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Abstract

COVID‐19 pneumonia started in December 2019 and

caused large casualties and huge economic losses. In

this study, we intended to develop a computer‐aided
diagnosis system based on artificial intelligence to au-

tomatically identify the COVID‐19 in chest computed

tomography images. We utilized transfer learning to

obtain the image‐level representation (ILR) based on

the backbone deep convolutional neural network.

Then, a novel neighboring aware representation (NAR)

was proposed to exploit the neighboring relationships

between the ILR vectors. To obtain the neighboring

information in the feature space of the ILRs, an ILR

graph was generated based on the k‐nearest neighbors
algorithm, in which the ILRs were linked with their

k‐nearest neighboring ILRs. Afterward, the NARs were

computed by the fusion of the ILRs and the graph. On

the basis of this representation, a novel end‐to‐end
COVID‐19 classification architecture called neighboring

aware graph neural network (NAGNN) was proposed.

The private and public data sets were used for evalua-

tion in the experiments. Results revealed that our

NAGNN outperformed all the 10 state‐of‐the‐art meth-

ods in terms of generalization ability. Therefore, the

proposed NAGNN is effective in detecting COVID‐19,
which can be used in clinical diagnosis.
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1 | INTRODUCTION

COVID‐19, named by World Health Organization, is a highly infectious pandemic that started in
December 2019.1 Caused by a new coronavirus, COVID‐19 is can be transmitted from human to
human.2 What's worse is that this coronavirus evolved into new variants in 2021, such as the
delta variant and lambda variant, which can be more infectious. Accurate diagnosis is an in-
dispensable step to control this disaster by isolating the patients.

There are generally two types of diagnosis methods for COVID‐19.3 The most prevailing one
is the real‐time reverse transcription‐polymerase chain reaction (rRT‐PCR) test on the samples
from the nasopharyngeal swab.4 The time to obtain the diagnosis result ranges from hours to two
days. The other type of diagnosis is based on the analysis of chest computed tomography (CT).
The main difference between COVID‐19 cases and normal controls is the ground‐glass
opacity, which can be revealed in CT images.5 Compared with rRT‐PCR testing, CT offers good
visualization of the disease.

However, the rRT‐PCR is in short supply, and the CT analysis suffers from high inter-
observer and intraobserver variance; neither is optimal. Computer‐aided diagnosis (CAD) for
medical image analysis can assist radiologists in diagnosis based on artificial intelligence.6 The
trained CAD systems can generate predictions from medical images, and the diagnosis process
is high in reproducibility compared with manual analysis.7 The predictions by CAD systems
can give guidance and verification for final predictions. The recent breakthrough in deep
learning enables CAD systems to achieve better diagnosis accuracy.8,9 For example, Yu et al.10

used four pretrained deep models, including InceptionV3, ResNet‐50, ResNet‐101, and
DenseNet‐201 for feature extraction from chest CT images,11,12 and trained five classical ma-
chine learning models for classification and comparison, including linear discriminant, linear
support vector machine (SVM), cubic SVM, k‐nearest neighbors (k‐NN), and Adaboost decision
tree. From the experiment, they discovered that the combination of DenseNet‐201 + cubic SVM
outperformed others with the accuracy of 95.20% by 10‐fold cross‐validation. Transfer learning‐
based feature extraction can generate high‐level image representations, which can be helpful
for classification,13,14 but backbone model selection and the tedious parameter tuning pose a
challenge in real‐world applications. Also, the distribution of these features and their re-
lationship in the latent space can be exploited to generate more robust image representations
because the feature vector is likely to share some common characteristics with its neighbors. To
address these problems, in this study, we present a new CAD method for COVID‐19. The
contributions of this paper are

i. A novel end‐to‐end COVID‐19 classification architecture called neighboring aware graph
neural network (NAGNN) was proposed.

ii. A novel image‐level representation (ILR) learning algorithm was proposed, which is
capable of adaptively finding the optimal backbone model as well.

iii. A novel universal neighboring‐aware representation (NAR) learning framework that can
be used for any image recognition task was proposed.
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iv. A novel graph random vector functional link (GRVFL) was proposed.
v. Our NAGNN outperformed state‐of‐the‐art approaches based on experiment results from

both our private data set and the public SARS‐COV‐2 Ct‐Scan Data set.

The rest of this study is organized as follows. Section 2 presents related work. Section 3
provides the detailed methodology, including transfer learning, neighboring aware re-
presentation (NAR), and GRVFL. The experiment design is provided in Section 4. Results and
discussion are presented in Section 5. Finally, the conclusion is given in Section 6.

2 | RELATED WORK

In this section, we will discuss the recently published COVID‐19 detection methods based on
medical images and machine learning algorithms, as well as the feature extraction methods in
computer vision.

2.1 | COVID‐19 detection

So far, researchers and practitioners have developed a bunch of CAD systems for COVID‐19
detection based on classical machine learning as well as deep learning models and have made
significant progress. Ucar and Korkmaz15 proposed their diagnosis scheme for COVID‐19. The
pretrained SqueezeNet was employed as the backbone model. They tuned the SqueezeNet with
Bayesian optimization on the X‐ray images. Their Bayes‐SqueezeNet achieved 98.26% accuracy
in the experiment. Ozturk et al.16 implemented automated COVID‐19 classification by transfer
learning of DarkNet and produced 98.08% accuracy for binary identification. Apostolopoulos
et al.17 proposed to train the MobileNetV2 from scratch and achieved an accuracy of 99.18%.
Later, Apostolopoulos and Mpesiana18 used transfer learning to detect COVID‐19 and tested
several famous models, including ResNet, Visual Geometry Group (VGG), MobileNet, Incep-
tion, and Xception. Zhou et al.19 proposed a standard three‐dimensional (3D) embedding
method to transform a 3D lung CT image into the embedding space. They implemented 3D
image segmentation by three 2D image segmentations. Yasar and Ceylan20 developed a 23
layered convolutional neural network (CNN) and trained it for the classification of COVID‐19
and normal samples. Wang et al.5 made an improvement on the COVID‐Net model in mainly
two ways. They proposed to leverage separate feature normalization on the top of the model to
solve the domain shifting problem. Additionally, a contrastive training objective was formed to
improve the domain invariance performance. Experiment results from two public COVID‐19
data sets revealed that there is an obvious increase for the redesigned model compared with the
original COVID‐Net. Wang et al.2 first used a pretrained UNet to generate lung regions from 3D
chest CT images. Then, a 3D CNN was trained to predict the probabilities of infected regions.
The predictions were refined by connected components analysis. Waheed et al.21 suggested
using a generative adversarial network (GAN) to obtain more chest X‐ray images for training
CNN. The proposed model named COVIDGAN can improve the CNN in the classification of
COVID‐19 from 85% to 95% accuracy in comparison experiments. Togacar et al.22 developed a
hybrid COVID‐19 classification system. They proposed to use a fuzzy color algorithm to gen-
erate structured images from the chest X‐ray images and stacked them with the original images.
Then, MobileNetV2 and SqueezeNet were employed to obtain features. The two feature sets
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were fused by social mimic optimization. Finally, an SVM was trained for classification. Sun et al.23

proposed to utilize deep forest to get representations from chest CT images and implement adaptive
feature selection. Sakib et al.24 employed both GAN and conventional image augmentation methods
to generate the augmented data set and trained the customized CNNmodel. Roy et al.4 put forward
a COVID‐19 detection approach for chest ultrasound images. Their classification model was based
on spatial transformer networks, trained by a weakly supervised method. Their system can predict
segmentation results, image labels as well as video labels. Ouyang et al.25 used an online attention
module to improve the classification performance of 3D CNN in detecting COVID‐19 from
community‐acquired pneumonia. To solve the distribution imbalance problem in the data set, a
dual sampling (DS) algorithm was employed. Oh et al.26 proposed a patch‐based CNN for COVID‐
19 detection with insufficient training data. They first segmented the chest X‐ray images to obtain
lung contours. Then, a set of random patches was extracted to fine‐tune a set of pretrained ResNet‐
18 models. Finally, the predictions were determined by majority voting of the outputs from the
ResNet‐18 models. Li et al.27 suggested to use self‐supervised strategy to train the classifier, and the
soft labels were obtained based on the distances between the sample features. Horry et al.7 studied
the COVID‐19 detection performance using different medical imaging modalities, including CT,
ultrasound, and X‐ray images. They chose VGG as the backbone model and trained it with the three
data sets. Testing results revealed that ultrasound images provided better precision than CT and
X‐ray images. The shortcomings of the abovementioned methods are presented in Table 1.

2.2 | Feature extraction

Feature extraction from images is an important and necessary procedure for image classifi-
cation and recognition because the distribution of the features directly determines the com-
plexity of the classification problem. If the interclass variance is high and intraclass variance is
low, the classification can be implemented well with simple models, such as linear classifica-
tion algorithms, vice versa. On the other hand, there is massive information in a digital image,
but only a part of the information is useful for recognition and classification, while some can
hinder the classification. Therefore, feature extraction or representation generation can retain
useful information from images while eliminating the other factors.

Generally, image features fall into two main categories: handcrafted features and deep
learning‐based features. Handcrafted features are commonly seen in traditional machine
learning algorithms, which are based on the calculation of statistics and patterns. These fea-
tures usually have some advantages, such as gray level invariant and rotation invariant. For
instance, the local binary pattern (LBP),28,29 defined in a 3 × 3 patch, considers the relationships
of the eight points and the central pixel. The expression is given as

x y s i iLBP( , ) = 2 ( − ),
p

P
p

c c
=0

−1

p c (1)

where (xc,yc) denotes the coordinate of central pixel, ic represents the gray level intensity value of
the central pixel, ip stands for the intensity value of the neighboring pixel, and s is a step function.

The disadvantage of the original LBP is that it is calculated in a fixed size of the local
perceptive field, so it fails when the texture is larger. Later, to overcome this drawback, im-
proved LBP was proposed, such as uniform LBP.

LU ET AL. | 1575



On the other hand, deep learning‐based features are prevailing with the advent of deep CNN
models. Handcrafted features are usually invented by sophisticated formulations, so they are
interpretable. However, deep learning‐based features are extracted from trained CNN models.
Specifically, to extract features, we need to first train the CNNmodel on the image data set. Then,
the output tensor of a certain layer in the CNN is computed as the features. It can be found that
deep learning‐based features require less manual intervention and are easy to obtain. As they are
derived from CNN, these features are usually effective for image classification. For example, in
research,30 deep features were extracted from multiple deep CNN models and fed into multiple
SVMs for COVID‐19 classification. The best advantage of deep learning‐based features is that it is
convenient to implement because it requires no prior knowledge or predesigned patterns.
However, deep learning‐based features are less interpretable than handcrafted features.

Currently, many deep learning‐based medical image analysis methods simply transfer the
off‐the‐shelf CNN models and train them with medical image data sets.7,21 Domain shifting is an
important issue for transfer learning, especially for medical image analysis, because the features

TABLE 1 Shortcomings in state‐of‐the‐art methods

Methods Shortcomings

Ucar and Korkmaz15 The data set was class‐imbalanced with less than 100 COVID‐19 samples
but over 1000 normal controls

Ozturk et al.16 Their data set was class‐imbalanced and small to train the deep CNN
model for classification

Apostolopoulos et al.17 They only trained and tested MobileNetV2 for classification with a class‐
imbalanced data set

Apostolopoulos and Mpesiana18 There are much more pneumonia and normal samples than COVID‐19
samples in their data set

Zhou et al.19 Their data set was too small to train the deep 3D segmentation model

Yasar and Ceylan20 The sensitivity of the proposed method was 94.04%, which was
relatively low

Wang et al.5 The resolution of their images varied in a wide range

Wang et al.2 Their data set was small to train the deep CNN model

Waheed et al.21 Their data set was too small and class‐imbalanced

Togacar et al.22 The data set was class‐imbalanced with less than 500 samples in total

Sun et al.23 Their method can only classify COVID‐19 and community‐acquired
pneumonia (CAP) because there are no normal samples in the data set

Sakib et al.24 The reported accuracy was 93.94%, which was low

Roy et al.4 Their data set contained noisy labels

Ouyang et al.25 The accuracy of the proposed system was not satisfactory

Oh et al.26 Their method was only evaluated with a hold‐out validation

Li et al.27 They did not compare the performance of different backbone models

Horry et al.7 The data sets in their experiments were curated and small, and it can
cause overfitting to training VGG with small data sets for
classification

Abbreviations: 3D, three‐dimensional; CNN, convolutional neural network; VGG, Visual Geometry Group.
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in the medical images and the distribution of the medical images are usually intensely different
from those in the ImageNet data set, which is used to train deep CNN models. Domain adap-
tation is an effective tool to handle this shifting, including reweighting the samples from the
source domain, search common representation spaces between the source domain and the target
domain, and so forth on the other side, the relationship between the features is often ignored,
while this relationship is significant for classification. Graph convolutional network (GCN)31,32 is
proposed for addressing graph data, such as social networks. In graph data, the samples are
related to each other, so the linked samples share some common interests. Therefore, robust
representations can be generated if the relations among the samples can be utilized.

From the above analysis, we discovered that deep CNN models achieved good classification
performance, either trained from scratch or by transfer learning. However, most methods
simply used single ILRs from a CNN model. In the latent feature space, the distribution of
image features is the most significant factor for classification and diagnosis. Generally, bor-
rowing information from the neighboring image representations can be beneficial for classi-
fication, because the samples in a neighborhood are likely to have the same label. Therefore,
NARs can be more robust and accurate in classification compared with ILR.

2.3 | Neighboring aware networks (NANs)

Recently, the NAN has received increasing attention from academia, and it is often applied in
recommendation systems.33–35 Because, in recommendation systems, the input data are graphs,
where there are data nodes and connections naturally. However, in the medical image clas-
sification, the images are isolated because there are no built‐in connections between the
images, and the patients are usually strangers in real‐world situations. Admittedly, there is also
other information about patients, such as gender, age, and so forth. But the gender and age are
not indispensably related to each other at the sample level.

Therefore, the challenge lies in the generation of the relationships in the data nodes when
applying a neighboring aware mechanism for image classification. It is not suitable to link the
images directly based on their similarities since similar medical images do not necessarily share
the same label. Because the lesions and focuses of diseases may only account for a small region
in the images, and the interpatient variance of the images can be high. To overcome this issue,
we propose to generate the graph in latent feature space instead of in image level. Because we
observe that the image features from backbone CNN models can be highly discriminant, so
they are closely related to the classification results. Hence, the neighboring relationships be-
tween the feature nodes can contribute to the final classification performance. On the basis of
this observation, we propose the NAGNN for COVID‐19 detection.

3 | METHODOLOGY

We present a new COVID‐19 classification framework called NAGNN for chest CT images in
this paper. The overview of the proposed NAGNN is demonstrated in Figure 1. It can be easily
observed that there are three main components: ILR learning, NAR, and GRVFL training. First
of all, we proposed to modify those pretrained backbone models to implement ILR learning and
find the optimal backbone model simultaneously. Then, we propose to embed the neighboring
information among the ILRs. The graphs are generated based on the k‐NN algorithm for the
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training and testing set, respectively, and the NARs are generated. Finally, the GRVFL is
constructed and trained for classification. The fivefold cross‐validation is employed to evaluate
the generalization performance of our method. Gradient‐weighted class activation mapping
(Grad‐CAM) was leveraged to reveal the heat map of the NAGNN for explanation and inter-
pretation. A detailed discussion of the proposed method is presented in the rest of this section.

3.1 | ILR learning

Traditional machine learning systems usually require handcrafted features and classifier training. A
major advantage of CNNmodels is that they provide a means of automated feature learning ability as
well as classification. Unfortunately, it is time‐consuming to train deep CNN models. Also, dedicated
graphics processing units (GPUs) are required for training, which is expensive for users. To mitigate
this gap, transfer learning is adopted. A state‐of‐the‐art CNN model pretrained on the ImageNet data
set is capable of producing good predictions on 1000 categories of labels. This also indicates that the
pretrained CNNmodel has already gained the ability to generate latent image representations, which
are beneficial for classification, and the representation learning ability can be transferred to other
image data sets. Specifically, for COVID‐19 detection, we can transfer a deep CNN model to our
COVID‐19 data set which contains two categories: COVID‐19 and normal. Transfer learning frees

FIGURE 1 An overview of the COVID‐19 detection system. CNN, convolutional neural network;
ILR, image‐level representation; NAR, neighboring aware representation [Color figure can be viewed at
wileyonlinelibrary.com]
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users from hyperparameter tuning as the CNN models are pretrained. Another advantage of transfer
learning is that it enables the pretrained CNNmodel to have good classification performance within a
few epochs, which is time‐efficient. However, overfitting is the main problem when transferring deep
models to small data sets. Because medical image data sets are usually smaller than the ImageNet
data set in terms of both the number of classes and the number of samples in each class. To handle
this issue, we first employ the early stopping strategy to set a small value to the max epochs for
fine‐tuning the pretrained CNN on the COVID‐19 data set. In addition, the fine‐tuned CNN only
serves as the feature extractor instead of the classifier in our CAD system. With the two strategies, we
believe that the overfitting problem can be effectively avoided.

To implement transfer learning with a pretrained CNN model, some modifications should be
made. First of all, the ImageNet data set contains 1000 categories of samples so the pretrained CNN
has 1000 output nodes, but the COVID‐19 data set contains only two categories of images, so the
number of output nodes is modified as 2. Then, the pretrained CNN has two fully connected layers,
and the node numbers are (4096, 1000). We propose to insert a fully connected layer between the
original two fully connected layers, and the node dimensions are set as (4096, 256, 2). The extra
inserted fully connected layer aims to gradually reduce the feature dimension. Because the original
mapping was 4096–1000, but the modified mapping was 4096 to merely 2. The added ‘FC256’ can
be a buffer layer to shrink the feature dimension less dramatically.

After tuning the modified CNN model on COVID‐19 data, the ILR can be extracted easily by
activating the ‘FC256’ layer. Detailed steps for ILR generation by transfer learning are sum-
marized in Proposed Algorithm 1. As the fine‐tuned CNN models can provide predictions on
the testing set as well, we tested several state‐of‐the‐art CNN models to select the best model
based on testing accuracy as the ILR generation model in this study.

Proposed Algorithm 1 Adaptive CNN‐model selection‐based image‐level representation
learning

Phase 1: Transferring a set of pretrained CNN models

For each CNN model in the set

Step 1: Load a state‐of‐the‐art CNN model pretrained on ImageNet data set

Step 2: Replace the ‘FC1000’ with ‘FC2’
Step 3: Insert ‘FC256’ and ‘ReLU activation’ between the original two fully connected layers

Step 4: Fine‐tune the modified CNN model on the COVID‐19 training set

Step 5: Save the CNN model

End for

Phase 2: Adaptive model selection

For each fine‐tuned CNN model

Step 6: Load a fine‐tuned model

Step 7: Obtain the classification accuracy of the CNN model on the testing set

End for

Step 8: Compare the testing accuracy and get the best‐fine‐tuned model

Phase 3: ILR generation by the best fine‐tuned CNN model

Step 9: Load the best fine‐tuned CNN model

Step 10: Feed the COVID‐19 training set and testing set into the model

Step 11: Activate the ‘FC256’ layer with the COVID‐19 training set and testing set

Step 12: Save the activations as training ILR and testing ILR
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3.2 | NAR learning

We propose a novel NAR to improve the robustness because the information in the neigh-
borhood of an ILR is helpful for the classification. An ILR vector is likely to share some
common characteristics with its neighbors. This neighboring relationship between the ILRs in
the latent feature space can be fused to get a better representation. However, there are no off‐
the‐shelf methods to generate NAR as the ILRs are extracted from individual images. Hence,
we propose to leverage graph theory to implement NAR extraction, where the ILRs are defined
as the nodes in a graph and are linked. The algorithm to link the ILR nodes is the k‐NN.
Suppose we have the training set ILRs as RIL= [r1, r2, r3,…, rN]T∈ℝN×D, where N denotes the
number of training samples and D stands for the dimension of ILR, the graph generation steps
are presented in the Proposed Algorithm 2.

Proposed Algorithm 2 Generation of graph based on ILRs

Step 1: Load the ILRs of the training set

For each ILR,

Step 2: Calculate the Euclidean distances between the ILR and all the other ILRs

Step 3: Sort the distances, and find the k‐nearest neighbors of the ILR

Step 4: Save the distance vector of the k‐nearest neighbors for the ILR

End for

Now, we obtained both the ILRs of the training set and the graph, the distance matrix Dst
and the adjacent matrix Adt can be computed by

i j r r i j N i jDst( , ) = ‖ − ‖, 1 , and ,i j    (2)

i j r r i j N i jAdt( , ) = 1, if kNN( ), 1 , and ,j i    (3)

where both Dst and Adt are initialized with zeros, and the kNN(ri) denotes the k‐nearest
neighbors of ri which can be obtained by the Dst. To obtain the normalized Adt, we have

Adt Degree Adt E Degree= ( + ) ,− 1
2

− 1
2 (4)

where E is the identity and the Degree can be calculated by

i j
k i j

i j
i j NDegree( , ) =

, if = ,

0, if ,
1 , .


 


 (5)

Finally, the NAR set RNA can be generated by

R Adt R= ˆ · .NA IL (6)
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A summary of NAR generation is shown in Proposed Algorithm 3 and Figure 2. Similarly,
the graph and the NAR of the testing set can be generated by these operations. These NARs are
fed into a novel GRVFL for training and classification.

Proposed Algorithm 3 NAR generation

Step 1: Load the state‐of‐the‐art CNN model pretrained on ImageNet

Step 2: Modify the top layers in the CNN model according to the COVID‐19 data

Step 3: Fine‐tune the CNN on the COVID‐19 training set

Step 4: Obtain the ILR set by activating the layer ‘FC256’ in the CNN

Step 5: Find the k‐NNs for each ILR node

Step 6: Generate the graph for the ILR set based on the k‐NNs obtained
Step 7: Compute the distance matrix and adjacent matrix for the graph by Equations (2) and (3)

Step 8: Construct the NAR set based on Equation (6)

3.3 | GRVFL for classification

As we obtain the NAR, we propose a GRVFL as the classifier for COVID‐19 diagnosis. The
structure of GRVFL is similar to conventional random vector functional‐link (RVFL),36 which
belongs to a kind of randomized neural network. However, the inputs to the GRVFL are the
NARs in the graph instead of isolated ILRs. The GRVFL contains three layers. The RNA(i) =
[r1, r2, r3,…, rD]T denotes the input to the GRVFL, which is mapped to an enhanced space by
random weight wi and bias bi. Then, the enhanced representations in the hidden layer are
concatenated with the original NARs to form the final integrated representations. Finally, these
representations are mapped to output labels by the output weight βi. The architecture of
GRVFL is simple, but the classification performance is promising. As the COVID‐19 diagnosis
in this study is a binary classification problem and the NARs are obtained from chest CT
images, we do not require deep networks for classification. The major advantage of using
GRFVL is that the training is time‐efficient compared with traditional networks, such as the

FIGURE 2 Generation of neighboring aware representation. CNN, convolutional neural network;
CT, computed tomography [Color figure can be viewed at wileyonlinelibrary.com]
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backpropagation neural network (BPNN). Because the training algorithm for BPNN is based on
gradient descent methods, which need iterations to converge, training can be time‐consuming.
And, BPNN cannot ensure the training stops at the optimal solution, as gradient descent
methods are greedy methods. However, GRVFL is trained differently. The input weight wi and
bias bi are assigned with random values, and the output weight βi is computed by Moor-
e–Penrose pseudoinverse. There is no solution iteration, which contributes to the fast training.
The norm of the weight after training is likely to get smaller values so that the GRVFL can
produce higher generalization performance.37 The training steps of GRVFL are presented in
Proposed Algorithm 4.

Proposed Algorithm 4 GRVFL training algorithm

Load the NARs and the labels of the training set

Construct the GRVFL architecture

Compute the output of the hidden layer by Equation (8)

Obtain the concatenated representations by Equation (9)

Generate the output weight by Equation (10)

Output the trained GRVFL classifier

Suppose the training set is denoted as

TS R= ( , ),NA (7)

where T stands for the ground‐truth labels. The output of the hidden nodes can be
computed as

f w r b j NH = ( + ), = 1, …, ,
N

i j i

i=1

ˆ

 (8)

where N̂ denotes the number of nodes in the hidden layer and f is the sigmoid
activation function. Then, the representations can be obtained by concatenating the H and
input NARs

R R H= concatenate( , ).NA (9)

To suffice that β TR = , we want the output of the GRVFL equals to the ground‐truth labels.
Therefore, the output weight can be obtained by pseudoinverse of R

β TR= .†
(10)

The only predefined hyperparameter in GRVFL is the number of hidden nodes. With less
manual intervention, the training of GRVFL can be easily implemented. For testing, the graph
and NARs of the testing set should be computed, and fed into the GRVFL.
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4 | EXPERIMENT DESIGN

4.1 | Data set configuration

We evaluated the proposed NAGNN on our private data set as well as a public data set. The
public data set called SARS‐COV‐2 Ct‐Scan Data set38 is available on Kaggle (https://www.kaggle.
com/plameneduardo/sarscov2-ctscan-dataset). There are 1252 COVID‐19 CT images and 1230
non‐COVID‐19 CT scans in the SARS‐COV‐2 Ct‐Scan Data set. The resolution of the CT images
varies around 300 × 300 × 3. More detailed information can be found in the literature.39

Our private chest CT images were obtained by a Philips spiral CT machine, and the detailed
configurations for image acquisition were presented in Table 2. We obtained a COVID‐19 data
set of two categories: COVID‐19 and normal control, and there are 420 images in the size of
1024 × 1024 × 3 for both classes.

To get the ground‐truth labels of the chest CT images in the private data set, multiple
manual labeling was conducted by two junior doctors and one senior doctor, denoted as
(J1, J2, S). The ground‐truth target labels can be generated by the following expression:

T
T J T J T J

M J J S T J T J
(CCT) =

( ) if ( ) = ( ),

( , , ) if ( ) ( ),

1 1 2

1 2 1 2







 (11)

where T stands for the labels from each doctor, CCT denotes the chest CT image, and M
represents the majority voting mechanism to deal with the situations that the two junior
doctors came up with contradictory labeling results.

4.2 | Image preprocessing

The raw chest CT images need to be preprocessed before being fed into networks for training
and testing because these raw images contain redundant information, such as background, and
the image quality can be enhanced to get better classification performance. Additionally, the
image size was 1024 × 1024 × 3, which is larger for training state‐of‐the‐art CNN models, as
most input size of these models is 227 × 227 × 3. We denote the raw image data set as

C c c c c i c C= { (1), (2), (3), …, ( ), …, (| |)},1 1 1 1 1 1 1 (12)

TABLE 2 Image acquisition configurations

Parameter Value

KV 120

MAS 240

Layer thickness 3 mm

Layer spacing 3mm

Screw pitch 1.5

Lung window size [1500,−500]

Mediastinum window size [350, 60]
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where |C1| = 840 as we got 420 for both classes. Then, we converted the data into grayscale images by

C C c c i c C= rgb2gray( ) = { (1), …, ( ), …, (| |)}.2 2 2 2 2 2 (13)

Afterward, we enhanced the contrast of the images by the histogram normalization algo-
rithm. The maximum and minimum grayscale value of c2(i) can be found by

p i c i m n

p i c i m n

( ) = min ( | , ),

( ) = max ( | , ),

m n W

m n W

min
1 ,

2

max
1 ,

2

 

 





 (14)

where W= 1024. And the normalized image can be generated by

c i m n
c i m n p i

p i p i
m n W( | , ) =

( | , ) − ( )

( ) − ( )
, 1 , .3

2 min

max min

  (15)

The normalized data set is denoted as

C c c c c i c C= { (1), (2), (3), …, ( ), …, (| |)}.3 3 3 3 3 3 3 (16)

To remove the background along with the text information near the boundaries and cor-
ners, the images are cropped as

C C c c i c C= crop( ) = { (1), …, ( ), …, (| |)}.4 3 4 4 4 4 (17)

Finally, these images were resized to 227 × 227 × 3 to fit in the state‐of‐the‐art CNN models.
The raw image size was 1024 × 1024 × 3, which was too large for CNN training.

Four samples from both private and public data sets are presented in Figure 3.

4.3 | Evaluation metrics

The proposed method was evaluated by fivefold cross‐validation. Compared with 10‐fold
cross‐validation, fewer samples serve for training, and more samples are tested in fivefold
cross‐validation. Meanwhile, 10‐fold cross‐validation requires approximately twice the time as

FIGURE 3 Chest computed tomography images in our final data set
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that of fivefold cross‐validation. We used the following common measurements, including
accuracy, sensitivity, specificity, precision, and F1‐score. They can be calculated by the four
factors in the confusion matrix of binary classification: true positive (TP), true negative (TN),
false positive (FP), and false negative (FN). The formulae are presented below: Accuracy =
(TP + TN )/( TP + TN + FP + FN), Sensitivity = TP /( TP + FN), Specificity = TN /( TN +

FP), Precision = TP /( TP + FP), and F1‐score = 2 × (Precision × Sensitivity)/(Precision +

Sensitivity). It can be revealed that the higher TP and TN are, the better the classification
performance is. For the expression simplicity, we abbreviated these measurements as acc, sen,
spe, pre, and F1 in the following sections.

4.4 | Hyperparameter settings

The proposed COVID‐19 detection approach was implemented and evaluated on a laptop with
i7 7700HQ CPU, 16 GB RAM, and GTX 1060 GPU. The platform is MATLAB R2020a using
deep learning toolbox and pretrained CNN models, including AlexNet,40 ResNet‐18,11 ResNet‐
50,11 DenseNet‐201,12 and MobileNetV241 for ILR extraction.

The hyperparameter settings are illustrated in Table 3. For transfer learning, the batch size
was 20, max epochs were defined as 1 and the initial learning rate was 1e− 4. The batch size
was set considering the sizes of data sets and the computational capability of our GTX 1060
GPU. We set the max epochs as only 2 to prevent overfitting because the CNN models were
pretrained, and COVID‐19 data sets are small. 1e− 4 was the most often used setting for the
learning rate. Small learning rates require more training time to converge, and larger learning
rates may not converge in the training. The number of neighbors k in the graph generation was
3, determined by our experiments. In GRVFL training, the number of hidden nodes N̂ was set
to be 400, because the dimension of input NARs was 256. Mapping the NARs into higher
dimension spaces can hopefully reduce the classification complexity.

5 | RESULTS AND DISCUSSION

In this section, we first presented the experimental results on the private data set. Then, the
classification performance of our NAGNN on the public SARS‐COV‐2 Ct‐Scan Data set was
discussed.

TABLE 3 Hyperparameter settings

Method Hyperparameter Value

ILR by transfer learning Batch size 20

Max epochs 2

Learning rate 1e− 4

NAR by the graph of k‐NN k 3

GRVFL training N̂ 400

Abbreviations: GRVFL, graph random vector functional link; ILR, image‐level representation; k‐NN, k‐nearest neighbor; NAR,
neighboring aware representation.
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5.1 | Classification performance of the NAGNN on the private
data set

The proposed NAGNN was evaluated on the private data set using fivefold cross‐validation.
The running time for the fivefold cross‐validation was 412.88 s. The classification results of the
NAGNN were illustrated in Table 4. It can be observed that the proposed NAGNN achieved the
perfect 100% sensitivity on fourfolds, which was excellent. Because it is universally acknowl-
edged that sensitivity is more important in clinical diagnosis. If a potential COVID‐19 patient
was misdiagnosed as normal, it can cause more infected cases, which can be a disaster for the
control of the virus. Meanwhile, the F1‐score of the NAGNN was 99.04%, indicating the out-
standing classification performance of the proposed model. In all, our NAGNN is accurate in
the detection of COVID‐19.

5.2 | Results of ILR generation on the private data set

To get the best ILRs, we conducted an experiment to transfer several state‐of‐the‐art CNN models
on our COVID‐19 data set, including AlexNet,40 ResNet‐18,11 ResNet‐50,11 DenseNet‐201,12 and
MobileNetV2,41 which are all widely used models. The testing results are shown in Table 5 and
Figure 4 based on fivefold cross‐validation.

It can be found that all the transferred models achieved good performance except AlexNet,
of which the accuracy was only 50.00%. In the experiment of AlexNet, the training cannot
effectively proceed, and as a result, the transferred AlexNets either classified all the testing
images as COVID‐19 or recognize all the testing images as normal. Therefore, some mea-
surements were incalculable (NaN). The poor performance of AlexNet may result from these
two reasons: the structure of AlexNet is simple, and there are no shortcut connections; batch
normalization is not included. However, both shortcut connections and batch normalization
are crucial for convergence during training. On the other hand, all the other four backbone
models produced promising results, and ResNet‐50 achieved the best sensitivity, but the spe-
cificity was only 94.68%. Both ResNet‐18 and DenseNet‐201 produced high accuracy and
achieved a good balance among these five measurements, but the size of ResNet‐18 is much
simpler than DenseNet‐201, which is 44MB versus 77MB, and the number of parameters in
ResNet‐18 is only half of that in DenseNet‐201. Therefore, we chose ResNet‐18 as our backbone
model for ILR generation.

TABLE 4 Classification performance of the NAGNN on the private data set (unit, %; F, fold; A, average)

Acc Sen Spe Pre F1

F1 99.40 100.00 98.82 98.81 99.40

F2 99.40 100.00 98.82 98.81 99.40

F3 98.21 100.00 96.55 96.43 98.18

F4 99.40 100.00 98.82 98.81 99.40

F5 98.81 98.81 98.81 98.81 98.81

A 99.05 99.76 98.37 98.33 99.04

Abbreviations: Acc, accuracy; F1, F1‐score; NAGNN, neighboring aware graph neural network; Pre, precision; Sen, sensitivity;
Spe, specificity.
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TABLE 5 Transfer learning of CNN models on the private data set (unit, %; F, fold; A, average)

Model Acc Sen Spe Pre F1

AlexNet40

F1 50.00 50.00 NaN 100.00 66.67

F2 50.00 50.00 NaN 100.00 66.67

F3 50.00 NaN 50.00 0 NaN

F4 50.00 NaN 50.00 0 NaN

F5 50.00 50.00 NaN 100.00 66.67

A 50.00 NaN NaN 60.00 NaN

ResNet‐1811

F1 97.62 100.00 95.45 95.24 97.56

F2 98.21 100.00 96.55 96.43 98.18

F3 94.05 100.00 89.36 88.10 93.67

F4 99.40 100.00 98.82 98.81 99.40

F5 99.40 98.82 100.00 100.00 99.41

A 97.74 99.76 96.04 95.71 97.64

ResNet‐5011

F1 98.21 100.00 96.55 96.43 98.18

F2 98.81 100.00 97.67 97.62 98.80

F3 97.62 100.00 95.45 95.24 97.56

F4 94.05 100.00 89.36 88.10 93.67

F5 97.02 100.00 94.38 94.05 96.93

A 97.14 100.00 94.68 94.29 97.03

DenseNet‐20112

F1 95.24 91.30 100.00 100.00 95.45

F2 100.00 100.00 100.00 100.00 100.00

F3 97.02 100.00 94.38 94.05 96.93

F4 95.24 100.00 91.30 90.48 95.00

F5 100.00 100.00 100.00 100.00 100.00

A 97.50 98.26 97.14 96.90 97.48

MobileNetV241

F1 96.43 98.75 94.32 94.05 96.34

F2 87.50 100.00 80.00 75.00 85.71

F3 91.07 100.00 84.85 82.14 90.20

F4 89.88 98.55 83.84 80.95 88.89

F5 91.07 100.00 84.85 82.14 90.20

A 91.19 99.46 85.57 82.86 90.27

Note: Bold values mean the best average values.
Abbreviations: Acc, accuracy; CNN, convolutional neural network; F1, F1‐score; Pre, precision; Sen, sensitivity; Spe, specificity.
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5.3 | Effects of graph generation on the private data set

The graph of the ILRs in this study was constructed by the k‐NN algorithm, which was closely
related to the NARs. And the structure of the graph is dependent on the number of neighbors,
k, in k‐NN. To uncover the effects of this parameter, we proposed to get the optimal value of
k by grid search. The performance of the proposed COVID‐19 detection method, abbreviated as
NAGNN, based on fivefold cross‐validation with different values of k is provided in Table 6 and
Figure 5. It can be observed that the accuracy of the proposed NAGNN with k ranging from 2 to
6 was around 99.00%, and the sensitivity fluctuated between 99.00% and 100.00%. The effect of
different k values was more obvious in terms of precision, ranging from 96.90% to 98.33%. In
conclusion, the NAGNN produced the best classification results with k= 3. Hence, the optimal
value for the number of neighbors was set to be 3.

5.4 | Effects of GRVFL on the private data set

We compared the classification performance of the proposed GRVFL with conventional RVFL
based on fivefold cross‐validation. The structure of RVFL and GRVFL was the same which both
contained 400 nodes in the hidden layer. The difference between the two is that the input of
GRVFL is NAR while that of RVFL is ILR. The comparison results are reported in Table 7 and
Figure 6. The results suggested that the average performance of GRVFL was better than RVFL
for all five metrics, which means that the classification performance can be improved by the
spatial relationship among the representations in the latent space. Moreover, the fluctuation
range was reduced, that is, in terms of accuracy, the fluctuation range was just a little over 1%
while that of RVFL was nearly 3%. Hence, GRVFL was more robust than RVFL. The im-
provement of the classification performance is contributed by the neighboring information in
the latent feature space. The NARs were obtained by the fusion of the ILRs and their neigh-
boring relationships so that the GRVFL can outperform the conventional RVFL.

FIGURE 4 Comparison of CNN models based on fivefold cross‐validation (unit, %). CNN, convolutional
neural network [Color figure can be viewed at wileyonlinelibrary.com]
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TABLE 6 Performance of NAGNN with different k values on the private data set (unit, %; F, fold; A,
average)

Value of k Acc Sen Spe Pre F1

2 F1 97.62 100.00 95.45 95.24 97.56

F2 98.81 100.00 97.67 97.62 98.80

F3 97.02 100.00 94.05 94.05 96.93

F4 100.00 100.00 100.00 100.00 100.00

F5 98.81 100.00 97.67 97.62 98.80

A 98.45 100.00 97.04 96.90 98.42

3 F1 99.40 100.00 98.82 98.81 99.40

F2 99.40 100.00 98.82 98.81 99.40

F3 98.21 100.00 96.55 96.43 98.18

F4 99.40 100.00 98.82 98.81 99.40

F5 98.81 98.81 98.81 98.81 98.81

A 99.05 99.76 98.37 98.33 99.04

4 F1 98.21 100.00 96.55 96.43 98.18

F2 98.81 100.00 97.67 97.62 98.80

F3 96.43 100.00 93.33 92.86 96.30

F4 98.21 100.00 96.55 96.43 98.18

F5 97.02 97.59 96.47 96.43 97.01

A 97.74 99.52 96.12 95.95 97.69

5 F1 99.40 98.82 100.00 100.00 99.41

F2 97.02 100.00 94.38 94.05 96.93

F3 97.02 100.00 94.38 94.05 96.93

F4 98.81 98.81 98.81 98.81 98.81

F5 100.00 100.00 100.00 100.00 100.00

A 98.45 99.53 97.51 97.38 98.42

6 F1 100.00 100.00 100.00 100.00 100.00

F2 97.62 100.00 95.45 95.24 97.56

F3 97.02 100.00 94.38 94.05 96.93

F4 98.21 100.00 96.55 96.43 98.18

F5 100.00 100.00 100.00 100.00 100.00

A 98.57 100.00 97.28 97.14 98.54

Note: Bold values mean the best average values.
Abbreviations: Acc, accuracy; F1, F1‐score; NAGNN, neighboring aware graph neural network; Pre, precision; Sen, sensitivity;
Spe, specificity.
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5.5 | Classification results of the NAGNN on the public data set

To further evaluate the COVID‐19 detection performance of the proposed NAGNN, we used the
public SARS‐COV‐2 Ct‐Scan Data set in experiments. All the hyperparameters were the same as

FIGURE 5 Performance of NAGNN with different k values (unit, %). NAGNN, neighboring aware graph
neural network [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 7 Comparison of RVFL with GRVFL on the private data set (unit, %; F, fold; A, average)

Model Acc Sen Spe Pre F1

RVFL

F1 97.62 97.62 97.62 97.62 97.62

F2 98.81 97.67 100.00 100.00 98.82

F3 98.81 100.00 97.67 97.62 98.80

F4 95.83 95.29 96.39 96.43 95.86

F5 97.62 98.78 96.51 96.43 97.59

A 97.74 97.87 97.64 97.62 97.74

GRVFL

F1 99.40 100.00 98.82 98.81 99.40

F2 99.40 100.00 98.82 98.81 99.40

F3 98.21 100.00 96.55 96.43 98.18

F4 99.40 100.00 98.82 98.81 99.40

F5 98.81 98.81 98.81 98.81 98.81

A 99.05 99.76 98.37 98.33 99.04

Note: Bold values mean the best average values.
Abbreviations: Acc, accuracy; F1, F1‐score; GRVFL, graph random vector functional link; Pre, precision; RVFL, random vector
functional link; Sen, sensitivity; Spe, specificity.
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FIGURE 6 Comparison of RVFL with GRVFL (unit, %). GRVFL, graph random vector functional
link; RVFL, random vector functional link [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 8 Results of the NAGNN on the public data set (unit, %; F, fold; A, average)

Model Acc Sen Spe Pre F1

ResNet‐18 (backbone)

F1 96.97 97.96 96.00 96.00 96.97

F2 90.34 100.00 83.67 80.88 89.43

F3 93.75 95.44 92.16 92.00 93.69

F4 95.97 99.15 93.13 92.80 95.87

F5 95.57 93.54 97.86 98.01 95.72

A 94.52 97.22 92.56 91.94 94.33

NAGNN

F1 99.19 99.20 99.18 99.20 99.20

F2 97.79 97.62 97.96 98.01 97.81

F3 97.58 98.77 96.43 96.40 97.57

F4 96.77 96.06 97.52 97.60 96.83

F5 97.99 97.63 98.36 98.41 98.02

A 97.86 97.86 97.89 97.92 97.89

Abbreviations: Acc, accuracy; F1, F1‐score; NAGNN, neighboring aware graph neural network; Pre, precision; Sen, sensitivity;
Spe, specificity.

the experiments on our private data set, and the results were obtained based on fivefold cross‐
validation. The entire running time for the fivefold cross‐validation was 1209.37 s. The statistics
were listed in Table 8 and Figure 7. It can be observed that all the metrics gained an approximately
3% increase from the backbone ResNet‐18 to the proposed NAGNN. All the five metrics of the
NAGNN were over 97% and were close. On the other hand, the five metrics of ResNet‐18 vary in a
range of over 5%. The neighboring information in the latent feature space and the GRVFL in the
NAGNN may be the main reasons for the classification improvement. Meanwhile, the NAGNN
achieved better robustness. The results from the public SARS‐COV‐2 Ct‐Scan Data set were con-
sistent with those from the private data set, which suggested that the proposed NAGNN was
effective in the diagnosis of COVID‐19.
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The above experiments were based on slice‐level classification, so the data leakage issue was
inevitable as the slices from the same patients were in both the training and testing set. To
better evaluate the patient‐level classification performance of the proposed NAGNN, we em-
ployed a variant of the public SARS‐COV‐2 Ct‐Scan Data set39 on the Kaggle website (https://
www.kaggle.com/plameneduardo/a-covid-multiclass-dataset-of-ct-scans). In this variant public
data set, obtained 758 healthy CT images from 50 patients and 2168 COVID‐19 CT scans from
80 patients. The CT slices of the same patients were grouped in folders. Therefore, we ex-
perimented with this variant public data set for detecting COVID‐19 from healthy controls.
Fivefold cross‐validation was also utilized, so there were 10 healthy patients and 16 patients in
each fold. The overall running time of the fivefold cross‐validation on the NAGNN was 803.54 s.
The results were shown in Table 9 and Figure 8. The proposed NAGNN gained improvement

FIGURE 7 Results on the public data set (unit, %). NAGNN, neighboring aware graph neural network
[Color figure can be viewed at wileyonlinelibrary.com]

TABLE 9 Results of the NAGNN on the public variant data set for patient‐level evaluation (unit, %; F, fold;
A, average)

Model Acc Sen Spe Pre F1

ResNet‐18 (backbone)

F1 87.79 97.81 69.50 85.41 91.19

F2 91.48 92.52 88.44 95.88 94.17

F3 87.24 98.25 67.27 84.48 90.85

F4 94.32 98.20 85.63 93.86 95.98

F5 95.02 96.77 89.05 96.77 96.77

A 91.17 96.71 79.98 91.28 93.79

NAGNN

F1 89.73 94.78 77.30 91.15 92.93

F2 94.26 95.24 91.61 96.85 96.04

F3 90.63 97.21 75.66 90.09 93.51

F4 96.27 98.98 89.94 95.82 97.38

F5 92.03 99.76 73.42 89.89 94.57

A 92.58 97.19 81.77 92.76 94.89

Abbreviations: Acc, accuracy; F1, F1‐score; NAGNN, neighboring aware graph neural network; Pre, precision; Sen, sensitivity;
Spe, specificity.
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for all the five evaluation metrics compared with the backbone model. We found that the
differences between folds were big and there was an obvious decrease in performance compared
with the slice‐level results in Figure 7. We held the view that the potential reasons may include
the high interpatient variance and the class‐imbalance distribution in the variant data set.
Although the variant data set had more slices than the original public data set, the number of
COVID‐19 slices was over twice more than that of healthy slices, which was imbalanced for
training the models and resulted in the high sensitivity but much worse specificity. Moreover, all
the slices were generated from merely 80 COVID‐19 patients and 50 healthy ones, so the diversity
of the variant data set can be poor in terms of patient‐level classification. However, the NAGNN
still produced an accuracy of 92.58%, a sensitivity of 97.19%, and an F1‐score of 94.89%.

5.6 | Interpretation of the NAGNN

Grad‐CAM42 is an important tool to interpret the predictions from deep models. Grad‐CAM can
visualize the heat map of the attention of the CNN models when predicting labels of input
images. Eight Grad‐CAMs of COVID‐19 samples from the proposed NAGNN are presented in

FIGURE 8 Results on the public variant data set for patient‐level evaluation (unit, %). NAGNN,
neighboring aware graph neural network [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 9 Grad‐CAMs of COVID‐19 samples. Grad‐CAM, gradient‐weighted class activation mapping
[Color figure can be viewed at wileyonlinelibrary.com]
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Figure 9, where four of them are from the private data set and the rest four are from the public
data set. The colormap is jet. The regions in orange and red colors are where the attention of
the NAGNN, while the regions in blue color are ignored by the model. It can be discovered that
the NAGNN is capable of getting suspicious regions from chest CT images.

5.7 | Comparison with state‐of‐the‐art methods

We compared the proposed NAGNN with other state‐of‐the‐art CAD systems, including DFNet,10

COVIDGAN,21 FGCNet,6 DarkCOVIDNet,16 Dual‐Track Learning,27 SepNorm+Contrastive,5

DS+ attention CNN,25 Patch‐based CNN,26 xDNN1,38 and xDNN2.39 The detailed information is
provided in Table 10 and Figure 10. The ‘Data set’ column indicated whether the data set in the
experiments was public or private and whether it was class‐balanced or class‐imbalanced. It can
be discovered that most of the methods achieved over 95.00% accuracy but our NAGNN yielded
the best accuracy at 99.05% on the private data set. Sensitivity is a significant indicator in clinical
diagnosis and three state‐of‐the‐art algorithms produced over 95.00% sensitivity. Our NAGNN
achieved outstanding generalization ability with an F1‐score of 99.04% on the private data set.
The public SARS‐COV‐2 Ct‐Scan Data set in SepNorm+Contrastive, xDNN1, and xDNN2 was
also employed to evaluate our NAGNN. Results showed that our NAGNN outperformed the three
in terms of accuracy, sensitivity, specificity, and F1‐score. There are three reasons behind the
good classification performance. First, the transfer learning from pretrained CNN models can
effectively extract ILRs from chest CT images and eliminate excessive information. Second, the
proposed NAR based on graph construction can leverage the distribution information between
the ILRs in the latent feature space, so the obtained NARs can be more robust. Last but not least,
the GRVFL classifier is easy to optimize because of its simple structure compared with deep
networks. The running time for training and testing the proposed NAGNN based on fivefold

TABLE 10 Comparison with state‐of‐the‐art approaches (unit, %)

Method Acc Sen Spe Pre F1 Data set

DFNet10 95.20 91.87 96.87 – – Private/imbalanced

COVIDGAN21 95.00 90.00 97.00 96.00 93.00 Private/imbalanced

FGCNet6 97.14 97.71 96.56 96.61 97.15 Private/balanced

DarkCOVIDNet16 98.08 95.13 95.3 98.03 96.51 Public/balanced

Dual‐Track Learning27 – 86.00 – 89.60 87.80 Private/imbalanced

SepNorm+Contrastive5 90.83 85.89 – 95.75 90.87 Public/balanced

DS + attention CNN25 87.5 86.9 90.1 – 82.0 Private/imbalanced

Patch‐based CNN26 88.9 85.9 96.4 83.4 84.4 Public/imbalanced

xDNN138 88.6 88.6 – 87.9 89.2 Public/balanced

xDNN239 97.38 95.53 – 99.16 97.31 Public/balanced

NAGNN (ours) 99.05 99.76 98.37 98.33 99.04 Private/balanced

NAGNN (ours) 97.86 97.86 97.89 97.92 97.89 Public/balanced

Abbreviations: Acc, accuracy; CNN, convolutional neural network; F1, F1‐score; NAGNN, neighboring aware graph neural
network; Pre, precision; Sen, sensitivity; Spe, specificity.
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cross‐validation was only 412.88 s on private data set and 1209.37 s on public data set, which was
intensively fast. In all, the proposed NAGNN offers a good CAD method for COVID‐19 detection.

6 | CONCLUSION

In this paper, we presented a novel COVID‐19 classification method named NAGNN, based on
chest CT images. We proposed to first employ transfer learning to obtain ILRs with pretrained
state‐of‐the‐art CNN models. Then, to leverage the distribution knowledge of these ILRs, we
proposed to generate a graph of the ILRs by k‐NN algorithm, and the novel NARs can be
computed based on the graph. Finally, to classify the NARs, a GRVFL was trained by
pseudoinverse. The proposed NAGNN produced an average accuracy of 99.29% on our private
data set and an average accuracy of 97.86% on the public SARS‐COV‐2 Ct‐Scan Data set based
on fivefold cross‐validation, which outperformed 10 state‐of‐the‐art COVID‐19 detection
methods. The results of Grad‐CAM revealed that NAGNN can find the suspicious regions in the
chest images automatically and make accurate predictions based on the representations.
The good generalization ability suggested that our NAGNN can be used as a verification tool in
real‐world clinical COVID‐19 diagnosis.

However, there are some disadvantages of the proposed method. First of all, the patient‐
level classification results were worse than slice‐level classification performance. We shall
develop more advanced models to deal with the high interpatient variance in CT scans.
Second, it remains a problem how the CNN model locates the suspicious regions though
Grad‐CAM can reveal that the predictions from the model are made by these suspicious
regions in chest CT images. Another shortcoming is the size of the data set. We only
collected a small data set. In the future, we shall continue to collect more images and

FIGURE 10 Comparison with state‐of‐the‐art approaches (unit, %). CNN, convolutional neural network;
DS, dual sampling; NAGNN, neighboring aware graph neural network [Color figure can be viewed at
wileyonlinelibrary.com]
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include more categories of samples. Finally, our model was only trained and tested by chest
CT images. We shall test the model with images of other modalities, such as X‐ray images
and ultrasound images in our future work. Also, in clinical diagnosis, segmentation of the
CT images to get potential focuses is more desired, which is another future research
direction.
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