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The use of conformity indices to optimize Gamma Knife planning is common, but does not 
address important tradeoffs between dose to tumor and normal tissue. Pareto analysis has 
been used for this purpose in other applications, but not for Gamma Knife (GK) planning. The 
goal of this work is to use computer models to show that Pareto analysis may be feasible for 
GK planning to identify dosimetric tradeoffs. We define a GK plan A to be Pareto dominant 
to B if the prescription isodose volume of A covers more tumor but not more normal tissue 
than B, or if A covers less normal tissue but not less tumor than B. A plan is Pareto optimal 
if it is not dominated by any other plan. Two different Pareto optimal plans represent differ-
ent tradeoffs between dose to tumor and normal tissue, because neither plan dominates the 
other. ‘GK simulator’ software calculated dose distributions for GK plans, and was called 
repetitively by a genetic algorithm to calculate Pareto dominant plans. Three irregular tumor 
shapes were tested in 17 trials using various combinations of shots. The mean number of 
Pareto dominant plans/trial was 59 6 17 (sd). Different planning strategies were identified by 
large differences in shot positions, and 70 of the 153 coordinate plots (46%) showed differ-
ences of 5mm or more. The Pareto dominant plans dominated other nearby plans. Pareto 
dominant plans represent different dosimetric tradeoffs and can be systematically calculated 
using genetic algorithms. Automatic identification of non-intuitive planning strategies may be 
feasible with these methods. 
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Introduction

Recent advances in Gamma Knife software offer an abundance of intriguing 
options to construct conformal treatment plans (1, 2). Although these options are 
used to search for the best possible plan, such searches can be overwhelming due 
to the sheer number of choices. Compounding the problem is the absence of defin-
itive methods to assess whether a particular plan is optimal, despite the need for 
such methods to guide treatment planning. Without a way to navigate the myriad 
choices of planning parameters and to assess individual plans, it is not likely that 
the impressive capabilities of the Gamma Knife software can be fully realized.

One approach to these problems is to guide the planning process with a cost func-
tion, in which a single number (the cost) is calculated to assess the value of a 
given plan. An example is the Paddick Index (PI), defined as the percentage of 
tumor within the treatment isodose volume multiplied by the percentage of treat-
ment isodose volume within the tumor (3). These percentages are 100% for a 
perfect plan, so that the worth of a plan is measured by how close its PI is to 1. 
Another example is the cost function used by the new Gamma Knife software in 
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which a single weighted sum of tumor coverage, plan selec-
tivity, gradient index and beam-on time is used to guide an 
inverse planning algorithm.

Any planning process is driven by at least two goals: to 
maximize the volume of tumor and minimize the volume 
of normal tissue within the treatment isodose volume. That 
these goals are conflicting is reflected by the common experi-
ence of reaching an impasse in planning in which covering  
more of the tumor cannot be achieved without also covering 
more normal tissue.

Unfortunately, using a cost function creates difficulties 
because the state of two different, conflicting planning goals 
cannot be fully measured by a single cost value. For example, 
the two schematic plans shown in Figure 1 emphasize these 
goals very differently, yet have the same PI. Such difficul-
ties may have prompted a recent review to conclude that 
‘attempts to reduce conformation to a single index could lead 
to omission of essential information’ (4). 

Engineers also encounter settings in which conflicting goals 
must be optimized. For example, the design of bridges often 
requires compromises between expense and strength (5). The 
sophisticated methods developed for these problems include 
Pareto analysis (5, 6), in which a sequence of ‘Pareto optimal’ 
solutions are produced with the property that no such solution 
can be made to better satisfy one goal without degrading the 
performance of another. None of these solutions is an ‘absolute 
best’, and the final choice must be made using criteria other 
than the chosen goals. These solutions are analogous to the 
Gamma Knife plans mentioned earlier than cannot be made to 
cover more tumor without including more normal tissue. 

Discovery of Pareto optimal solutions cannot be achieved by 
sheer calculation because the number of possible solutions is 
usually too large to test each solution individually. Efficient 
search algorithms have therefore been developed, including 
genetic algorithms in which the solutions are coded as if they 
were chromosomes and allowed to replicate, so that a selec-
tion process produces the ‘fittest’ (i.e., most optimal) solu-
tions (5, 7).

The goals of this manuscript can now be stated. The first goal 
is to apply Pareto analysis to the problem of finding optimal 
Gamma Knife plans, knowing that such plans must optimize 
two conflicting goals: covering more tumor and covering less 
normal tissue. The second goal is to demonstrate the feasi-
bility of using genetic algorithms to produce a list of Pareto 
optimal Gamma Knife plans. The third goal is to suggest that 
each Pareto optimal plan can be viewed as a potentially non-
obvious treatment strategy that can be easily completed to a 
final plan by the human radiosurgeon.

The scope of this work is limited to providing computer 
simulations suggesting that Pareto analysis may be a useful 
approach to Gamma Knife planning. The goal of providing 
a complete algorithmic package suitable for clinical use is 
laudable but too ambitious for this early treatment of these 
complex methods, and must be reserved for a future effort.

Material and Methods

Pareto Analysis

We now present the definitions of Pareto analysis (5) for 
Gamma Knife planning. In this discussion, a Gamma Knife 
plan will be said to cover a portion of tumor (respectively, 
cover a portion of normal tissue) when the treatment isodose 

volume of that plan covers that portion of tumor 
(respectively, that portion of normal tissue). 

In general, Pareto analysis considers an optimiza-
tion problem with two competing goals G1 and G2. 
A solution to the problem P1 is said to be Pareto 
dominant to a solution P2 if P1 satisfies both goals 
at least as well as P2 and satisfies at least one of the 
goals better than P2. In our case, a Gamma Knife 
plan P1 Pareto dominates a plan P2 if (1) P1 cov-
ers more tumor but not more normal tissue than 
P2 or, (2) P1 covers less normal tissue but not less 
tumor than P2. 

A Gamma Knife plan P is Pareto optimal if no 
plan dominates P. In other words, there is no other 
plan that covers more tumor than P without cover-
ing more normal tissue, and there is no other plan 
that covers less normal tissue than P without also 

Figure 1: Schematic illustrating that strikingly different plans can have the same PI.  
(A) Schematic of tumor (shown in gray) containing treatment isodose volume (white circle). 
The percentage of tumor contained in the isodose volume is approximately 40%, and the 
percentage of the isodose volume contained in the tumor is 100%. The PI is therefore (0.4) 
(1.0) 5 0.4. (B) The percentage of tumor contained in the isodose volume is approximately 
80%, and the percentage of the isodose volume contained in the tumor is approximately 50%. 
The PI is therefore (.80) (.50) 5 0.4.
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covering less tumor. P is the type of plan mentioned earlier 
that cannot be improved upon in practice. 

It is perhaps surprising that there are many Pareto optimal 
plans for each given tumor. However, it is common expe-
rience that each choice of planning parameters (number of 
shots, weights, collimator sizes, etc.) leads to a plan that 
cannot be further optimized, i.e., to a Pareto optimal plan. 
Because there are a large number of such planning choices, 
there are an equally large number of different Pareto optimal 
plans. Note that because each such plan arises from different 
planning parameters, each Pareto optimal plan can be viewed 
as representing a different planning strategy.

If a treatment plan is allowed to have a very large number of 
shots, then it is usually possible to construct a virtually perfect 
plan that includes all of the tumor and only the tumor within 
its treatment isodose volume. Such a plan will be Pareto opti-
mal, but may not be unique because different configurations 
of large numbers of shots might also produce perfect plans. 
In practice, however, plans are limited to a small number 
of shots, a perfect plan may not exist, and the set of Pareto 
optimal plans represents a meaningful collection of planning 
strategies. For this reason, the arguments in this manuscript 
will assume that the number of shots is fixed at a feasible size 
for routine practice.

We will measure the coverage of the tumor by the percent-
age of tumor contained within the treatment isodose volume, 
and will consider the maximization of that measurement as 
the first of our conflicting goals. We will measure the cover-
age of the normal tissue, however, by the actual volume of 
normal tissue contained within the treatment isodose volume 
(in mm3) to reflect clinical needs. The minimization of this 
measurement will be the second of our conflicting goals. We 
will write Tumor(P) for the percentage of tumor covered by 
P, and we will write Normal(P) for the volume of normal 
tissue covered by P. In Pareto analysis, these are called the 
multiobjective functions.

If each plan P is graphed according to its multiobjective func-
tions, with Tumor(P) vs. Normal(P), the Pareto optimal plans 
often form a convex curve (Figure 2). No plan can exist to 
the left of the curve, because such a plan would cover more 
tumor and less volume than some plan P on the curve, and 
so would dominate a non-dominatable P. In addition, all of 
the non-Pareto optimal plans would fall to the right of the 
curve. For these reasons, the described curve is often called 
the Pareto front.

It is instructive to consider plan A and plan B in Figure 2. 
Because of their positions on the graph, B covers more tumor 
and more normal tissue than. Thus B is ‘better’ than A because 
B covers more tumor, but A is ‘better’ than B because A covers  

less normal tissue. Neither of these Pareto optimal plans can 
therefore said to be ‘better’ than the other, nor is there a plan 
that is ‘better’ than all others.

Calculation of Pareto Optimal Plans with Genetic 
Algorithms

In theory, Pareto optimal plans could be identified by testing 
each possible plan for Pareto dominance over all other plans, 
i.e., by calculation of Tumor(P) and Normal(P) for each pos-
sible collection of Gamma Knife parameters and picking the 
Pareto dominant plans by comparing the various values. This 
approach is not possible, however, because of the number of 
possible plans. For example, even if the x, y and z coordinates 
are constrained to take only the 9 values between 22 cm and 
2 cm in 5 mm increments, the number of possible plans using 
3 shots is more than 380 million. 

Pareto optimal plans must therefore be identified by effi-
cient search algorithms. One such method is that of genetic  
algorithms, in which the plans are coded as if they were chro-
mosomes (5, 7). For example, a plan using a shot with coordi-
nates (x1, y1, z1) and weight w1 would be considered to have a 
‘gene’ composed of the sequence x1 y1 z1 w1 along a ‘chromo-
some’ (Figure 3). The various chromosomes are then allowed 
to replicate with crossovers and mutations. A new collection of 
‘fittest’ chromosomes is then formed by selecting the chromo-
somes from the resulting population which best optimize the 
multiobjective functions (i.e., by selecting the plans that cover 
more tumor and less normal tissue). This process is repeated 

Figure 2: Schematic graph of Pareto optimal plans. Each dot represents a 
plan. For each plan P, the x-coordinate of the dot corresponding to P is the 
volume of normal tissue covered by P (i.e., Normal(P)), and the y-coordinate 
of the dot is the percentage of tumor covered by P (i.e., Tumor(P)). Because 
plan B lies above and to the right of plan A, B covers more tumor and more 
normal tissue than A. A is thus ‘better’ for normal tissue while B is ‘better’ 
for tumor. The curve produced by the Pareto optimal plans is often convex, 
as shown here, and is called the Pareto front. No plan can lie to the left of the 
curve (see text). 
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until the multiobjective functions cannot be optimized further. 
Genetic algorithms have been constructed to specifically find 
Pareto optimal solutions, and have been shown to rapidly con-
verge under a variety of conditions (5). 

The genetic algorithm chosen for this work is that used by 
the Multiobjective Genetic Algorithm Solver component of  
Matlab (Matlab, The MathWorks, Natick, Massachusetts). 
This algorithm identifies plans on the Pareto front by cal-
culating the non-dominated plans of each generation using 
a highly optimized routine corresponding to the NSGA-II 
algorithm in the monograph by Deb (5). To find the Pareto 
optimal plans using n shots, the number of variables was set 
at 3n if the shot weights were held constant at 1, and set at 
4n otherwise. The spatial variables were allowed to range 
between 215 and 15 mm, whereas the variables for weight 
were allowed to range between 0 and 1 (in most cases weights 
were not held constant). The output of the algorithm was a 
list of Pareto optimal plans, each consisting of the specific 4n 
coordinates and accompanied by their corresponding multi-
objective functions Tumor(P) and Normal(P). 

The Matlab genetic algorithm allows the choice of various 
parameters. An example is the number of chromosomes com-
prising each test population (the ‘population size’), and it is 
generally accepted that an optimal population size should be 
high enough to cover the Pareto front and yet low enough to 
be computationally tractable. A review by Haupt et al. (7) 
showed that the optimal size determined by several studies 
using a variety of objective functions range between 20 and 
100. Accordingly, we chose a population size of 60, the mid-
point of this range.

Other parameters determine the methods of creating muta-
tions, crossover strategies, and of choosing the initial distri-
bution of chromosomes. The choices made here were those 
used most in common practice (5, 7): mutations were created 
by an ‘adaptive feasible’ algorithm that randomly generated 
mutations; a crossover strategy in which crossover sites were 

determined by the choice of a random binary vector; and the 
initial distribution of chromosomes was random, subject to 
the constraint that the shots were contained in the defined 
stereotactic space. 

Prior to the 17 runs reported here, pilot data consisting of 
several runs using two to four shots were obtained for each 
of the tumor configurations. Because the Pareto fronts were 
similar in each case, each of the 17 reported scenarios were 
represented by a single run.

In general, a multiobjective genetic algorithm is adjusted to 
stop when the change in the objective functions between suc-
cessive generations is small, because further calculation will 
not produce appreciably better solutions. The Matlab algo-
rithm bases the calculation of this change on the ‘crowding 
distance’, defined as half of the perimeter of a rectangle cen-
tered at the given solutions with the two nearest neighbor-
ing solutions as vertices (5). The change is then calculated 
as a weighted average of these distances between successive 
generations, using both objective functions. For the data pre-
sented here, the algorithm halted when this change was less 
than 0.1 (the ‘tolerance level’). This value was chosen both 
because it is small compared to the values taken by one of 
the objective functions (Normal(P)), and because pilot data 
based on sample runs showed that the Pareto fronts produced 
using a tolerance of 0.1 did not differ from those produced 
using smaller tolerances. 

Gamma Knife Simulator

The genetic algorithm reduced the number of plans to be 
tested from many millions to thousands, but there were still 
too many plans to be entered by hand into the Gamma Knife 
software. An automatic calculation of Gamma Knife plans 
was therefore required, but because access to the Leksell 
Gamma Knife system was not available, a Gamma Knife 
‘simulator’ was written using the Matlab software that could 
automatically be called from the Matlab software.

Figure 3: Diagram showing how Gamma Knife shot parameters can be coded as chromosomes by genetic optimization algorithms. On the left side of the 
Figure, each of two shots are considered to be portions of a chromosome with the spatial coordinates x, y, and z and the weight w serving as ‘genes’. To gener-
ate the next plan to evaluate, the chromosome is allowed to ‘replicate’ with crossover and mutation. In this diagram, the y and z coordinates have been inter-
changed as part of the replication process to generate new shots. Other changes in the individual genes are programmed to occur at a chosen random ‘mutation’ 
rate, as indicated here schematically. A collection of new plans are produced by using the new shots generated when pairs of ‘chromosomes’ are allowed to 
replicated. Only the new plans that best optimize the multiobjective functions Tumor and Normal are chosen to replicate again, and the process repeats until 
optimization is achieved.
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The input to the Gamma Knife simulator is a series of shots 
representing a plan P, each shot consisting of a vector (x, 
y, z, w, c) where x, y and z are spatial coordinates, w is the 
shot weight, and c denotes the collimator size (4, 8, 14 or 
18 mm). The simulator then calculates the dose matrix within 
a 4 3 4 3 4 cm3 cube, and displays the desired isodose lines 
using slices of 1 mm thickness (Figure 4). Alternatively, the 
software can be modified to return the values of Tumor(P) 
and Normal(P) to the genetic algorithm. The effects of beam 
attenuation were not included, and this omission does not 
effect the testing of the feasibility of Pareto analysis.

The simulation software allows the user to create a phantom 
‘tumor’ by using the cursor to draw a polygon on each slice 
(Figure 4). The polygons are interpreted as a single tumor 
that can be used to calculate Tumor(P) and Normal(P) for any 
plan P. Tumors can be saved and loaded as needed.

The configuration of shot sources used most often consisted of 
98 sources arranged symmetrically along three circles placed 
at 30, 50 and 70 degrees above horizontal and lying within 
a sphere of radius 40 cm. A full complement of 201 sources 
was not used in order to minimize computation time. Dose 
matrix calculation was performed by summing dose densi-
ties emanating from each source as described in the Gamma 
Knife software manuals (8).

Phantom Tumors and Test Runs

Three phantom tumors were used to test feasibility. A ‘simple’ 
tumor was designed to approximate a sphere; a ‘bowtie’ tumor 
was designed with two lobes; and a ‘round’ tumor was designed 
with eccentricity in one direction inferiorly and eccentricity in 
a perpendicular direction superiorly (Figure 5).

A total of 17 runs were performed. The 50% isodose volume 
was used in all calculations. Three of the runs used the simple 
tumor, 7 used the bowtie tumor and 7 used the round tumor. 

Shot combinations were chosen to best reflect planning strat-
egies seen in practice. For example, plans for the simple 
tumor were chosen that used various numbers of shots of 
similar size (4 mm) to the tumor itself. Plans for the bowtie 
tumor were chosen with different numbers of shots of a sin-
gle size to test whether this strategy would provide coverage 
of both lobes of the tumor, and then with shots of different 
sizes to explore whether plans taking advantage of the subse-
quent renormalization would be chosen by the genetic algo-
rithm. Larger shots were used for the round tumor to fill the 
larger volume of tumor. The shot weights were constrained 
to be 1 in the initial nine runs to gain experience with the 
Pareto algorithm, and thereafter were allowed to range freely 
between 0.1 and 1.

Figure 4: User interface for the Gamma Knife Simulator. Each panel represents a 1 mm slice, with four available pages covering a 4 3 4 3 4 cm3 volume. 
The location of the shots is indicated by the red numerals, and the chosen isodose in this case (50%) is shown in yellow. The ‘Draw’ option allows the user to 
interactively create polygons in each panel (shown here in white) that determine a virtual ‘tumor’. Shots are placed using a separate menu that is not shown.
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The number of shots used and the allowed weights are  
summarized in Table I. 

Examination of Data

Each run produced between 40 and 80 Pareto optimal plans 
together with their values of the objective functions Tumor(P) 
and Normal(P). Figure 6A follows the usual custom of pre-
senting Pareto data by plotting the values of one objective 
function against the other, in this case showing plans using 
four 8 mm shots to cover the round tumor. Normal(P) is plot-
ted on the abscissa so that the shape of the resulting Pareto 
front best resembles that shown in other studies (5-7). 

All of the Pareto fronts produced in this study were convex, 
as predicted from their representation as approximations of 
the true Pareto fronts.

It is of interest to examine how the individual treatment 
parameters of shot position and weight varied among the 
Pareto optimal plans produced by a given run. To this end, 
each plan P was assigned a unique plan number consisting 
of its rank when the list of plans was ordered by Normal(P). 
In other words, the plan number of the plan with the smallest 
value of Normal(P) was 1, the plan number of the plan with 
the next highest value of Normal(P) was designated as 2, and 
so on. The individual values of the x, y, z, coordinates and 
w values were then plotted against the plan  number to assess 
the differences of these coordinates among the various plans. 

Figure 5: The three virtual tumors used for analysis are shown. (A) The shape of the ‘simple’ tumor approximates a sphere (left). The ‘bowtie’ tumor has an 
extension to the left and an extension to the right. (B) The round tumor is larger and requires two panels to display. The inferior pole (left) has eccentricity in 
one direction (viewer’s right), while the superior pole (right) has eccentricity in the opposite direction.

Table I
Summary of run parameters.

Collimator1

Run Tumor 4 mm 8 mm 14 mm Weights2

1 Simple 2 1
2 Simple 3 1
3 Simple 4 1
4 Bowtie 2 1
5 Bowtie 2 1
6 Bowtie 3 1
7 Bowtie 2 1 1
8 Bowtie 1 1 1
9 Bowtie 4 1

10 Bowtie 2 1 0.1 to 1
11 Round 2 0.1 to 1
12 Round 3 0.1 to 1
13 Round 3 0.1 to 1
14 Round 4 0.1 to 1
15 Round 2 1 0.1 to 1
16 Round 3 1 0.1 to 1
17 Round 4 1 0.1 to 1

1Numbers indicate number of shots.
2Weights were either fixed at 1 or allowed to range between 0.1 and 1.
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Figure 6B is an example of such a graph. Note that because 
the plans are ordered according to their Normal(P) values, 
Figure 6B can be directly compared with Figure 6A.

Inspection of Figure 6B shows that the plan parameters 
change abruptly between plan 29 and plan 30, despite only 
a minimal change in the Tumor(P) and Normal(P) values 

Figure 6: Pareto calculations for plan covering round tumor using four 8 mm shots. For reference, these shots will be called S1, S2, S3 and S4. (A) Graph of 
Tumor(P) vs. Normal(P) showing Pareto front as an approximation of a convex curve. There are 70 Pareto optimal plans. (B) Graph of the 12 spatial coordinates 
and 4 weights of the 4 shots vs. plan number. Color and line thickness have been added for emphasis. Three of the coordinates (the y-coordinates of S1 and S2 and 
the x-coordinate of a S3) are shown in yellow and suddenly decrease between plan 29 and plan 30; two of the coordinates (the y-coordinate of S3 and the x-coordi-
nate of S1) are shown in yellow and suddenly increase at the same point. This transition denotes a change in planning strategy. (C) The 50% isodose curves (yellow) 
and the tumor (white) are shown for plan 29. Blue numbers indicate the centers of the shots. Note that the isodose curves are eccentric to the left, matching the 
tumor eccentricity superiorly but not inferiorly. (D) The 50% isodose curves (yellow) and the tumor (white) are shown for plan 30. Note that the shot position has 
shifted significantly and that the isodose curves are equally eccentric superiorly and inferiorly. Vertical arrows indicate positions of plan 29 and plan 30.
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(compare Figure 6A). Specifically, the y-coordinates of two 
of the shots and the x-coordinates of one of the shots for  
plan 30 are markedly smaller than those for plan 29, and the 
y-coordinate of one shot and the x-coordinate of one shot for 
plan 30 are markedly larger than those for plan 20. These 
changes are reflected by the rapid changes in the lines corre-
sponding to these coordinates in Figure 6B, shown in yellow 
and indicated by arrows. 

These changes can be viewed as indicating changes in plan-
ning strategy. For example, Figure 6C shows that plan 29 
uses the strategy of placing shots to create isodose lines that 
are more conformal to the eccentricity of the tumor superi-
orly (right panel) than inferiorly (left panel). On the other 
hand, plan 30 uses the strategy of placing shots to optimize 
conformality at the bot portions of this eccentric tumor. 
This example suggests that large changes in these types of 
graphs can be viewed as indicating significant changes in 
planning strategy.

Results

To facilitate identification of these transitions, the separate 
shot coordinates were plotted on a single graph as the ordi-
nate, with the plan number as the abscissa (Figure 6). Some 
of the coordinates changed very little, while others showed 
large variations that produced a large number of transitions. 
Individual plans at the transitions were examined with the 
Gamma Knife simulator to demonstrate the associated plan-
ning strategies.

A recognizable Pareto front was obtained from all 17 runs. 
The overall mean number of shots used in each run was 
3.0 6 0.8 (sd), and the mean number of shots used for the 
simple, bowtie and round tumor was 3.0 6 1.0, 2.7 6 0.8, 
and 3.3 6 0.8, respectively. The overall mean number of 
identified Pareto optimal plans was 59 6 17, and the mean 
number of plans for the simple, bowtie and round tumor was 
62 6 20, 54 6 16 and 64 6 18, respectively. 

The volume of normal tissue covered by the Pareto optimal 
plans taken as a group ranged between 0 and 7579 mm3, and 
the percentage of the tumor covered by the Pareto optimal 
plans taken as a group ranged between 0.3 and 93%. The 
range of the volume of normal tissue covered (i.e., maxi-
mum value – minimum value) over the Pareto optimal plans 
ranged between 57 and 7574 mm3 (median 1735 mm3, mean 
2133 6 1933 mm3 (sd)). The range of percentage coverage 
of the tumor (i.e., maximum value – minimum value) ranged 
between 16 and 80% (median 42%, mean 41 6 15%).

To assess the presence of coordinate transitions, the variation 
of the coordinates of the Pareto optimal plans was examined. 
For runs using n shots, there were 3n possible coordinates, 

and the range (maximum-minimum) of each of these 3n val-
ues (taken over the Pareto optimal plans generated by that 
run) was computed for each run. The 17 runs used 51 shots 
and so 3 3 51 5 153 coordinate ranges were examined. 

Of these 153 coordinate ranges, 70 (46%) were greater than 
or equal to 5 mm (5 mm was felt to be a significant change in 
coordinates when planning, and so was chosen as a threshold 
to examine the various coordinate ranges). Of the 27 coordi-
nate ranges used for by the runs for the simple tumor, 8 (30%) 
were greater than 5 mm. Of the 57 coordinate ranges used for 
by the runs for the bowtie tumor, 14 (25%) were greater than 
5 mm. Of the 69 coordinate ranges used for by the runs for the 
round tumor, 48 (70%) were greater than 5 mm.

Of the 51 ranges for the x-coordinate (respectively, y- 
coordinate and z-coordinate), there 35 (respectively, 29 and 6) 
were greater than 5 mm. The percentage of x-coordinates and 
the percentage of y-coordinates greater than 5 mm was sig-
nificantly greater than the percentage of z-coordinates greater 
than 5 mm, but there was no significant difference between 
the percentage of x-coordinates greater than 5 mm and the 
percentage of y-coordinates greater than 5 mm (χ2, α 5 .05).

The software used here required approximately 10 seconds 
for each dose distribution calculation, and assumed the use 
of only 98 sources. However, the Gamma Knife software is 
highly optimized and is much faster, calculating dose dis-
tributions such as shown here virtually instantaneously. 
Assuming that plans using 201 sources (as for the Model C) 
will require 201/98 5 2.05 as much time as those using 98 
sources, and assuming a dose distribution time of 0.25 seconds,  
the genetic algorithm used here (typically using 1000 to 5000 
such calculations) would require between nine and 46 min-
utes if performed with the true Gamma Knife software.

Example One

In this run, four 8 mm shots were used to find Pareto optimal 
plans for the round tumor, with shot weights ranging between 
0 and 1. Seventy Pareto optimal plans produced a convex 
Pareto front (Figure 6). A plot of the coordinates shows a clear 
transition occurring between Plan 29 and Plan 30, as well as 
smaller transitions between Plan 5 and Plan 29 (Figure 6). 

Examination of the 50% isodose lines for Plan 29 and Plan 30  
showed a shift in planning strategy as predicted by the coor-
dinate transitions (Figure 6). In Plan 29, the shots are posi-
tioned to produce isodose curves that are oblique to the left. 
This obliquity matches that of the tumor superiorly, but is 
perpendicular to that of the tumor inferiorly; the plan there-
fore covers more tumor superiorly than inferiorly. In Plan 
30, the shot positions have shifted so that the isodose curves 
have very little obliquity, so that the tumor coverage is more 
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evenly distributed between the superior and inferior aspects 
of the tumor. The multiobjective functions of the two plans 
were virtually identical (96 vs. 105 mm3 and 45 vs. 47%), 
although the multiobjective functions diverge for plans far-
ther away from the transition point. It is important to note 
that these plans are Pareto optimal – neither is strictly better 
than the other at covering both more tumor and less normal 
tissue – and the decision of which to use would be made on 
separate clinical and anatomic grounds.

Example Two

In this run, one 8 mm and two 4 mm shots were used to 
find Pareto optimal plans for the bowtie tumor, with shot 
weights ranging between 0 and 1. Seventy-two Pareto opti-
mal plans produced a Pareto front (Figure 7). A plot of 
the coordinates shows high variability of the coordinates 
producing many transitions and many potential planning 
strategies. 

Six such plans are shown in Figure 7, together with their posi-
tion along the plan axis. The shots are clustered together in 
Plan 1, producing collapsed isodose curves. Note that Pareto 
optimality is reflected by the adjacency of the isodose curves 
to the tumor boundary so that further enlargement cannot be 
achieved without coverage of more normal tissue. Plan 13 
demonstrates the strategy of filling one arm of the bowtie 
shape by spreading the shots apart. Plan 15 uses a 4 mm shot 
to fill an arm of the bowtie shape, while adjusting the shots 
to cover as much of the superior and inferior tumor poles 
as possible. Plan 27 keeps the 8 mm shot in a central posi-
tion, using the two 4 mm shots to fill each arm of the bowtie 
shape. Note that the increase in tumor coverage is achieved 
at the cost of more normal tissue covered inferiorly. Plan 32 
is similar to Plan 27, but the shots have been shifted to cover 
more of the superior pole while still covering the arms of the 
bowtie shape. A different strategy is represented by Plan 51,  
in which the 8 mm shot and one of the 4 mm shots create a 
widening of the isodose curve centered to one side of the 
bowtie shape, while the other 4 mm shot is used to cover as 
much as possible of the other side. It is again important to 
note that these plans are all Pareto optimal – those that cover 
more tumor than others also cover more normal tissue, and 
the choice of the best plan must be made on clinical grounds 
alone.

Example Three

In this run, three 4 mm shots were used to find Pareto plans 
for the simple tumor, with shot weights ranging between 0 
and 1. Again, a distinct Pareto front was produced (Figure 8).  
Plan 20 was chosen arbitrarily to demonstrate Pareto opti-
mality. Each coordinate of each shot used by Plan 20 was 
individually increased and then decreased by 1 mm, 2 mm 

and 3 mm, and the multiobjective functions calculated for 
the resulting 54 (6 variations for each of the 9 coordinates) 
plans. Each plan was plotted according to its multiobjec-
tive function, using different colors for different amounts of 
variation (Figure 8). Most of the plotted points lie beneath 
the curve; only two lie above, and these two are lie very 
close to the curve itself. This demonstrates that the cal-
culated curve is a close approximation to the true Pareto 
front (at least for Plan 20), as the points do not venture into 
the region of solutions that would dominate the calculated 
Pareto optimal plan.

Discussion and Conclusions

This manuscript presents simulation data suggesting that 
Pareto analysis may be feasible for Gamma Knife planning. 
Because Pareto analysis for Gamma Knife radiosurgery is 
largely unexplored, production of a complete, clinical pack-
age is beyond the scope of this first effort, and this work has 
therefore been limited to computer simulations. The ultimate 
goal will be to incorporate these ideas into actual radiosurgi-
cal software. 

The ideas proposed in this work represent an unconventional 
view of Gamma Knife planning in at least three ways. First, 
instead of searching for a plan that best optimizes a single-
valued cost function, we instead produce a list of Pareto opti-
mal plans that vary in their ability to simultaneously cover 
the tumor and exclude normal tissue. Identification of Pareto 
optimal plans may be more clinically relevant than finding 
plans that optimize a cost function, because any plan that opti-
mizes a cost function without covering the entire tumor (as is 
likely for complex tumors) is either itself Pareto optimal or 
dominated by a Pareto optimal plan. In either case, this plan 
cannot simultaneously optimize the coverage of both tumor 
and normal tissue better than the other Pareto optimal plans, 
and is therefore not better than all other plans. The best plan 
may therefore be one chosen from the list of Pareto optimal 
plans on clinical grounds. 

The second unconventional viewpoint presented here is to 
view each Pareto plan as a treatment strategy, and to seek 
a collection of treatment strategies rather than a collection 
of fully completed plans. That each Pareto optimal plan can 
be viewed as a strategy is demonstrated by the observation 
that small perturbations of the planning parameters (e.g., shot 
locations) of a Pareto optimal plan result in plans that are less 
optimal (Figure 8), showing that each Pareto optimal plan 
is unique among its near neighbors. The proposal discussed 
here is therefore to use Pareto analysis to produce a list of 
non-intuitive strategies (Pareto optimal plans) that might 
otherwise be difficult to identify, choose the strategy that 
best satisfies clinical demands, and then complete the asso-
ciated Pareto optimal plan to a usable, complete plan. Such 
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completion can be easily achieved by a human operator by, 
for example, adding a suitably large number of small shots. 
One might conjecture that automatically producing complete 
Gamma Knife plans for complex tumors is not tractable in 
clinical practice, whereas producing a list of Pareto optimal 
plans may represent an easier and perhaps more clinically 
relevant task.

The third unconventional viewpoint is the belief that a per-
fect plan is unattainable (at least for complex tumors), and 
that every plan harbors compromises between coverage of 
tumor and coverage of normal tissue. This belief is consistent 
with the common experience of arriving at a Gamma Knife 
plan that cannot be changed to cover more tumor without 
also covering more normal tissue, and the realization that 

Figure 7: Pareto calculations for plan covering bowtie tumor using one 8 mm and two 4 mm shots. (A) Graph of Tumor(P) vs. Normal(P) showing Pareto 
front as an approximation of a convex curve. There are 72 Pareto optimal plans. (B) Graph of the 9 spatial coordinates and 3 weights of the 3 shots vs. plan 
number. Color and line thickness have been added for emphasis. Note the frequent variation of coordinates indicating multiple planning strategies. (C) Isodose 
curves of 6 representative plans from transition points indicated by graph in (B). Each plan represents a different planning strategy (see text).
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there are many such plans depending on the chosen planning 
strategy. Pareto analysis formalizes this common experience, 
emphasizing the reality that the different optimal plans must 
be chosen on clinical rather than mathematical grounds.

Because highly efficient algorithms already exist that pro-
duce conformal Gamma Knife plans, one might ask why an 
untested approach such as Pareto analysis should be consid-
ered. There are at least two answers. First, although many of 
the existing algorithms produce a single plan that best simul-
taneously maximizes coverage of tumor and minimizes cov-
erage of normal tissue, the clinician is often more interested 
in trade-offs. For example, it may be advantageous to accept 
less tumor coverage if the resulting dose to highly sensitive 
critical structures is less; and conversely, it may be better to 
include non-eloquent tissue within the treatment isodose line 
if a higher dose to the tumor can be attained. Existing algo-
rithms do not systematically provide the clinician with a list 
of such trade-offs for clinical consideration, whereas provid-
ing such a list is exactly the goal of Pareto analysis.

The second reason to consider Pareto analysis is because of 
the success of this method in other fields. Many problems 
faced by engineers parallel those of Gamma Knife planning: 
algorithms are available that ‘lump together’ the param-
eters such as cost and strength, but engineers are interested 
in choosing between the many possible tradeoffs (5). Fur-
thermore, several studies have provided data supporting the 
utility of Pareto analysis for planning in radiation oncology 
(9-15). Pareto analysis is becoming a useful tool in an increas-
ing number of applications, and deserves consideration for 
Gamma Knife planning as well.

The impact that Pareto analysis might have upon 
Gamma Knife planning is difficult to predict. On the 
one hand, such analysis might be expected to pro-
vide the radiosurgeon with a list of plans with vary-
ing degrees of tumor coverage, allowing choices 
to be made according to the clinical assessment of 
the tradeoffs between coverage of tumor and nor-
mal tissue. On the other hand, realistic radiosurgical 
planning mandates consideration of multiple param-
eters such as treatment time, gradient indices, plug 
patterns and the location of multiple isodose lines. 
Inclusion of these parameters in Pareto analysis is 
possible, but the computation requirements could 
be prohibitive. One can speculate, based on analysis 
of the examples shown here, that the true value of 
Pareto analysis might be to identify planning strat-
egies that are not otherwise obvious. A final plan 
could then be constructed by a human operator, 
armed with these new strategies.

Although Pareto analysis has received little atten-
tion for Gamma Knife planning, a wide variety of 

methods have been explored for this purpose. Dean et al. (16) 
used scaling factors within an optimization routine to model 
the tradeoffs between dose delivery to tumor and normal tis-
sue. Tradeoffs were explored with evolutionary algorithm 
that optimized a single objective function rather than explor-
ing tradeoffs through multiobjective optimization. Schlaefer  
et al. (17) explored tradeoffs by varying constraints of a single 
objective function optimization, and other authors have also 
employed a single objective function (18, 19). Luan et al. (20) 
described the use of ‘dose painting’ to minimize an objective 
function, calculating results with different constraints upon 
treatment time to address tradeoffs between dose and time. 
Hu et al. (21) introduced the concept of a moving isocenter 
(‘tomosurgery’) to construct an inverse planning algorithm 
that addresses two dimensional sub-problems. Heuristic 
algorithms to match the tumor anatomy have been developed 
(22, 23), and used in combination with minimization of sin-
gle objective functions (24). Finally, the new Gamma Knife 
planning algorithm is an inverse planning method based on 
optimization of a single objective function, and has been 
recently explored by Shlesinger et al. (25). They concluded 
that even with this sophisticated algorithm, ‘user-based opti-
mization will be required to achieve an acceptable Gamma 
Knife dose plan’. Although some of these methods indirectly 
address planning tradeoffs through repetitive calculation or 
adjustment of constraints, none allow multiobjective optimi-
zation and none provide the radiosurgeon with a list of other-
wise equivalent plans and strategies with various choices of 
tradeoffs as does Pareto analysis.

Although Pareto analysis has not been used extensively for 
Gamma Knife planning, Pareto methods have been proposed 

Figure 8: Pareto front from calculation for simple tumor using three 4 mm shots. Plan 
20 was chosen arbitrarily to provide an example and is indicated by the black circle (its 
position is obscured by the overlying points). Each spatial coordinate of each shot of plan 
20 was varied by 61 mm, 62 mm, and 63 mm to produce plans that were graphed and 
shown here in yellow, green and red, respectively. The points cluster beneath the Pareto 
front or fill in its gaps to approximate the true Pareto front, providing evidence that the 
chosen plan is Pareto optimal (see text).
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as an optimization tool for inverse planning used in radiation 
oncology (14). Calculation of Pareto optimal plans and the use 
of multiobjective optimization has been proposed to optimize 
treatment planning (9, 14), optimize beam angle configura-
tions in IMRT (10), assist planning for radiation therapy for  
pancreatic cancer (11), and compare treatment planning sys-
tems (13). Several authors have constructed computer interfaces 
designed to allow the user to interactively sample the Pareto 
front (9-11, 14), and a website is devoted to this topic (26). 
The search algorithms in general rely on the ability to formu-
late optimization for IMRT as a linear-programming problem, 
but some authors have used genetic evolutionary algorithms 
(12, 15). Unfortunately, linear methods are not available for 
Gamma Knife planning in which the delivery of clusters of 
beamlets as shots creates a non-linear environment.

A broad range of values of the multiobjective functions was 
observed, and the number of Pareto optimal solutions was 
relatively high (59 6 17). Nevertheless, it is likely that some 
Pareto optimal plans were not detected by the algorithm, and 
that their corresponding planning strategies were not identi-
fied. Engineers refer to the range of Pareto optimal solutions 
detected by an algorithm as the diversity, and have devel-
oped methods to adjust the algorithmic parameters to maxi-
mize the diversity under many conditions (5). A direction for 
future work is to use these methods to maximize the number 
of identified Pareto optimal Gamma Knife plans.

Although the Pareto front identified by the search algo-
rithms usually represents an approximation to the true Pareto 
front, the errors appeared to be quite small and acceptable 
for clinical use. Systematic variation of the shot positions of 
randomly selected Pareto optimal solutions produced plans 
that generally were dominated by the chosen plan (Figure 8), 
indicating that Pareto optimality had indeed been achieved in 
the majority of the runs.

The custom software used here requires approximately 10 
seconds for each dose distribution calculation, and is there-
fore too slow for clinical implementation of the genetic 
algorithm which requires 1000 to 5000 such calculations. 
However, the true Gamma Knife software is highly opti-
mized, and estimates given in the Results section suggest that 
Pareto solutions could be obtained within nine to 46 minutes. 
These times might be acceptable to some centers, and could 
be incorporated into their overall planning process. For other 
centers, preplanning techniques that allow planning calcula-
tions to be completed prior to the day of Gamma Knife treat-
ment are available through the Gamma Knife software and as 
other ad hoc methods (27). 

To facilitate computation, the Gamma Knife Simulator 
included only 98 sources. This produced isodose volumes 
that were more elongated in the z-direction than if a more  

standard collection of 201 sources had been used, and pre-
vented the isodose volumes from being more conformal. Nev-
ertheless, the various planning strategies could be identified 
from the Pareto optimal plans and the choice of 98 sources 
did not affect the question of feasibility.

This work represents a preliminary exploration (perhaps the 
first) of Pareto methods for Gamma Knife planning, and does 
not provide a complete software package useable for clinical 
practice. Although it is hoped that such a package will even-
tually be produced, this task is arguably too ambitious for a 
first effort in which a variety of conceptual and methodologi-
cal issues must be addressed. As has been the case for other 
software packages, full development will require additional 
time, effort and refinement.

The Gamma Plans used here do not include complex shots 
available with the Perfexion device, and such inclusion is 
beyond the scope of this initial feasibility study. However, 
because complex shots are described by specific numerical 
parameters, Pareto analysis for such shots would be straight-
forward and could be addressed in future work.

The multiobjective functions used here (maximizing percent-
age of tumor covered and minimizing volume of normal tis-
sue covered by the treatment isodose volume) were not the 
only possible choices; any measurements of coverage would 
have produced analogous Pareto optimal plans. For example, 
sample calculations show that maximizing the percentage of 
tumor covered by the treatment isodose volume and maximiz-
ing the percentage of the treatment isodose volume covered 

Figure 9: Schematic of Pareto front when the objective functions are the 
percentage of tumor within the isodose volume and the percentage of the 
isodose volume within the tumor. The PI of each Pareto optimal plan is  
the product of these two functions, and thus is the area of the rectangle with 
one vertex at the origin and another at the point representing the plan. The 
rectangle corresponding to the Pareto optimal plan yielding the maximum PI 
is shown in green. Note that this plan is not necessarily the plan that lies clos-
est to the perfect plan (1, 1), shown here in red. See text.
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by tumor (the two goals associated with the Paddick Index) 
produces recognizable Pareto fronts, permitting a similar 
analysis to the one presented here (Figure 9). Note that these 
fronts are mirror images of those shown before, because both 
of the variables are being maximized.

It is worth noting that the use of percentage coverage is not 
fully equivalent to volume coverage. To see this, let vP1 be 
the volume of the treatment isodose volume for a plan P1, let 
vP2 be the volume of the treatment isodose volume for dif-
ferent plan P2, let I1 be the volume of the intersection of the 
treatment isodose volume of P1 with tumor, and let I2 be the 
volume of the intersection of the treatment isodose volume of 
P2 with tumor. To say that Pareto analysis with the multiob-
jective functions chosen here (percentage of tumor covered, 
volume of normal tissue covered) is equivalent to analysis 
using percentage of tumor covered by the treatment isodose 
volume and percentage of isodose volume covered by the 
tumor is to say that whenever I1/vP1 , I2/vP2 then we must 
have vP1 – I1 . vP2 – I2. But it is straightforward to find both 
counterexamples (vP1 5 10, vP2 5 20, I1 5 5 and I2 5 12) 
and examples (same values except I2 5 18). Because the use 
of different multiobjective functions produces a similar, but 
not necessarily equivalent set of Pareto optimal plans, the 
choice of such functions should depend upon the clinical 
goals of the optimization.

There is an interesting relationship between analysis using 
the PI and Pareto analysis. If the multiobjective functions 
mentioned above (percentage of tumor covered by isod-
ose volume and percentage of isodose volume covered by 
tumor) are used for Pareto analysis, then the PI of any plan 
represented by a point on the Pareto front is the area of the 
rectangle constructed with that point and the origin as ver-
tices (Figure 9). A perfect plan would be represented by 
the point (1, 1), and the plan with the most optimal PI (i.e., 
with the largest PI) corresponds to the point P on the front 
which maximizes the area of the rectangle. However, P is 
not necessarily the point closest to the perfect plan (1, 1).  
For example, if the front is approximated by the curve 
y 5 2ax2 1 b (where x 5 the percentage of isodose volume 
covered by tumor and y 5 the percentage of tumor covered by 
isodose volume), then it can be shown that the PI is maximal 
when x 5 x0 5 (b/3a)1/2 and y 5 y0 5 2b/3. The condition 
that (x0, y0) be closest to (1, 1) along the curve is equivalent 
to the condition that the vector from (x0, y0) to (1, 1) be per-
pendicular to the tangent to the curve at this point; but this 
condition can be shown to be a quadratic equation in the vari-
able a. This means that for a given b, there can be at most two 
values of a that allow the point corresponding to the maximal 
PI to also be the point closest to (1, 1). In other words, in 
most cases, the plan that maximizes PI is not the plan that lies 
closest to the perfect plan. Because it is commonly assumed 
that a plan with maximal PI will lie closest to perfection, this 

is a surprising result. It is testimony to the difficulties arising 
when a single-valued cost function such as the PI is used to 
assess what is really a multidimensional problem; optimizing 
the weighting for a cost function is not necessarily equivalent 
to picking the best Gamma Knife plan.

It should also be noted that if a perfect plan exists, i.e., if a 
plan exists corresponding to (1, 1) in the previous example, 
then each Pareto optimal plan must produce a treatment isod-
ose volume that perfectly covers the tumor. The Pareto front 
would therefore be a single point representing a collection 
of different strategies producing the same (perfect) isodose 
volume, but containing no information regarding practical 
planning compromises. As noted before, however, such plans 
rarely exist for tractable numbers of shots.

Conclusion

This work attempts to show how Pareto analysis might be 
applied to Gamma Knife planning, using a simulation of 
radiosurgical calculations to demonstrate that a list of Pareto 
optimal plans can be automatically generated by a genetic 
algorithm. Such plans could provide the radiosurgeon with a 
choice of tradeoffs between dose delivery to tumor and nor-
mal tissue, and could suggest treatment strategies that might 
not otherwise be obvious. Further development of a clinically 
usable Pareto planning package may produce a useful addi-
tion to the planning armamentarium.
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