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Diagnostic tests play an important role in medical research and clinical prac-
tice. The ultimate goal of a diagnostic test is to distinguish between diseased
and nondiseased individuals and before a test is routinely used in practice, it is
a pivotal requirement that its ability to discriminate between these two states is
thoroughly assessed. The overlap coefficient, which is defined as the proportion
of overlap area between two probability density functions, has gained popu-
larity as a summary measure of diagnostic accuracy. We propose two Bayesian
nonparametric estimators, based on Dirichlet process mixtures, for estimat-
ing the overlap coefficient. We further introduce the covariate-specific overlap
coefficient and develop a Bayesian nonparametric approach based on Dirichlet
process mixtures of additive normal models for estimating it. A simulation study
is conducted to assess the empirical performance of our proposed estimators.
Two illustrations are provided: one concerned with the search for biomarkers
of ovarian cancer and another one aimed to assess the age-specific accuracy of
glucose as a biomarker of diabetes.
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1 INTRODUCTION

The assessment of the accuracy of a diagnostic test is an important task in many subfields of medicine and in clinical
research. The first and most fundamental task before a test is routinely used in practice is to evaluate its ability to discrim-
inate diseased from nondiseased individuals or, more generally, to distinguish between different disease stages. The most
popular summary measures of diagnostic accuracy are the area under the receiver operating characteristic curve (AUC) or
the Youden index (YI); these and other summary indices can be found, among many other sources, in Pepe.1(ch.4) Recently,
the overlap coefficient (OVL), defined as the proportion of area between two density functions, and first introduced by
Weitzman2 in a comparison of income distributions by race, has been proposed as an alternative summary measure of
diagnostic accuracy (see, for instance, Samawi et al,3 Wang and Tian,4 and Franco-Pereira et al5). The coefficient of over-
lap can directly measure how similar/different are the distributions of the test outcomes in the diseased and nondiseased
populations and therefore it can serve as a summary index of the diagnostic accuracy that is sensitive to any differences
between such two distributions. Further background about the overlap coefficient is provided in Section 2. Besides its
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increased use in diagnostic medicine, the overlap coefficient is more broadly quite a popular measure in medical data
analysis.6-9 It also finds applications in ecology,10,11 in economics,12 and in psychology.13

An advantage of the OVL over the AUC and the YI, besides its intuitive interpretation, is that in addition of taking into
account both the location and shape of the distributions of test outcomes in the two populations, it is “non-directional.”
Being non-directional means that there is no need to assume that larger test outcomes are more indicative of the presence
of disease or vice versa. Of course, one can easily change the classification rule behind the AUC/YI but, as we shall see in
one of the illustrations provided in Section 6, when we have a large number of candidate tests, it is handy to have a measure
that does not need to rely on any classification rule. The OVL is also well-tailored for dealing with bimodal/multimodal
distributions, which are common in gene expression data.4,8 For instance, when both low and high test results are asso-
ciated with nondisease, with test results in the diseased group lying in between the two modes of the nondiseased test
outcomes’ distribution, such that there is a perfect separation between the two populations, the AUC would take the value
0.5, thus falsely implying that the test classifies individuals no better than chance.14 On the other hand, the coefficient of
overlap, because it is not based on any classification rule, would correctly recognize that test outcomes of both popula-
tions are perfectly separated. At this point, it is fair to mention the work of Martinez-Camblor et al15 and of de Carvalho
et al,16 who proposed, respectively, a generalization of the receiver operating characteristic curve and an affinity based
measure of diagnostic accuracy that also provide meaningful values in such a context. Summing up, the coefficient of
overlap is a versatile measure that (i) has an appealing graphical interpretation, and (ii) does not rely on any classification
rule. We shall highlight that we do not foresee the use of the overlap coefficient as a replacement of the existing measures
of diagnostic accuracy but rather as a companion and/or alternative to these.

In this work, we first develop two Bayesian nonparametric estimators for the coefficient of overlap. At the core of
both estimators it is a Dirichlet process mixture of normal distributions, thus leading to two highly flexible estimators
that can adapt to intricate distributional features, such as multimodality, skewness, and/or extreme variability, without
the need to know them in advance. Hence, our proposed estimators can be used for a wide variety of populations and for
a large number of diseases and continuous diagnostic measures. Compared to the existing kernel approaches,12,17,18 our
estimators do not depend on a smoothing parameter, the choice of which is a nontrivial issue in practice and may have
a great impact on inference. Further, because we are working under the Bayesian paradigm, point and interval estimates
for the overlap coefficient are obtained in a single integrated framework.

Second, we introduce the covariate-specific overlap coefficient, as it is now widely recognized that the performance of
a test may be affected by covariates (such as age and gender) and when this is the case, ignoring the information provided
by covariates may lead to erroneous inferences about a test’s accuracy. The covariate-specific overlap coefficient will help
determining the optimal and suboptimal populations, as determined by the covariates values, in which to perform the
tests on and for its estimation we propose an estimator based on a Dirichlet process mixture of additive normal models.
As in the no-covariate case, the resulting estimator is highly flexible and can be applied in many contexts. It is worth
noting that the fact that the overlap coefficient is non-directional is of especially imortance here in the covariate case as
the same monotone order between the diseased and nondiseased groups may not apply across all covariates levels.

The remainder of the article is organized as follows. In the next section we introduce background material about the
coefficient of overlap. Section 3 presents our proposed Bayesian nonparametric estimators for the coefficient of overlap,
while the covariate-specific overlap coefficient and its corresponding estimator are presented in Section 4. The perfor-
mance of our (unconditional and conditional) estimators is assessed in Section 5 using simulated data. In Section 6, our
methods are illustrated using (i) a dataset concerned with the search for biomarkers of ovarian cancer, and (ii) using data
from a population based survey where the goal is to infer about the age-specific accuracy of the glucose as a biomarker of
diabetes. Concluding remarks are offered in Section 7.

2 PRELIMINARIES

Throughout we will be assuming that regardless of a single or multiple biomarkers being measured on each individual,
a univariate continuous outcome, denoted as Y , is ultimately used for diagnosing purposes. Let D be the binary variable
indicating the presence (D = 1) or absence (D = 0) of disease. We further use the subscripts D and D to denote quantities
conditional on D = 1 and D = 0, respectively. For example, YD and YD denote the test outcomes in the diseased and
nondiseased populations, with probability density functions given by fD and fD, respectively. We further assume that a
so-called gold standard test, that perfectly classifies all individuals as diseased or nondiseased, is available. Compared to
the gold standard test, we want to evaluate how the candidate test, which is possibly less invasive and/or costly, performs.



INÁCIO and GARRIDO GUILLÉN 3881

The overlap coefficient is mathematically defined as

OVL = ∫
∞

−∞
min{fD(y), fD(y)}dy, (1)

and it can be interpreted as a measure of agreement between the distributions of test outcomes in the diseased and nondis-
eased populations, taking values between zero and one. Specifically, an overlap of zero means that test outcomes in the
two populations are completely separated (perfect diagnostic accuracy), whereas a value of one means that the distri-
butions are identical and thus the test is useless from a diagnostic viewpoint. Values between zero and one, correspond
to different degrees of diagnostic accuracy, and the closer to zero the coefficient of overlap is, the better the diagnos-
tic accuracy. If desirable, to make the OVL values more comparable to those of the AUC and YI, one can work instead
with 1 − OVL, so that larger values imply better diagnostic accuracy. As it was demonstrated by Schmid and Schimdt,18

the overlap coefficient is invariant with respect to strictly increasing and differentiable transformations of YD and YD.
The overlap coefficient can be rewritten in various other forms. As it was pointed out by Schmid and Schimdt,18 using
the following equality

min{fD(y), fD(y)} =
1
2
{

fD(y) + fD(y)
}
− 1

2
||fD(y) − fD(y)|| ,

where the role of fD and fD is obviously interchangeable, leads to the following expression

OVL = 1 − 1
2∫

+∞

−∞
||fD(y) − fD(y)|| dy. (2)

As it was shown by the same authors, the overlap coefficient in (1) can also be rewritten as

OVL = ∫
∞

−∞
min{fD(y), fD(y)}dy

= ∫
∞

−∞
I{fD(y) < fD(y)}fD(y)dy + ∫

∞

−∞
I{fD(y) ≥ fD(y)}fD(y)dy

= E[I{fD(YD) < fD(YD)}] + E[I{fD(YD) ≥ fD(YD)}]
= Pr{fD(YD) < fD(YD)} + Pr{fD(YD) ≥ fD(YD)}. (3)

As the authors have mentioned, Equation (3) emphasizes that the overlap coefficient can be written as the sum of two error
probabilities. Indeed, Pr{fD(YD) < fD(YD)} is the probability of choosing fD if fD is the true density and Pr{fD(YD) ≥ fD(YD)}
is the probability of choosing fD if fD is the true density.

3 PROPOSED (UNCONDITIONAL) ESTIMATORS

The expressions in (1) to (3) suggest a two-step modeling procedure whose first step involves estimating the probability
density functions of the test outcomes in each population. In the second step, for the estimators based on (1) and (2),
the integral can be computed via numerical integration, while the estimator based on (3) requires estimating the outer
probabilities. We found the performance of the estimator based on (2) to be superior or on par to that of the estimator
based on (1) and therefore, hereafter, we focus only on the estimator arising from (2). A similar finding was reported by
Schmid and Schimdt.18 In the next subsections we detail the first estimation step, which is common to both estimators
we propose, and the specifics of the second step for each estimator.

3.1 Step 1: Modeling fD and fD

As both expressions (2) and (3) make clear, accurate estimation of the coefficient of overlap requires accurately estimating
the densities of the test outcomes in each population. In what follows, let {yDi}

nD
i=1 and {yDj}

nD
j=1 be two independent random
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samples of test outcomes of size nD and nD from the nondiseased and diseased populations, respectively, with

yD1, … , yDnD
|fD

iid∼ fD, and yD1, … , yDnD |fD
iid∼ fD.

One possible and popular approach is to assume a normal distribution for both fD and fD, possibly after some transforma-
tion of the YD and YD scales (eg, the logarithmic one). However, such model would be unsuitable for test outcomes data
exhibiting asymmetry or multiple modes. Although the normal distribution could be extended (by using, for example, a
skew normal distribution to account for asymmetry), mixtures of normal distributions can be used to represent a wide
variety of density shapes and therefore they are our preferred choice here. In particular, Dirichlet process mixtures19 of
normal distributions have been shown to accurately approximate any smooth density on the real line.20 Under such a
model, the density function of test outcomes in the nondiseased population (the one in the diseased population follows
analogously) can be written as

fD(yDi) = ∫ 𝜙(yDi|𝜇, 𝜎
2)dGD(𝜇, 𝜎

2), GD ∼ DP(𝛼D,G
∗
D
(𝜇, 𝜎2)), (4)

where 𝜙(y|𝜇, 𝜎2) stands for the probability density function of the normal distribution with mean 𝜇, variance 𝜎2, and
evaluated at y. The mixing distribution GD follows a Dirichlet process21 (DP) with centering distribution E{GD(𝜇, 𝜎

2)} =
G∗

D
(𝜇, 𝜎2) and precision parameter 𝛼D (> 0). The constructive definition of the Dirichlet process,22 unarguably its most

popular representation, under which GD can be written as an infinite sum of weighted point masses

GD(⋅) =
∞∑

l=1
𝜔Dl𝛿(𝜇Dl, 𝜎

2
Dl
)(⋅), 𝜔Dl =

{
vD1, if l = 1,
vDl

∏
m<l(1 − vDm), if l ≥ 2,

vDl
iid∼ Beta(1, 𝛼D), (𝜇Dl, 𝜎

2
Dl
) iid∼ G∗

D
(𝜇, 𝜎2), l ≥ 1, (5)

allows us to write the density in (4) as a countable mixture of normal densities

fD(yDi) =
∞∑

l=1
𝜔Dl𝜙(yDi|𝜇Dl, 𝜎

2
Dl
). (6)

For the ease of posterior inference, a conjugate centering distribution is specified, that is, G∗
D
(𝜇, 𝜎2) ≡

N(𝜇|mD0, SD0)Γ(𝜎
−2|aD, bD), where SD0 denotes the variance of the normal distribution and Γ(a, b) denotes a gamma dis-

tribution with shape parameter a and rate parameter b. The precision parameter of the DP, 𝛼D, has a direct relationship
with the number of occupied mixture components and it can be either set to a fixed value or a prior distribution placed
on it. Here we set 𝛼D = 1, which is a commonly used default value and which favors a small number of occupied mixture
components relative to the sample size.23(p. 553)

In order to facilitate posterior simulation, we make use of the truncated stick-breaking representation of the DP,24

replacing GD in (5) with GLD

D
(⋅) =

∑LD
l=1𝜔Dl𝛿(𝜇Dl, 𝜎

2
Dl
)(⋅), and hence the resulting model for the density of test outcomes can

be written as

fD(yDi) =
LD∑

l=1
𝜔Dl𝜙(yDi|𝜇Dl, 𝜎

2
Dl
), (7)

where the weights result from a truncated version of the stick-breaking construction that in order to ensure that they
add up to one, sets vDLD

= 1, so that 𝜔DLD
= 1 −

∑LD−1
l=1 𝜔Dl. We shall note that LD is not the exact number of components

expected to be observed but instead an upper bound on it, as some of the components may be unoccupied. Because the
weights in the infinite stick-breaking representation in (5) decrease rapidly for typical choices of 𝛼D (eg, 𝛼D = 1), the
model in (7) is still an accurate approximation of (6) for small LD. Upon introduction of latent variables that identify the
mixture component to which each nondiseased individual belongs to, the full conditional distributions for all model’s
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parameters are available in closed form, thus allowing for ready posterior simulation through Gibbs sampling. The details
of the Gibbs sampler scheme are provided in the Supplementary Materials.

3.2 Step 2: Numerical integration/modeling the outer probabilities

Our first proposed estimator, henceforth denoted by OVLDPM, is based directly on expression (2) and computes the integral
numerically through the trapezoidal rule, using a grid, say (y0, y1, … , yN), of N equally spaced points that covers the range
of test outcomes in the two populations. Specifically, once Step 1 is completed and posterior realizations of the density
functions in the two populations are available, a posterior realization of the coefficient of overlap can be computed as

OVL(s)DPM = 1 − 1
2∫

+∞

−∞

|||f
(s)
D
(y) − f (s)D (y)||| dy

≈ 1 − 1
2
Δy
2

{
|||f
(s)
D
(y0) − f (s)D (y0)

||| + 2
N−1∑

r=1

|||f
(s)
D
(yr) − f (s)D (yr)

||| +
|||f
(s)
D
(yN) − f (s)D (yN)

|||

}

,

f (s)
D
(y) =

LD∑

l=1
𝜔Dl𝜙

(
y|𝜇(s)

Dl
, (𝜎(s)

Dl
)2
)
, f (s)D (y) =

LD∑

l′=1
𝜔Dl′𝜙

(
y|𝜇(s)Dl′ , (𝜎

(s)
Dl′ )

2
)
,

for s = 1, … , S, where S denotes the number of posterior realizations after burn-in, and Δy = y1 − y0 = y2 − y1 = … =
yN − yN−1 is the length of each subinterval. A point estimate of the overlap coefficient can be obtained by considering the
mean or median of the ensemble

{
OVL(1)DPM, … ,OVL(S)DPM

}
. A 95% credible interval can also be obtained from the 2.5%

and 97.5% percentiles of the same ensemble. We shall finish this part mentioning that a similar estimator was proposed
by Núñez-Antonio et al,11 with the difference being that due to the authors’ focus in circular data, a projected normal
distribution, instead of a normal distribution as here, was used as the kernel of the Dirichlet process mixture model.

Our second proposed estimator requires modeling the following two probabilities: Pr{fD(YD) < fD(YD)} and
Pr{fD(YD) ≥ fD(YD)}. Let us consider the following two random variables

UD = fD(YD) − fD(YD), and UD = fD(YD) − fD(YD),

with cumulative distribution functions given by FUD
and FUD , respectively. The coefficient of overlap in (3) can therefore

be rewritten as

OVL = FUD
(0) + 1 − FUD(0). (8)

For modeling purposes, we assign a DP prior to both FUD
and FUD , that is,

uD1, … ,uDnD
|FUD

iid∼ FUD
, FUD

∼ DP(𝛼UD
,F∗UD

),

uD1, … ,uDnD |FUD

iid∼ FUD , FUD ∼ DP(𝛼UD ,F
∗
UD
).

Due to the conjugacy property of the DP,21(theorem 1) the resulting posterior distributions are again a DP, that is,

FuD
|uD1, … ,uDnD

∼ DP
(
𝛼UD

+ nD,
𝛼UD

𝛼UD
+ nD

F∗UD
+

nD

𝛼UD
+ nD

̂Femp
UD

)
,

̂Femp
UD

(u) = 1
nD

nD∑

i=1
I
(

uDi ≤ u
)
,

with an analogous expression holding for the posterior distribution of FUD . For the sake of computational simplicity, we
consider the limiting case where the precision parameter 𝛼UD

(𝛼UD ) approaches zero and the resulting posterior distribu-
tion therefore simplifies to a DP with precision parameter equal to nD and centering distribution given by ̂Femp

UD
. Note that in

this case we do not even need to specify F∗UD
(F∗UD

). This limiting posterior distribution is also known as the Bayesian boot-
strap,25 whose samples correspond to discrete distributions supported at the observed data points with weights distributed
according to a Dirichlet distribution.23(p. 548)
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Once Step 1 has been completed, we can compute posterior realizations of the variables UD and UD as

u(s)
Di
= f (s)

D
(yDi) − f (s)D (yDi) =

LD∑

l=1
𝜔

(s)
Dl
𝜙

(
yDi|𝜇

(s)
Dl
, (𝜎(s)

Dl
)2
)
−

LD∑

l′=1
𝜔

(s)
Dl′𝜙

(
yDi|𝜇

(s)
Dl′ , (𝜎

(s)
Dl′ )

2
)
, i = 1, … ,nD,

u(s)Dj = f (s)
D
(yDj) − f (s)D (yDj) =

LD∑

l=1
𝜔

(s)
Dl
𝜙

(
yDj|𝜇

(s)
Dl
, (𝜎(s)

Dl
)2
)
−

LD∑

l′=1
𝜔

(s)
Dl′𝜙

(
yDj|𝜇

(s)
Dl′ , (𝜎

(s)
Dl′ )

2
)
, j = 1, … ,nD,

for s = 1, … , S. Using the aforementioned Bayesian bootstrap to compute the cumulative distribution functions involved
in (8), the corresponding realization of the overlap coefficient is given by

OVL(s)DPM-BB = F(s)UD
(0) + 1 − F(s)UD

(0)

=
nD∑

i=1
q(s)

Di
I
{

u(s)
Di
< 0

}
+

nD∑

j=1
q(s)DjI

{
u(s)Dj ≥ 0

}
,

(q(s)
D1
, … , q(s)

DnD
) ∼ Dirichlet(nD; 1, … , 1), (q(s)D1, … , q(s)DnD

) ∼ Dirichlet(nD; 1, … , 1). (9)

Note that if there are ties in the test outcomes within each population, thus implying also ties in the realizations of
UD and/or UD, then in such a case the parameter vector of the Dirichlet distribution should be adjusted accordingly by
adding together the ones for each repeated test outcome. Although we are considering continuous test results, because
measurements are made with finite precision, ties can occur. Finally, as for our first proposed estimator, a point estimate
of the overlap coefficient can be obtained by considering the mean or median of the ensemble of posterior realizations,
with a 95% credible interval obtained from the 2.5% and 97.5% percentiles of the same ensemble.

At last, it is fair to ask why do we use the Bayesian bootstrap to model FUD
and FUD and not a Dirichlet process

mixture with an appropriate kernel. The reason is simply computational. While employing the Bayesian bootstrap is
straightforward from a computational perspective, using a Dirichlet process mixture would be much more intricate as,
for each set {u(s)

Di
}nD

i=1 and {u(s)Dj}
nD
j=1, we would need to generate another S′ realizations from the resulting model parameters

to compute the required distribution functions.

4 COVARIATE-SPECIFIC OVERLAP COEFFICIENT AND PROPOSED
ESTIMATOR

Let XD and XD be covariate vectors and for simplicity we assume that the covariates of interest are the same in both the
diseased and nondiseased populations. The covariate-specific overlap coefficient, for a given covariate value x, is defined
as

OVL(x) = ∫
∞

−∞
min

{
fD(y|XD = x), fD(y|XD = x)

}
dy

= 1 − 1
2∫

∞

−∞
||fD(y|XD = x) − fD(y|XD = x)|| dy,

where fD(⋅|XD = x) denotes the conditional density of YD given XD = x, with fD(⋅|XD = x) being analogously defined. Note
that in this setting, for each possible value x, we might obtain a different OVL and, therefore, also a possible different
accuracy.

We now let {(xDi, yDi)}
nD
i=1 and {(xDj, yDj)}

nD
j=1 be two independent random samples of covariates and test outcomes

from the nondiseased and diseased populations, respectively. Further, for all i = 1, … ,nD and j = 1, … ,nD, let xDi =
(xDi,1, … , xDi,p)

′ and xDj = (xDj,1, … , xDj,p)′ be p-dimensional vectors of covariates. Our proposed estimator for the
covariate-specific overlap coefficient is an adaptation to the conditional case of the OVLDPM estimator. Specifically, we rely
on a single-weights dependent Dirichlet process mixture of normal distributions26 for modeling the conditional densities
in each population. Under this setup we write the nondiseased conditional density as
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fD(yDi|xDi) = ∫ 𝜙(yDi|𝜇(xDi, 𝜷), 𝜎
2)dGD(𝜷, 𝜎

2), GD ∼ DP(𝛼D,G
∗
D
(𝜷, 𝜎2)), (10)

with the conditional density in the diseased population similarly defined. Note that the only difference to the model in
(4) is that now the mean of each component is covariate-specific. Indeed, the model in (4) is a particular case of (10)
by setting 𝜇(xDi, 𝜷) to simply be an intercept. By using again (truncated) Sethuraman’s representation, we have that the
following expression holds for the conditional density of test outcomes in the nondiseased population

fD(yDi|xDi) =
LD∑

l=1
𝜔Dl𝜙(yDi|𝜇D(xDi, 𝜷Dl), 𝜎

2
Dl
), (𝜷Dl, 𝜎

2
Dl
) iid∼ G∗

D
(𝜷, 𝜎2),

where the weights follow the truncated stick-breaking construction described in Section 3.1. It is worth mentioning that
although we are not explicitly modeling the variance of each mixture component as a function of the covariates, the
overall variance of the mixture model still depends on covariates as its expression makes clear

var(yDi|xDi) =
LD∑

l=1
𝜔Dl𝜎

2
Dl
+

LD∑

l=1
𝜔Dl

⎧
⎪
⎨
⎪
⎩

𝜇

2
D
(xDi, 𝜷Dl) −

( LD∑

l=1
𝜔Dl𝜇D(xDi, 𝜷Dl)

)2⎫
⎪
⎬
⎪
⎭

.

Note that by assuming that the weights 𝜔Dl do not vary with the covariates, the model might has limited flexibility in
practice27 and hence a flexible formulation for the mean of each component 𝜇(xDi, 𝜷Dl) is key to a good performance of
the estimator. Following Inácio and Rodríguez-Álvarez,28 we model the mean of each component as an additive sum of
smooth functions, that is,

𝜇D(xDi, 𝜷Dl) = 𝛽Dl0 + fDl1(xDi,1) + · · · + fDlp(xDi,p),

where fDlh(⋅) is an unknown smooth function, for l = 1, … ,LD and h = 1, … , p. Particularly, we approximate each
smooth function fDlh(⋅) by a linear combination of cubic B-splines basis functions defined over a sequence of knots
𝜉Dh0 < 𝜉Dh1 < · · · < 𝜉DhKDh

< 𝜉Dh,KDh+1, where 𝜉Dh0 and 𝜉Dh,KDh+1 are boundary knots, while the remaining ones are interior
knots. We write

fDlh(xDi,h) =
KDh+3∑

k=1
BDhk(xDi,h)𝛽Dlhk = B′

D𝝃Dh
(xDi,h)𝜷Dlh,

where BD𝝃Dh
(xDi,h) = (BDh1(xDi,h), … ,BDhKDh+3(xDi,h))

′ and BDhk(x) denotes the kth cubic B-spline basis function in the
nondiseased population, evaluated at x, and defined by the sequence of knots 𝝃Dh = (𝜉Dh0, … , 𝜉DhkDh+1)

′ and, lastly,
𝜷Dlh = (𝛽Dlh1, … , 𝛽Dlh,KDh+3)′. The mean function of each component is then expressed as

𝜇D(xDi, 𝜷Dl) = 𝛽Dl0 + B′
D𝝃D1

(xDi,1)𝜷Dl1 + · · · + B′
D𝝃Dp

(xDi,p)𝜷Dlp

= z′
Di
𝜷Dl,

with z′
Di
= (1,B′

D𝝃D1
(xDi,1), … ,B′

D𝝃Dp
(xDi,p)) and 𝜷Dl = (𝛽Dl0, 𝜷

′
Dl1
, … , 𝜷′

Dlp
)′. As it is widely acknowledged, the number of

interior knots, and to a less extent, their location along the covariate’s range, may strongly impact the inferences. To
assist the selection of the number of knots, we use two model selection criteria, namely the log pseudo marginal likeli-
hood29 (LPML) and the widely applicable information criterion30 (WAIC). The empirical performance of these two criteria
in selecting an appropriate number of knots in a similar context was investigated by Inácio and Rodríguez-Álvarez.28

Quantile residuals31 and posterior predictive checks32 can also aid to assess the overall fit of the model. Regarding the
location of the KDh, h = 1, … , p, interior knots, and to ensure an approximately equal number of observations at each
interval defined by the knots, we follow Rosenberg33 and 𝜉Dhk is set equal to the k∕(KDh + 1), k = 1, … ,KDh quantile
of xD,h = (xD1,h, … , xDnD,h

)′. In addition, we set the boundary knots 𝜉Dh0 and 𝜉Dh,KDh+1 to the minimum and maximum
of xD,h, respectively. Before proceeding we shall note that although for notational simplicity we have assumed that all p
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covariates are continuous, our model’s formulation can easily include factor variables, interactions between factor vari-
ables, and interactions between a smooth function and a factor variable. The model for the conditional density is thus a
mixture of normal distributions where the components’ mean vary differentially and nonlinearly with the covariates and
this model can also be regarded as a Dirichlet process mixture of additive normal models, that is,

fD(yDi|xDi) =
LD∑

l=1
𝜔Dl𝜙(yDi|z

′
Di
𝜷Dl, 𝜎

2
Dl
), (𝜷Dl, 𝜎

2
Dl
) iid∼ G∗

D
(𝜷, 𝜎2).

Our model is completed with the specification of the centering distribution. As in the no covariate case, we specify a
conditionally conjugate centering distribution, that is,

G∗
D
(𝜷, 𝜎2) ≡ NQD

(𝜷|mD, SD)Γ(𝜎
−2|aD, bD),

with conjugate hyperpriors mD ∼ N(mD0, SD0) and S−1
D
∼ Wishart(𝜈D, (𝜈DΨD)

−1) (a Wishart distribution with degrees of
freedom 𝜈D and expectation Ψ−1

D
) and where QD is the dimension of the vector zDi. Hyperparameters mD0 and ΨD must

be chosen to represent the prior belief about the regression coefficients associated to each mixture component and about
their covariance matrix, respectively, whereas SD0 and 𝜈D are chosen to represent the confidence in the prior belief of mD0
and ΨD, respectively. The full conditional distributions for all model parameters are also available in closed form (details
in the Supplementary Materials), again allowing for ready posterior simulation through Gibbs sampling. Similarly, to the
unconditional case, we have

OVL(s)(x) = 1 − 1
2∫

+∞

−∞

|||f
(s)
D
(y|x) − f (s)D (y|x)||| dy

≈ 1 − 1
2
Δy
2

{
|||f
(s)
D
(y0|x) − f (s)D (y0|x)

||| + 2
N−1∑

r=1

|||f
(s)
D
(yr|x) − f (s)D (yr|x)

||| +
|||f
(s)
D
(yN |x) − f (s)D (yN |x)

|||

}

,

f (s)
D
(y|x) =

LD∑

l=1
𝜔Dl𝜙

(
y|z′𝜷(s)

Dl
, (𝜎(s)

Dl
)2
)
, f (s)D (y|x) =

LD∑

l′=1
𝜔Dl′𝜙

(
y|z′𝜷 (s)Dl′ , (𝜎

(s)
Dl′ )

2
)
, s = 1, … , S.

For a given x, a point estimate can be obtained by considering the mean or median over the ensemble of covariate-specific
overlap coefficients

{
OVL(1)(x), … ,OVL(S)(x)

}
. Similarly, a pointwise credible interval can be obtained from the per-

centiles of the same ensemble.

5 SIMULATION STUDY

5.1 Unconditional case

5.1.1 Simulation scenarios

We considered three scenarios as listed in Table 1. Scenario I corresponds to the case where test outcomes in the two pop-
ulations follow normal distributions. In Scenario II, test outcomes in both groups arise from different and non-normal
distributions, namely a gamma distribution and a skew normal distribution. Lastly, Scenario III considers mixtures of
normal distributions in each of the two populations. For each simulation scenario, three different parameters’ configura-
tions, that lead to small, intermediate, and large overlaps, were used and 100 datasets were generated using sample sizes
of (nD,nD) ∈ {(50, 50), (100, 100), (200, 200), (500, 500), (1000, 1000)}.

5.1.2 Models

For Step 1 of our proposed estimators and to facilitate prior specification, test outcomes were standardized so that the
resulting mean is zero and the variance is one and we transformed back to the original scale when calculating the relevant
quantities. We have considered md0 = 0, Sd0 = 10, ad = 2, and bd = 0.5, where d ∈ {D,D}. Our reasoning behind this
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T A B L E 1 Different distributional assumptions for YD and YD under Scenario I, II, and III

Scenario YD YD OVL

I N(−0.75, 12) N(2.5, 12) 0.104

N(1.1, 12) N(2.5, 12) 0.484

N(2.2, 12) N(2.5, 12) 0.880

II Γ(3, 1) SN(5, 2, 5) 0.172

Γ(3, 1) SN(3, 2, 5) 0.482

Γ(3, 1) SN(1.25, 2, 5) 0.860

III 0.5N(−2.5, 12) + 0.5N(0.5, 12) 0.5N(2.5, 12) + 0.5N(5, 12) 0.159

0.5N(−1.15, 12) + 0.5N(1.5, 12) 0.5N(1.5, 12) + 0.5N(3.5, 12) 0.510

0.5N(0, 12) + 0.5N(3, 12) 0.5N(0.5, 12) + 0.5N(3.25, 12) 0.897

Note: Note that SN(𝜈, 𝜂, 𝜆) denotes a skew normal distribution with location 𝜈, scale 𝜂, and skewness parameter 𝜆.

hyperparameters’ choice is as follows. Because test outcomes are standardized, we expect the means of the mixture’
components to be close to zero and hence md0 = 0. The variance Sd0 then controls where the sampled 𝜇dl may lie and
considering Sd0 = 10 implies that about 95% of the drawn values roughly lie within −6 and 6. We shall also note that
ad = 2 implies a prior for 𝜎2

dl with infinite variance that is centered around a finite mean (bd = 0.5) and therefore favors
variances less than one. If we recall that the standardized test outcomes have unit variance, it makes sense to expect the
within component variance to be smaller than the overall variance. As we mentioned in Section 3, we considered 𝛼d = 1
which favors a small number of occupied mixture components relative to the sample size. Finally, we have considered
Ld = 10, thus capping the maximum number of mixture components at ten. Posterior inference was based on 5000 itera-
tions after a burn-in of 2000 iterations of the Gibbs sampler was discarded. For the OVLDPM estimator a grid of N = 1001
points was considered.

We also compared the performance of our Bayesian nonparametric estimators against that of those obtained by in
(2) and (3) modeling fD and fD using kernel estimation techniques. Specifically, a normal kernel is used, such that the
resulting density function estimate in the nondiseased population can be written as

̂fD(y) =
1

nDhD

nD∑

i=1
𝜙

(y − yDi

hD

)
,

where hD is the bandwidth/smoothing parameter and following Schmid and Schmidt18 we selected it using Silverman’s
rule of thumb.34(ch.3) Trivially, a similar expression holds for the estimate of the density function of test outcomes in the
diseased population. The corresponding kernel counterpart of our OVLDPM estimator takes the form

̂OVL ≈ 1 − 1
2
Δy
2

{
|||
̂fD(y0) −̂fD(y0)

||| + 2
N−1∑

r=1

|||
̂fD(yr) −̂fD(yr)

||| +
|||
̂fD(yN) −̂fD(yN)

|||

}

, (11)

where as before N = 1001 was considered. The estimator that arises from (3), and which can be regarded as the frequentist
counterpart of our OVLDPM-BB estimator,18 is given by

̂OVL = 1
nD

nD∑

i=1
I
{
̂fD(yDi) < ̂fD(yDi)

}
+ 1

nD

nD∑

j=1
I
{
̂fD(yDj) ≥ ̂fD(yDj)

}
. (12)

5.1.3 Results

The boxplot of the estimated overlap coefficients, across the 100 datasets, for all scenarios, distribution parameters’ con-
figurations, and sample sizes considered are presented in Figures 1–3. We can observe that our OVLDPM estimator is able
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F I G U R E 1 Scenario I. Boxplot of the estimates of the coefficient of overlap across the 100 simulated datasets and for the different
parameter’s configurations and sample sizes considered. The solid red line represents the true OVL. For the Bayesian estimators, what is
reported, for each dataset, is the posterior median. Kernel: kernel estimator based on expression (11); Kernel-emp: kernel estimator based on
expression (12)
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F I G U R E 2 Scenario II. Boxplot of the estimates of the coefficient of overlap across the 100 simulated datasets and for the different
parameter’s configurations and sample sizes considered. The solid red line represents the true OVL. For the Bayesian estimators, what is
reported, for each dataset, is the posterior median. Kernel: kernel estimator based on expression (11); Kernel-emp: kernel estimator based on
expression (12)
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F I G U R E 3 Scenario III. Boxplot of the estimates of the coefficient of overlap across the 100 simulated datasets and for the different
parameter’s configurations and sample sizes considered. The solid red line represents the true OVL. For the Bayesian estimators, what is
reported, for each dataset, is the posterior median. Kernel: kernel estimator based on expression (11); Kernel-emp: kernel estimator based on
expression (12)
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to provide unbiased estimates except when the true value of the overlap coefficient is very high (about 0.8 or above).
Such a bias decreases, however, when sample size increases. To investigate whether this bias could be due to the prior
information used, we have conducted a sensitivity analysis with a data-driven prior35(p. 532) and the results, not shown,
were unchanged. In turn, the OVLDPM-BB estimator provides unbiased estimates in almost all cases considered; the only
exception is in Scenario III when the underlying true value of the overlap coefficient is very high and the sample size is
small (eg, (nD,nD) = (50, 50)). In addition, the performance of our OVLDPM estimator is only inferior to the correspond-
ing kernel counterpart (see Equation 11) when the overlap between the densities in the two groups is very high, with this
being especially true for the smaller sample sizes (eg, a sample size below 200 in each population). On the other hand,
the OVLDPM-BB estimator has a better performance than the corresponding kernel counterpart (expression 12) regardless
of the amount of overlap between the distributions of test outcomes. It can also be noticed that the range of the estimates,
across the 100 datasets, is wider for the estimators arising from the representation in (3), Bayesian or frequentist, than
those arising from the representation in (2). As expected, for all methods, estimates get more concentrated around the
true value of the overlap coefficient as the sample size increases.

We have further investigated the empirical coverage probability of the 95% credible/confidence intervals and the cor-
responding width of the intervals. For the kernel methods, the intervals were obtained using 500 bootstrap resamples
from each simulated dataset of test outcomes. Results are presented in Figures 1-3 and Tables 1-3 of the Supplementary
Materials. As can be observed from such figures, for all sample sizes and scenarios, the width of the 95% credible inter-
vals associated to the OVLDPM-BB estimator is larger than that of the interval associated with the OVLDPM estimator, with
this being more marked for the smaller sample sizes and for the case of a high overlap between the two distributions.
The same is true for the corresponding kernel counterparts. Further, the width of the 95% credible intervals associated
with the OVLDPM estimator is of the same magnitude as that of the 95% bootstrap confidence intervals associated to (11).
However, the width of the 95% credible intervals associated with the OVLDPM-BB estimator tend to be larger than those
of the 95% bootstrap confidence intervals corresponding to (12), with this being markedly the case when the sample size
in the two groups is small. We found the empirical coverage probabilities of the 95% credible intervals associated to the
OVLDPM-BB estimator to be close to the nominal value for all scenarios and sample sizes under consideration. In turn, for
the OVLDPM estimator, the empirical coverage probabilities of the 95% credible intervals were also close to the nominal
value, with the exception of the case where the true value of the coefficient of overlap is very high, with this being even
more marked for smaller sample sizes. For instance, in Scenario III, in the case where the true value of the overlap coeffi-
cient is 0.896, even for the sample size of (nD,nD) = (1000, 1000), the coverage probability is only 87%. This should come
at no surprise, as it can be observed from Figure 3, there is still some bias in the estimates and the width of the intervals
tend to be smaller for such a large sample size. Also, the coverage of the intervals associated to the Bayesian approaches,
in almost all cases considered, tend to be closer to the nominal value than the corresponding kernel counterparts.

Before ending this part, it is worth mentioning that for the kernel estimators, Silverman’s rule of thumb is expected to
provide a reasonable bandwidth’s value when test outcomes are close to be normally distributed.36(p. 61) We have also con-
sidered a bandwidth selected by unbiased least-squares cross-validation,36(ch.3) as implemented in theR functionbw.ucv,
and for the scenarios listed here, the results (not shown), in terms point estimates of the overlap coefficient, are basi-
cally indistinguishable from those obtained using Silverman’s rule of thumb. Of course, depending on the test outcomes
distributions, this may not always be the case and our code also has this bandwidth selector option available.

5.2 Covariate-specific case

5.2.1 Simulation scenarios and implementation details

We consider three simulation scenarios and for each of them we simulate 100 datasets considering the following sample
sizes: (nD,nD) ∈ {(100, 100), (200, 200), (500, 500), (1000, 1000)}. In Scenario I, we consider a homoscedastic regression
model with a linear covariate effect in the diseased and nondiseased populations

yDi|xDi
ind∼ N(0.5 + xDi, 1.5

2), yDj|xDj
ind∼ N(2 + 4xDj, 22).

It is interesting to note that although the effect of the covariate in the underlying regression models is linear, the resulting
functional form of the covariate-specific coefficient of overlap is nonlinear. In Scenario II, the effect of the covariate on
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the mean of each regression model is nonlinear in the two groups

yDi|xDi
ind∼ N(sin(𝜋(xDi + 1)), 0.52), yDj|xDj

ind∼ N(x2
Dj, 1

2).

Finally, Scenario III is the most challenging scenario, involving a heteroscedastic regression model with a nonlinear
covariate effect in the nondiseased population and in the diseased population it involves a two-component mixture of nor-
mal distributions whose weights depend on the covariate and whose covariate effect on the mean of one of the components
is nonlinear

yDi|xDi
ind∼ N

(
sin(𝜋xDi),

√
exp(xDi)

2)
, yDj|xDj

ind∼
exp(xDj)

1 + exp(xDj)
N(xDj, 0.52) + 1

1 + exp(xDj)
N(x2

Dj, 0.752).

In all three scenarios, xDi, xDj
iid∼ U(−1, 1), for i = 1, … ,nD and j = 1, … ,nD.

For each simulated dataset, we fit our Bayesian nonparametric estimator introduced in Section 4 and posterior infer-
ences are based on 8000 iterations after a burn-in period of 2000 iterations. As in the unconditional case, a grid of N = 1001
points was considered when applying the trapezoidal rule. Again, to facilitate prior specification, both test results and
covariates were standardized, and we used md0 = 0Qd , Sd0 = 10IQd , 𝜈d = Qd + 2,Ψd = IQd , 𝛼d = 1, and Ld = 10 , d ∈ {D,D}.
Further, we have considered a cubic B-splines formulation with no interior knots, that is, KD = KD = 0 (and therefore
QD = QD = 4), for the mean of each normal mixture component.

5.2.2 Results

In Figure 4, for each scenario and sample size considered, we depict the mean of the posterior medians across the 100 sim-
ulated datasets, along with the 2.5% and 97.5% simulation quantiles of these 100 posterior medians. As it can be observed,
our Bayesian nonparametric estimator is able to recover the true functional form of the covariate-specific overlap coeffi-
cient in all three scenarios. It should be noted, nonetheless, that in Scenario III there is some bias, more notorious closer
to the boundaries of the covariate support. To evaluate whether the internal number of knots would have an impact in
such a bias in this scenario, we have also considered a model where three interior knots were used to model the mean
of each of the ten components and following the rule discussed in Section 4, these were located at the 0.25, 0.5, and 0.75
quantiles of the covariate. Results are shown in Figure 5 (top row) of the Supplementary Materials and as it can be noticed,
the bias still persists. We have also investigated the frequentist coverage probability of the 95% credible intervals associ-
ated to our approach and the results are presented in Figure 4 of the Supplementary Materials. From this figure we can
see that in Scenarios I and II, for most sample sizes and covariate levels considered, the empirical coverage probabilities
are close to the nominal value of 0.95. On the other hand, in Scenario III, for the sample sizes of 500 and 1000 in each
of the populations and for a few covariate levels, the empirical coverage probability is substantial below 0.95. This is no
surprise, as the covariate levels associated with such a low coverage probability are the same where bias in the estimation
occurs (and due to the large sample sizes, the pointwise 95% credible intervals are narrower and therefore do not include
the true conditional overlap coefficient, by opposition to what occurs at smaller sample sizes where the credible intervals
are wider).

6 ILLUSTRATIVE APPLICATIONS

6.1 Search for biomarkers of ovarian cancer

We analyze the microarray dataset from Pepe et al,37 which is concerned with the search for biomarkers of ovarian cancer
that could be used in population screening. The dataset contains mRNA expression of 1536 clones of genes and com-
prises ovarian tissue from 30 subjects with ovarian cancer and 23 control subjects. The goal is to identify genes that are
differentially expressed in ovarian cancer tissue compared with normal ovarian tissue. A gene would be an ideal can-
didate for being a marker if its values in the cancer tissue are completely different than those in the normal tissue. As
mentioned in Pepe et al,37(pp. 134-135) in case there is some overlap between the two distributions gene expression (cancer
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F I G U R E 4 True conditional overlap (solid black line) and average value across the 100 simulated datasets (dashed line) of the
posterior median of the covariate-specific overlap coefficient. The shaded area are bands constructed using the 2.5% and 97.5% quantiles
across of such 100 posterior medians

vs non-cancer), if the gene is able to distinguish a subset of cancers from non-cancers, then such a gene should be of more
practical interest than a gene whose expression levels in cancer tissues are entirely within the range of those for non-
cancer tissues. As also referred in Pepe et al,37(p. 134) ovarian tissue cannot, obviously, be directly used as a screening test.
However, if a gene turns out to be differentially expressed in cancer tissue, then the corresponding protein product may
be detectable in blood or urine and therefore it could constitute the basis for a screening test. In the analysis that follows,
we have removed 12 genes that had a missing value each, leaving us with 1524 genes. Further, because for some genes the
(relative) expression intensities were very close to zero, we applied the log transformation, so that our Dirichlet process
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mixture of normal distributions in Step 1 (or the frequentist methods with a normal kernel), can be applied appropri-
ately, that is, without placing (too much) mass in the negative values. This is equivalent to a Dirichlet process mixture of
lognormal distributions on the original data scale.26(p. 765)

For the sake of illustration, we selected genes 9, 93, and 1033 in the dataset. The reasons behind our choice of genes
are as follows. Gene 9 is an example where the relative gene expression intensities tend to be lower in the ovarian cancer
group than in the noncancer group. In turn, for gene 93, the relative gene expression intensities tend to be lower for
those in the noncancer group. Finally, for gene 1033, the distribution of the relative gene expression intensities shows
a bimodality in each of the groups, thus rendering the use of the popular model that assumes a normal distribution,
possibly after transformation of the scales, in each population, inadequate. Further, while for genes 9 and 93 there is little
overlap between the two distributions of the relative gene expression intensities, for gene 1033 there is a considerable
overlap (see Figure 5). Posterior inference was obtained using 10 000 iterates after 2000 iterations were discarded as
burn-in period. The same prior information used in the simulation study was applied here. The point estimates (posterior
median) of the coefficients of overlap and corresponding 95% credible intervals using our proposed estimators are shown
in Table 2. Combining all this information, and as already expected from Figure 5, we can conclude that while genes
9 and 93 are good candidates to form the basis of a screening test, gene 1033 possibly presents too much of an overlap
between the two distributions of relative expression intensities to be considered as a candidate. In Figures 6, 9, and 12
of the Supplementary Materials we present, for each of the three genes considered, the corresponding QQ-plots of the
quantile residuals resulting from fitting the Dirichlet process mixture of normal distributions model in each of the two
groups and, as already evidenced by the estimated densities in Figure 5 which follow quite nicely the histograms of the
data, the fit is quite good. In the first step of our estimator, to monitor convergence of the MCMC chains, traceplots
and the Geweke statistic were used. Note that the well-known label switching problem often leads to poor mixing of the
chains of the component-specific parameters and therefore we have monitored the corresponding MCMC chain of the
induced density in each group.23(p. 553) The traceplots, shown in Figures 7, 10, and 13, of the Supplementary Materials,
for three randomly selected relative gene expression intensities, and the Geweke statistics, shown in Figures 8, 11, and
14 of the Supplementary Materials, do not suggest any lack of convergence of the (density) chains. The effective sample
sizes are also reasonably high enough (Figures 8, 11, and 14 in the Supplementary Materials). For comparison purposes,
we also include the results from the kernel approaches introduced in the simulation study in Section 5, with the 95%
bootstrap confidence intervals were obtained using 1000 resamples of the relative expression intensities in the ovarian
and non-ovarian cancer groups. There are no substantial differences between the results obtained under the different
methods and the overall message is the same under the four approaches.

Finally, and only for illustrative purposes, the 1524 genes were ranked according the overlap coefficient. The top ten
ranked genes selected by the different methods are presented in Table 4 of the Supplementary Materials and, as it can be
concluded, the four approaches largely agree with respect to their ranking of the top ten genes.

6.2 Age-specific accuracy of glucose as a biomarker of diabetes

We applied our covariate-specific Bayesian nonparametric approach to data obtained from a population based survey
of diabetes in Cairo, Egypt.38 Postprandial blood glucose levels were obtained on 286 individuals and according to the
World Health Organization criteria at the time for diagnosing diabetes, 88 individuals were classified as diabetic and 198
as nondiabetic. The age of the subjects was included as a covariate as according to Smith and Thompson,38 the ageing
process may be associated with relative insulin resistance or deficiency among nondiabetic individuals and therefore
postprandial glucose levels are expected to be higher for older subjects who do not suffer from diabetes. The goal of the
analysis is to evaluate how the discriminatory ability of the glucose levels as a marker of diabetes may change with age.
In Figure 6 (left and middle panels) we show the scatter plots for the nondiabetic and diabetic populations along with the
marginal histograms for the glucose levels and the age and we can observe that in the former group the glucose levels get
indeed slightly elevated as age increases, although we have far less older individuals than younger ones.

The age effect was modeled through the mean of each mixture component using a B-splines formulation with no
interior knots and this choice was informed by both the LPML and WAIC criteria, with the two favoring the simplest
model (when compared to a model with one, two, and three interior knots). Posterior inference was based on 20000
Gibbs sampler iterates after a burn-in of the first 5000 realizations was discarded and the same prior information used in
Section 5.2 of the simulation study was applied (on the standardized data). Inspection of traceplots and Geweke criterion
do not suggest any lack of convergence of the (density) chains (Figures 15 and 16 of the Supplementary Materials). The
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F I G U R E 5 Histograms and density estimates (posterior medians and 95% pointwise credible bands) of the (log) relative gene
expression intensities in both groups (with and without ovarian cancer) for gene 9 (top row), gene 93 (middle row), and gene 1033 (bottom
row). Density estimates were obtained using a Dirichlet process mixture of normal distributions

T A B L E 2 Ovarian cancer application

DPM DPM-BB Kernel Kernel-emp

Gene 9 0.181 (0.082, 0.327) 0.152 (0.046, 0.363) 0.193 (0.063, 0.323) 0.133 (0.033, 0.277)

Gene 93 0.159 (0.070, 0.305) 0.108 (0.026, 0.302) 0.169 (0.047, 0.271) 0.100 (0.000, 0.233)

Gene 1033 0.471 (0.311, 0.653) 0.479 (0.276, 0.753) 0.527 (0.322, 0.690) 0.487 (0.277, 0.674)

Note: Estimates of the coefficient of overlap for gene 9, 93, and 1033. For the Bayesian estimates what is reported is the posterior median and the 95% credible
interval (in parentheses). For the kernel estimates, 95% bootstrap confidence intervals are reported. Kernel: kernel estimator based on expression (11);
Kernel-emp: kernel estimator based on expression (12).
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F I G U R E 6 Diabetes application. Left and middle panels: scatter plots of the data along with marginal histograms. Right panel:
age-specific coefficient of overlap. The solid line is the posterior median and the shaded area represent the 95% pointwise credible band

effective sample sizes, shown in Figure 17 of the Supplementary Materials, are also reasonably high enough. The density
estimates (posterior median) in each population, for six different ages, along with their overlap are shown in Figure 18
of the Supplementary Materials and we can observe that the overlap is higher for the older ages. To inspect the age effect
further, Figure 6 (right panel) shows a plot of the age-specific overlap coefficient for ages between 35 and 75 years old and
we can observe that, in fact, the capacity of the glucose levels to distinguish between diabetic and nondiabetic individuals
decreases with age. Inferences are less precise for older ages. Similar conclusions using different diagnostic measures
were found by Faraggi,39 González-Manteiga et al,40 and Inácio et al.41,42 The posterior median (95% credible interval)
of the coefficient of overlap when ignoring the age effect, obtained for a fair comparison using the OVLDPM estimator,
was 0.308 (0.229, 0.402) and so by pooling the glucose levels irrespectively of the age of the individuals, for those younger
than 60 years old, one would be underestimating the discriminatory ability of the glucose levels. It is worth mentioning
that the 95% credible interval of the unconditional overlap coefficient, for ages younger than 55 years old, is not even
entirely contained within the pointwise 95% credible band of the age-specific overlap coefficient. We remark that for the
numerical integration step, both for the unconditional and conditional overlap coefficient estimators, N = 3501 was used.

To check the fit of the underlying Dirichlet process mixture of additive normal models in each population, Figure
19 (top row) in the Supplementary Materials show the QQ-plots of the quantile residuals and as can be observed, the
resulting fit is very good. We have also generated 20 000 replicate datasets from the posterior predictive distribution in
each group and the kernel density estimates of 500 of these replicate datasets (randomly selected from the 20 000 available)
are compared to the kernel density estimate of the glucose levels. These posterior predictive checks are shown in Figure
19 (bottom row) of the Supplementary Materials and it is evident that our model for each group is able to simulate data
that is very much similar to the observed glucose levels.

7 CONCLUDING REMARKS

We have developed Bayesian nonparametric approaches for conducting inference about the coefficient of overlap and
about its covariate-specific counterpart. In addition to providing point and interval estimates in a single and integrated
framework, free of restrictive parametric assumptions, our methods are computationally easy to implement and rea-
sonably fast for the sample sizes commonly encountered in diagnostic studies. For the unconditional estimators we
have proposed, the results from the simulation study demonstrated that they are a viable alternative to the current non-
parametric, kernel-based, estimators of the coefficient of overlap. To the best of our knowledge, we have proposed the
first estimator of the covariate-specific overlap coefficient and the simulation study also shown that our proposed esti-
mator has the ability to recover the true functional form of the overlap coefficient even in complex data distribution
scenarios.

Although there are settings where one may only be interested in ranking different diagnostic tests (as, for instance, in
our data application concerned with the search of potential biomarkers for ovarian cancer) usually, once a diagnostic test
proves to be accurate enough to be used in practice, a cutoff value(s) to screen subjects in practice must be determined
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according to some criterion. Measures based on the receiver operating characteristic curve, or its generalization, are pos-
sibly better suited for this task and therefore we regard both measures important in practice and, as we already stated in
the Introduction, they should be regarded as complementary rather than competitors.

Lastly, although in this article our focus was on evaluating a test’s accuracy when disease status is binary, in clinical
practice, physicians often face situations that require discriminating between three or more disease stages. Usually, an
intermediate transitional stage exists prior to full disease onset, with this being especially true for neurological disorders
where, for instance, three common disease categories are normal cognition, mild impairment, and severe impairment
or dementia. Depending on the clinical context, if pairwise analyses are of interest, then our methods can be directly
applied. Such pairwise analyses would enable understanding the accuracy of a test to discriminate between each pair of
disease categories. However, if interest lies in ascertaining about the discriminatory ability of a test for the three categories
simultaneously, then the definition of the coefficient of overlap needs to be adapted/extended to this case. This constitutes
an interesting avenue for future research.
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