonsynonymous 16,611
Stopgain 485
Stoploss 30
Synonymous 9716
Unknown 249
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errors. When RNAseq data is used to infer SNPs or
somatic mutations, the DNA-RNA difference will result
in large amounts of false positives [7], thus making
RNAseq data a less than ideal source for detecting
SNVs.

Additional file

Additional file 1: Integrative Genomics Viewers screenshot of position
chromosome 1:12,520,386. Alignment results for all five samples for
patient A7-A0D9 are displayed. Top three are DNA samples, and bottom
two are RNA samples. The reference is C. Both RNA samples detected
alternative allele G, two DNA samples did not detect alternative allele G.
(PNG 211 kb)
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