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Cutaneous melanoma (CM) is attracting increasing attention due to high mortality. In response to this, we synthetically analyze
the CM dataset from the TCGA database and explore microenvironment-related genes that effectively predict patient prognosis.
Immune/stromal scores of cases are calculated using the ESTIMATE algorithm and are significantly associated with overall patient
survival. +en, differentially expressed genes are identified by comparing the immune score and stromal score, also prognostic
genes are subsequently screened. Functional analysis shows that these genes are enriched in different activities of immune system.
Moreover, 19 prognosis-related hub genes are extracted from the protein-protein interaction network, of which four unreported
genes (IL7R, FLT3, C1QC, and HLA-DRB5) are chosen for validation. A significant negative relationship is found between the
expression levels of the 4 genes and pathological stages, notably Tgrade. Furthermore, the K-M plots and TIMER results show that
these genes have favorable value for CM prognosis. In conclusion, these results give a novel insight into CM and identify IL7R,
FLT3, C1QC, and HLA-DRB5 as crucial roles for the diagnosis and treatment of CM.

1. Introduction

Cutaneous melanoma (CM) is highly malignant, accounting
for more than 80% of deaths from skin disease [1, 2]. As of
late, the incidence and mortality of CM are increasing.
Fortunately, innovative immunotherapy strategies, includ-
ing therapies using anti-PD1, anti-PD-L1, and anti-CTLA4,
have effectively improved patient prognosis [3–5]. However,
only approximately 40% of patients who receive immuno-
therapy are able to achieve effective long-term remission [6].
Besides, some patients experience adverse effects due to the
complicated interaction between the tumor microenviron-
ment and cancer cells [7]. +erefore, identifying more ef-
fective prognostic biomarkers is of extraordinary
importance for the therapy of CM.

+e tumor microenvironment is composed of immune
cells and stromal cells, which is of great significance for
tumor diagnosis and prognostic assessment [8, 9]. High
levels of immune cell infiltration can be regarded as an

indicator of a favorable prognosis in cancers [10], implying
that effectively assessing the condition of the microenvi-
ronment might hold promise for further treatment. In ad-
dition, techniques for anticipating tumor purity utilizing
gene expression information from +e Cancer Genome
Atlas (TCGA) database have been created [11, 12]. For
instance, Yoshihara et al. [11] designed an algorithm called
ESTIMATE, which has been used to analyze cancer data in
numerous studies, showing the efficiency of the algorithm
[13–15]. As a frontier study, we want to explore the mi-
croenvironment-related genes that effectively predict CM
development by integrating the TCGA database and im-
mune-related scores.

2. Materials and Methods

2.1. Data Acquisition and Grouping. +e data about gene
expression of CM patients was obtained from the TCGA
database (https://portal.gdc.cancer.gov/), which offers the
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quantified expression levels of mRNA in the form of frag-
ments per kilobase per million (FPKM). Dataset was sub-
mitted by the Genomic Data Commons using the Illumina
platform (August 15, 2017). +e corresponding clinical
information included gender, age, TNM grade, and New-
American Joint Committee on Cancer (AJCC) grade; data
on survival and prognosis were also acquired from the
TCGA database. Moreover, information on identified gene
alterations was obtained from the cBioPortal database
(https://www.cbioportal.org/). Immune scores and stromal
scores were determined with the ESTIMATE algorithm [11]
on the downloaded data. Because no other valid CM datasets
could be found in other public databases, 470 patients were
randomly divided into an experimental group and a testing
group for analysis and validation.

2.2. Differential Analysis of Expressed Genes. +e data pro-
cessing was carried out using the ‘limma’ package [16] in R
software. +e thresholds for definite differentially expressed
genes (DEGs) were set to adj. p< 0.05 and fold change >2.

2.3. Heatmaps and Clustering Analysis. Heatmaps and clus-
tering of DEGs were created utilizing the ‘heatmap’ (R
package). Correlation heatmaps of the identified genes were
drawn with the ‘corrplot’ (R package). +e Pearson correlation
coefficient was used for correlation analyses, in which>0 shows
a positive relationship and >0.5 shows a strong relationship.

2.4. Visualization of Gene Expression Levels and Chromosome
Locations. +e R package ‘OmicCircos’ [17] was utilized to
visualize the expression levels and chromosome areas of the
top 100 significant DEGs.

2.5. Functional Analysis of DEGs. Functional enrichment
analysis of the DEGs utilizing the David online dataset [18]
was performed to identify Kyoto Encyclopedia of Genes and
Genomes (KEGG, https://www.genome.jp/kegg/) pathway
and GO categories, the later including biological processes
(BPs), molecular functions (MFs), and cellular components
(CCs). A false discovery rate (FDR) <0.05 was used as cut-off
criterion. +e outcome of the enrichment analyses was
pictured by the ‘GOplot’ package [19].

2.6. Clinical Correlation and Survival Analysis of Genes.
+e R package ‘ggstatsplot’ (https://cran.rproject.org/web/
bundles/ggstatsplot/) was used to reveal the relationships
between the gene expression levels and patient clinical
features. Independent samples T test or one-way analysis of
variance (ANOVA) was used as fitting. +e survival analysis
was led utilizing the ‘survial’ (https://CRAN.R-project.org/
package�survival) package to evaluate the correlation be-
tween the overall survival (OS) and the gene expression level;
the K-M curves were drawn using the ‘survminer’ (https://
CRAN.Rproject.org/package�survminer) package. +e
correlation was determined by the log-rank test, with
p< 0.05 as the threshold.

2.7. Protein-Protein Interaction Analysis. A protein-protein
interaction (PPI) network was constructed to demonstrate
the association among the proteins encoded by the identified
DEGs. +e network was created through STRING version
10.5 (https://string-db.org/), and the outcomes with a
minimum correlation score of 0.4 were reconstructed via
Cytoscape programming [20]. +e connectivity degree of
each node in the organization was also calculated. In ad-
dition, cytoHubba, a Cytoscape module application that
provides an easy way to analysis significant hubs in bio-
logical networks [21], was used for comprehensive
evaluation.

2.8. TIMER Online Analysis of Identified Genes. To analyze
the relationship of the expression level of the identified genes
with tumor purity and the infiltration of immune cells
(B cells, CD4+ T cells, CD8+ T cells, neutrophils, macro-
phages, and dendritic cells), we used the web-based in-
strument TIMER (https://cistrome.shinyapps.io/clock/)
[22].

3. Results

3.1. Immune/Stromal Scores Are Both Significantly Associated
withDifferent Pathological Types. We obtained the gene data
and clinical profiles of 470 CM patients from the TCGA
database. Among these patients, 180 (38.3%) were female,
and 290 (61.7%) were male. +e average age of the patients
was 58.2 years old, and 45.1% were over 60 years of age. All
CM patients with complete gene data and clinical data in the
TCGA database were included for this study. +rough the
ESTIMATE algorithm, immune scores went from −1,481.02
to 3,768.83, and stromal scores were distributed between
−886.07 and 584.93 (Figures 1(a) and 1(b)). +e average
immune score of stage I patients was the highest among the
four grades, and the average scores of stage II and stage IV
patients were the two least. Differences in immune scores
among the four stages were statistically significant
(Figure 1(a), p< 0.001). Interestingly, the order of the
stromal scores of the different stages from highest to lowest,
is as follows: stage IV> stage III> stage I> stage II
(Figure 1(b), p< 0.01), showing that immune scores might
be more significant in the relationship of pathological types
than stromal scores, despite they all had obvious differences
between various stages.

In light of the AJCC melanoma guideline, BRAF mu-
tations are frequent in CM patients and play a significant
part in the development of CM [23]. We mapped the im-
mune/stromal scores dependent on the BRAF mutation
status in CM patients. Cases with BRAF mutation had lower
immune scores and stromal scores, though this distinction
was not measurably huge (Figures 1(c) and 1(d)).

To investigate the relationship between OS and the
immune scores and/or stromal scores, we divided the 470
patients into high- and low-score groups as indicated by
their scores. As shown in the Kaplan-Meier (K-M) survival
analysis (Figure 1(e)), the middle OS of patients with a high
immune score was higher than that of patients with a low
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Figure 1: Immune scores and stromal scores are associated with CM pathological types and their overall survival. (a) Distribution of
immune scores of CM pathological types. Violin plot shows that there is significant association between CM pathological types and immune
scores (p< 0.001). (b) Distribution of stromal scores of CM pathological types. Violin plot shows that there is significant association
between CM pathological types and stromal scores (p � 0.003). (c) Distribution of immune scores for BRAF mutant and BRAF wildtype
CM cases. Violin plot shows that there is no significant association between BRAF mutation status and immune scores (p � 0.904). (d)
Distribution of stromal scores for BRAF mutant and BRAF wildtype CM cases. Violin plot shows that there is no significant association
between BRAF mutation status and stromal scores (p � 0.251). (e) CM cases were divided into two groups based on their immune scores:
the top half of 235 cases with higher immune scores and the bottom half of 235 cases with lower immune scores. As shown in the
Kaplan–Meier survival curve, median survival of the high score group is longer than low-score group (p � 0.002). (f ) Similarly, CM cases
were divided into two groups based on their stromal scores: the top half of 235 cases and the bottom half of 235 cases.+emedian survival of
the high score group is longer than the low-score group (p � 0.04).
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score (p � 0.002). Consistently, patients in the high score
group of stromal scores had a longer middle OS than those in
the low-score group (Figure 1(f ), p � 0.04).

3.2. Differential Analysis of Expressed Genes with Immune/
Stromal Scores. To explore the DEGs related to the immune
scores and/or stromal scores in CM, we analyzed each of the
235 cases in the experimental group. Immune-related genes
were screened by contrasting the high score group and the low-
score group; 981 genes were upregulated and 94 genes were
downregulated in the gathering with high immune scores. A
comparison of the stromal scores show that 1,427 genes were
upregulated and 28 genes were downregulated in the high score
group (Figures 2(a) and 2(b)). Moreover, there were 833 co-
upregulated genes and 4 co-downregulated genes in both the
high immune and stromal groups (Figures 2(c) and 2(d)). To
get more accurate results, we focused on 837 common DEGs
for subsequent analysis in this study.

3.3. Visualization of Gene Expression Levels and Chromosome
Locations. +e gene levels and chromosomal locations of
the top 100 significant DEGs (Figure 3) were visualized in 10
randomly chose cases from the experimental group based on
survival time (1–10 years). +ese DEGs were distributed in
chromosomes other than chromosomes 13/14/18/Y, and
chromosomes 3/6 contained the most genes. Besides, the top
5 genes as indicated by the adj. p, i.e., SASH3, GNGT2,
SNX20, WAS, and CORO1A, were situated in X, 17, 16, X,
and 16, separately. +e top 5 genes (CD8B, SIRPG, NKG7,
PRF1, and CD3E) according to the fold change were dis-
tributed on chromosomes 2, 20, 19, 10, and 11, respectively.

3.4. Functional Enrichment and Survival Analysis of DEGs.
To reveal the potential function of 837 DEGs, GO and KEGG
pathway investigations were conducted.+emost significant
GO terms for BPs, MFs, CCs, and KEGG pathways are
shown in Figure 4. To investigate the value of each DEGs in
patient prognosis, we plotted K-M survival curves based on
the patient data. Within 837 DEGs, a sum of 277 genes were
demonstrated to be significantly correlated with prognosis in
the log-rank test (p< 0.05); the top 10 significant genes are
shown in Figure 5.

3.5. Functional Analysis of Prognostic DEGs. To better
comprehend the function of the prognostic DEGs, which
were chosen for further functional analysis. We found that
their function was enriched in various GO terms, like the
immune response, inflammatory response, T cell cos-
timulation, the regulation of the immune response and the
adaptive immune response (Figure 6(a)). As far as cellular
components, the external side of the plasma membrane was
the top GO term (Figure 6(b)). In addition, some molecular
component GO terms, like receptor activity and trans-
membrane signaling receptor activity, were enriched
(Figure 6(c)). +rough the KEGG pathway, we found the
cytokine-cytokine receptor interaction was highly associated
with these genes (Figure 6(d)).

3.6. Protein-Protein Interactions and Correlation Analysis of
Genes. To elaborate the interplay among the proteins
encoded by the 277 prognostic DEGs, we utilized the
STRING program to construct a PPI network, which in-
cluded 237 nodes and 2,676 edges. Additionally, 40 of the
277 DEGs were excluded from the PPI network because their
interaction scores were lower than 0.4. Among the 237 genes
in the network, 19 hub genes (CD3E, CD69, CD274, KLRD1,
PDCD1, LAG3, HLA-DRB5, IL7R, LILRB4, TNFRSF18,
TRAT1, PDCD1LG2, C1QB, GZMK, C1QC, CXCL13,
FLT3, IDO1, and IRF1) were screened according to the
comprehensive assessment with 12 algorithms in the cyto-
Hubba plugin, and there were strong positive correlations
between these genes (Figures 7(a) and 7(b)). We also ob-
tained more information about their alterations through
cBioPortal (https://www.cbioportal.org/), as shown in Ta-
ble 1. Moreover, four (IL7R, FLT3, C1QC, and HLA-DRB5)
of the 19 genes were selected for subsequent analysis because
they have not been recently reported to be correlated with
clinical outcome of CM.

3.7. Correlation of the Four Hub Genes’ Expression with
Clinical Features. To further reveal the value of the 4 hub
genes, we explored the correlations between their expression
levels and pathological types as well as OS. All 4 hub genes
were essentially differentially expressed in CM patients with
various Tgrades, although three (IL7R, FLT3, and C1QC) of
them showed significant differences between pathological
types, with lower expression levels indicating advanced
pathological degrees and higher T grades (Figures 8(a) and
8(b)). In addition, Figure 8(c) showed that a high expression
level of four genes is favorable for patient prognosis. +e
above results demonstrated that the 4 hub genes have great
clinical value for CM.

3.8. Correlation of the Four Hub Genes’ Expression with the
Tumor Microenvironment. +e tumor microenvironment
comprises of cancer cells, infiltrating immune cells, and
stromal cells. We used TIMER to reveal relationships
between the expression levels of the 4 genes and both the
proportion of immune cells and tumor purity. Remark-
ably, IL7R, FLT3, C1QC, and HLA-DRB5 were all neg-
atively correlated with cancer purity. Similarly, higher
expression levels of the 4 genes obviously associated with a
high infiltration of B cells, CD4+ T cells, CD8+ T cells,
neutrophils, macrophages, and dendritic cells
(Figures 9(a)–9(d)).

3.9. Validation of the Four Hub Genes in the Testing Group.
To verify whether the 4 hub genes identified from the ex-
perimental group also have prognostic value in the testing
group, we plotted K-M survival curves of each gene based on
the data of the testing group. Notably, each of the 4 hub
genes was approved to be essentially linked to the clinical
outcome of CM patients (Figure 10).
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4. Discussion

CM is one of the most aggressive tumors, which has drawn
increasing attention worldwide. Although some advanced
treatments have been used in clinical practice, the results are
still unsatisfactory [5]. +erefore, it is urgent to look for
better biological biomarkers that could be used to guide
clinical treatment. Melssen et al. [24] have demonstrated the
significant correlation between the tumor microenviron-
ment and melanoma, so we hope to discover new bio-
markers that are related with patient prognosis by analyzing
CM data from the TCGA database. Interestingly, through
comparing expression level of genes in the CM dataset with
high versus low immune/stromal scores, 277 prognostic
genes were implicated in Tcell activation and receptor ligand

activity. Besides, 4 of the 19 hub genes have not recently been
reported and were validated in the testing group.

To start with, we got 837 DEGs through a differential
analysis between the parts of high and low immune/stromal
score, and most of the DEGs were selected to participate in
immune-related processes in the cancer microenvironment,
as shown by the functional enrichment analysis (Figure 3).
+e results indicated that the interaction of immune cells
and extracellular matrix molecules is critical for constructing
the tumor microenvironment of CM, which is steady with
past reports [25–27]. Figure 3 shows a positive association
between expression level and prognosis of CM, and most
genes were located on chromosomes 6/19. References
[28, 29] demonstrated that the change of chromosome 6 is
the most frequent karyotypic abnormality in melanoma,
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Figure 2: Differential analysis of expressed genes with immune/stromal scores in CM. Heatmaps were drawn based on the average linkage
method and Pearson distance measurement method. Genes with higher expression are shown in red, genes with lower expression are shown
in green, and genes with same expression level are in black. (a) Heatmap of the DEGs of immune scores of top half (high score) vs. bottom
half (low score). (b) Heatmap of the DEGs of stromal scores of top half (high score) vs. bottom half (low score). Venn diagrams showing the
number of commonly upregulated (c) or downregulated (d) DEGs in stromal and immune score groups.
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which is significantly associated with primary tumor
development.

+en, 277 prognostic genes were screened through the
OS analysis of 837 DEGs in CM patients. A PPI network was
constructed with the identified genes that were significantly
associated with the immune/inflammation response. By
constructing the network, 19 highly interconnected genes
were identified, of which 15 genes (e.g., CD3E, CD69,
CD274, KLRD1, PDCD1, LAG3, LILRB4, TNFRSF18,
TRAT1, PDCD1LG2, C1QB, GZMK, CXCL13, IDO1, and
IRF1) were shown to be correlated with the outcome of CM
patients in past reports [30–32], further indicating that our
results based on big data mining are valid. +e other four
genes not previously discovered to be correlated with the
outcome of CMmay likewise be crucial for the development

of tumor, which include the interleukin receptor encoding
gene IL7R, cytokine receptor FLT3, complement component
C1QC, histocompatibility complex HLA-DRB5. +rough
the analysis of the correlations between these four genes and
clinical features, we observed a critical negative relationship
among gene expression levels with pathological stages,
particularly T grade. Furthermore, the TIMER results for
each identified gene showed that all of them were negatively
associated with tumor purity, while their expression levels
were positively correlated with the infiltration of immune
cells in CM (Figures 9(a)–9(d)).

Finally, by cross validation with the testing group, a valid
dataset of 235 CM cases, the expression of the IL7R, FLT3,
C1QC, and HLA-DRB5 genes was significantly correlated
with patient prognosis (Figure 10). In previous report, IL7R

Figure 3: Circular visualization of connectivity, expression levels, and chromosomal positions of top 100 significant DEGs.+e 10 CM cases
randomly selected from 235 patients based on survival time (1–10 years), and their datasets were shown in the inner circular heatmaps (from
inside to outside). Red represents high level gene expression, blue indicates low level of gene expression. +e outer circle indicates
chromosomes; lines coming from each gene point to their specific chromosomal locations. +e top 5 genes according to adj. p or FC value
are shown in red and blue, respectively, and connected with red and blue lines in the center of circles.
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Figure 4: Functional annotation of the common DEGs. (a) Biological process GO term for the common DEGs. (b) Cellular component GO
term for the common DEGs. (c) Molecular function GO term for the common DEGs. (d) KEGG pathway analysis for the common DEGs.
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Figure 5: Continued.
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Figure 5: Association between expression level of individual DEGs and overall survival. Kaplan–Meier survival curves (a–j) were plotted for
top 10 significant DEGs (KLRC1, ITM2A, CD28, XCL1, CD8B, IL18RAP, ZNF831, and TSPAN32) extracted from the comparison of groups
of high (yellow line) and low (blue line) gene expression, p< 0.05 in log-rank test.
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biological process. (b) Chord plot depicting the relationship between identified genes and GO terms of cellular component. (c) Chord plot
depicting the relationship between identified genes and GO terms of molecular function. (d) Chord plot depicting the relationship between
genes and KEGG pathways.
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Figure 7: PPI network and clustered heatmap of 19 hub genes. (a)+e color of the node in the PPI network reflects the log(FC) value of the Z
score of gene expression, and the size of node indicates the number of interacting proteins with the designated protein, and the thickness of
the edges represents the connectivity degree. (b) A clustered heatmap of Pearson correlation coefficients over 19 hub genes. Highly
significant correlations are marked in red, significant ones in white, and low ones in blue.
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Figure 8: +e 4 hub genes are associated with pathological types and overall survival in CM. (a) IL7R, FLT3, C1QC, and HLA-DRB5 genes
differently express between different pathological types. (b) Expression of IL7R, FLT3, C1QC, and HLA-DRB5 in CM cases with different T
stages. (c) Association between IL7R, FLT3, C1QC, and HLA-DRB5 expression and overall survival in CM. +e yellow line indicates the
samples with highly expressed genes (above the median-expression value), and the blue line indicates the samples with lowly expressed gene
(below median-expression value).

Table 1: +e type and frequency of 19 hub gene alterations in CM (cBioPortal).

Categories Gene
symbol Mutation Amplification Homozygous

deletion
Up

regulation
Multiple
alterations Total alteration

Cell surface

CD3E 0.27 0 2.97 5.41 0 8.65
CD69 1.08 1.08 0.27 2.97 0 5.4
CD274 0.27 1.08 1.35 2.16 0.27 5.13
KLRD1 1.62 1.08 0.27 5.14 0 8.11
PDCD1 1.08 0 2.16 5.14 0 8.38
LAG3 1.36 0.81 0.27 5.15 0 7.59
IL7R 7.84 3.24 0 3.24 0.54 14.86

HLA-DRB5 0.27 0 0 4.32 0 4.59

Toll-like receptors

LILRB4 9.19 0.27 0 5.95 0.54 15.95
TNFRSF18 1.08 1.08 1.35 4.86 0 8.37
TRAT1 3.78 0.27 0 6.49 0 10.54

PDCD1LG2 0.54 0.81 1.35 3.78 0.54 7.02

Complements
C1QB 1.89 1.62 0.81 6.49 0 10.81
GZMK 1.08 0.54 0 4.59 0.27 6.48
C1QC 2.16 1.35 0.81 6.49 0.54 11.35

Integral component of
membrane

CXCL13 0.54 0.27 0 3.24 0 4.05
FLT3 8.65 0.27 0 4.86 0 13.78

Other IDO1 2.97 0.54 0.54 3.51 0.81 8.37
IRF1 0.27 0 0.54 4.86 0.27 5.94

Genes in bold have not been previously reported to be associated with prognosis of CM patients.
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has been distinguished as an important part in the devel-
opment of immune cells, like lymphocytes [33]. Chandran
et al. [34] observed that selectively expressed IL7R of T
effector clones could significantly give rise to long-live
memory cells after receptive exchange to cancer patients and
considered IL7R as a vital part in the immune system of
tumor. FLT3 propagates signals in the cell to maintain
cellular functional activity, and its ligand is also important
for inducing cancer relapse and antitumor immune reac-
tions [35]. Powell et al. [36] reported that FLT3 could
contribute on the penetration of CD8+ T cells and stimu-
latory dendritic cells in the microenvironment, further af-
fecting the growth of cancers. C1QC, a crucial part of the
classical complement pathway, yet there are few studies on
C1QC in CM. +erefore, we hope to explore the biological
value of C1QC through C1QB, basing on the high rela-
tionship between them (Figure 7(b)). Recent studies an-
nounced C1QB as a strong biomarker for the classification of
CM patients, which could be utilized for both early discovery
of melanoma and follow-up monitoring of patients.[37, 38].
Also, the protein encoded by HLA-DRB5 constitutes the

HLA class II molecule, which assumes a focal part in the
activity of immune cells [39]. Bierer et al. [40] found that the
HLA class II genotype can effectively predict the reaction of
renal cancer to combined immunochemotherapy and
achieve a better prognosis of patients. Other studies also
proposed that HLA class II expression can be seen as a good
prognostic factor for malignant, while the lack of its ex-
pression might lead to bad outcome of patients [41]. +ese
reports further confirm the validity of our results.

+e interaction between CM and its tumor micro-
environment significantly influences cancer development
and further affects its diagnosis, treatment and prognosis.
Previous studies have provided much evidence on how
the activity of cancer characteristic genes contributes to
the status of the tumor microenvironment. Within our
research, we focused on the features of microenviron-
ment-related genes that can influence patient prognosis
by affecting the development of CM. Critically, our
findings could provide effective data for elaborating the
intricate interaction between the CM and its
microenvironment.
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Figure 9: Association of 4 hub genes expression with immune infiltration in CM. (a) IL7R. (b) FLT3. (c) C1QC. (d) HLA-DRB5. P< 0.05
denotes significance. Each dot represents a sample in the TCGA-CM dataset.
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5. Conclusion

In this research, we discovered 19 hub genes closely related
to CM prognosis, of which 4 genes (IL7R, FLT3, C1QC, and
HLA-DRB5) unreported were validated to be significantly
favorable for patient outcome in the CM testing dataset and
may become crucial biomarkers for CM. Furthermore, it
would be fascinating to investigate whether this new group
of genes could bring more prominent prognostic value than
a single gene. +us, more studies are needed to explore the
potential association between CM prognosis and tumor
microenvironment in a more comprehensive way.
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Figure 10: Validation of 4 hub genes in the testing group. (a–d) Association between IL7R, FLT3, C1QC, and HLA-DRB5 expression and
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