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ABSTRACT

Our current knowledge of complex biological sys-
tems is stored in a computable form through the
Gene Ontology (GO) which provides a comprehen-
sive description of genes function. Prediction of GO
terms from the sequence remains, however, a chal-
lenging task, which is particularly critical for novel
genomes. Here we present INGA 2.0, a new version
of the INGA software for protein function predic-
tion. INGA exploits homology, domain architecture,
interaction networks and information from the ‘dark
proteome’, like transmembrane and intrinsically dis-
ordered regions, to generate a consensus predic-
tion. INGA was ranked in the top ten methods on
both CAFA2 and CAFA3 blind tests. The new algo-
rithm can process entire genomes in a few hours
or even less when additional input files are pro-
vided. The new interface provides a better user ex-
perience by integrating filters and widgets to explore
the graph structure of the predicted terms. The INGA
web server, databases and benchmarking are avail-
able from URL: https://inga.bio.unipd.it/.

INTRODUCTION

The problem of predicting protein function from the amino
acid sequence is intrinsically difficult due to the limited
number of available experimentally-validated examples and
the complexity of the cellular machine. The Gene Ontology
(GO) (1), which provides a vocabulary of function descrip-
tors, includes more than 45 thousand different terms. Man-
ually annotated GO terms in UniProtKB (2) cover <1% of
the entries. UniProt-GOA (3) provides automatic annota-
tion for the rest of the database. It employs a number of dif-
ferent techniques exploiting sequence properties, InterPro
(4) predictions and taxonomy. Yet about 40% of entries re-
mains unannotated and the quality of predicted GO terms
is unknown. The need for better methods to improve func-
tional characterization of known proteins and to predict the
function of new organisms is becoming critical. Scores of

new function prediction methods are published every year,
however, an objective overview of the real performance is
problematic and a comparison between methods is almost
impossible given the heterogeneity of adopted evaluation
protocols. The Critical Assessment of protein Function An-
notation (CAFA) challenge solves this problem implement-
ing a real blind test (5) and highlights the most effective
methods for automatic protein function prediction. The last
CAFA results (6) show that methods using the ‘transfer by
homology’ approaches (7–9), based on sequence similar-
ity, compete both with machine learning (10) and integra-
tive methods (11). BLAST Fmax, for example is only about
10% lower than the best method. CAFA also shows that
predicting biological processes (BP) is much more difficult
than molecular function (MF). The Naive baseline, which
assigns terms simply based on their frequency in UniPro-
tKB to all benchmark proteins, is still a good predictor due
to strong biases in annotation database, for example a very
large fraction of experimentally annotated proteins are an-
notated with the ‘protein binding’ term. Eukaryotes, includ-
ing simple organisms such as yeast, are much more diffi-
cult to predict than prokaryotes. Recent work shows or-
ganism complexity negatively correlated with residue level
annotation (12). A large fraction of eukaryotic proteome
residues, up to 50% for human, is uncharacterized and re-
mains inaccessible to common domain detection pipelines.
The so-called ‘dark proteome’ is thought to be composed
by new folds, transmembrane regions and intrinsically dis-
ordered residues (13). Here we present a new version of
INGA (11), Interaction Network GO Annotator, which
combines homology, domain architecture, interaction net-
works and ‘dark’ features to predict protein function. In
our previous work we already showed how protein-protein
interactions can be used effectively to infer function based
on the ‘Guilty by Association’ principle exploiting protein-
protein interaction (PPI) networks (14). The fact that dis-
ordered regions, compared to globular domains, provide
a repertoire of new alternative functions is becoming ev-
ident in the literature (15–17), in particular for longer re-
gions (18). The extraction of disorder features from the se-
quence has been proven to be useful for function prediction
methods (19,20). INGA already ranked in the top ten in
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CAFA2 (6) for both MF and BP ontologies when consid-
ering the Fmax in the full-evaluation / no-knowledge mode.
Recently, INGA 2.0 ranked in the top ten in CAFA3 for
all three ontologies and for both the Fmax and Smin evalua-
tions (manuscript in preparation). A lower Smin, in partic-
ular, indicates the ability of the method to predict specific
and difficult rare terms, i.e. those less represented in an-
notation databases. The INGA server has been completely
redesigned in order to improve reproducibility, reliability
and usability. The INGA 2.0 algorithm can be executed in
two alternative modes by providing either the protein se-
quence(s) or BLAST and InterProScan predictions. In the
first case, different components can be excluded to speed-up
the calculation at the cost of partially losing specificity. In
the second case, INGA can provide maximum accuracy and
predict function for entire genomes in less than one hour.

MATERIALS AND METHODS

INGA derives function information from different sources
to generate a consensus prediction. The method exploits ho-
mology, domain architecture and interaction networks as
proxies for transferring function from annotated proteins.
The new version of INGA also integrates intrinsic disorder
and transmembrane region prediction to cover information
from the ‘dark proteome’, i.e. regions poorly characterized
in public databases. The consensus prediction provided by
INGA 2.0 has been evaluated in the CAFA3 assessment, re-
sulting among the top ten methods for all three ontologies
and both Fmax and Smin. A description of the implementa-
tion and the contribution of each component to the overall
consensus accuracy follows.

Homology and protein interaction networks

Homology is based on the concept of vicinity. In the context
of genetic phylogeny, homologous proteins share a common
ancestor and therefore the same biological function (21).
Other methods are able to distinguish paralogy from orthol-
ogy because paralogous proteins often diverge too much
and lose function similarity (8). However these methods
are bound to the computational cost of building a phylo-
genetic tree and to the number of available representatives
for a given protein family. Instead, INGA infers homology
by simply measuring sequence similarity. In particular, it
performs a BLAST search, with default parameters, against
the entire UniProtKB sequence database. The default sort-
ing based on the BLAST Bit-score is used to transfer GO
terms and assign an estimated probability representing pre-
diction precision. Different probabilities are assigned sim-
ply based on the BLAST ranking independently from input
properties or alignment coverage. In contrast to the previ-
ous INGA version, hits are not filtered. INGA also exploits
information from protein-protein interaction networks to
predict function. This has been shown to be effective in our
previous works (14), in particular for Cellular Component
and partially Biological Process ontologies. The new ver-
sion of INGA uses exactly the same implementation. It con-
siders only direct interactors from the STRING database,
filtered with a confidence score of at least 0.4 correspond-
ing to the STRING default. GO terms associated to di-

rect interactors are transferred with a probability represent-
ing their enrichment in comparison to the entire STRING
database. The enrichment is calculated with a Fisher exact
test, while probability is estimated considering the P-value
ranking and measuring the precision for each ranking posi-
tion.

Domain architecture database and the dark proteome

Proteins are organized in modular architectures (22). Ac-
cording to classification databases, complex architectures
are provided by the repetition and rearrangements of a rel-
atively small number of domains (23,24). Domains can be
considered as functional determinants and are therefore
subject to evolutionary pressure. When the three dimen-
sional structure is conserved across different species, do-
main detection from the sequence is straightforward as key
positions are also conserved. InterPro provides the largest
collection of sequence models (signatures) of protein do-
mains with known biological role (4). However, when pro-
cessing proteomes with InterPro a large fraction of residues
remains undetected, in particular for eukaryotes (12). The
‘dark proteome’ includes all those functional modules for
which key residues are not position specific but, instead,
characterized by compositionally biased regions like in dis-
ordered and transmembrane proteins (13). INGA transfers
GO terms from proteins with the same domain architec-
ture. The new version uses InterProScan (25), Phobius (26)
and MobiDB-lite (27) to predict domain, transmembrane
and disordered signatures (labels) respectively. In addition
to ‘transmembrane’, Phobius also provides the ‘signal pep-
tide’, ‘cytoplasmic’ and ‘extracellular’ labels. MobiDB-lite
predictions are transformed into four different signatures ei-
ther representing the localization in the sequence or indicat-
ing ‘fully disordered’ when disorder content is larger than
75%. Both InterPro and ‘dark’ signatures are combined to
generate the INGA domain architecture database. Archi-
tectures are calculated for the entire GOA (3). GO anno-
tations of proteins with the same architecture are grouped
together and sorted inside the cluster based on their en-
richment (Fisher’s test) calculated in comparison to the
rest of the database (background). When a target sequence
matches an architecture in the INGA database, GO terms
are transferred with a probability estimated on the rank-
ing provided by the enrichment. Terms with a P-value lower
than 0.001 are discarded. This ensures that significantly en-
riched terms are specific, i.e. distant from the ontology root.
Table 1 shows the number of enriched terms for different
architectures in the database. Notably, 57% of architectures
contain ‘dark’ signatures (Dark), while the number of asso-
ciated proteins is much higher for globular (Non-dark) ar-
chitectures, indicating, on average, larger clusters. The num-
ber of enriched terms is almost the same for the two ma-
jor classes but terms enriched in the ‘dark’ database (Dark)
are slightly more specific (Average depth). The introduction
of ‘dark’ signatures results in the split of large clusters and
therefore the separation of different functional groups. On
average 5 MF, 10 BP and 2 CC terms are associated to each
architecture and can be safely transferred to the matching
sequences.
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Table 1. Enriched terms in the INGA domain architecture database

Enriched terms Average depth

Signature Architectures Proteins MF BP CC MF BP CC

Dark Transmembrane 165 465 11 864 693 778 207 1 445 467 248 211 3.67 4.23 2.67
Signal 109 529 2 953 070 433 446 884 071 133 662 3.50 4.19 2.60
Cytoplasmic 5312 67 800 36 365 142 550 30 771 3.85 4.51 2.97
Extracellular 3292 22 381 25 425 102 560 16 810 3.82 4.54 2.95
C-term disorder 166 470 2 329 632 747 643 1 738 544 329 203 3.65 4.32 2.77
N-term disorder 161 436 2 348 434 729 138 1 675 203 329 310 3.66 4.33 2.78
Central disorder 126 412 1 134 920 519 506 1 228 743 239 888 3.67 4.37 2.81
Fully disordered 3047 43 869 7 837 30 078 7 722 3.38 4.39 2.71
All 488 312 18 112 467 2 181 980 4 626 913 843 145 3.61 4.26 2.71

Non-dark All 366 108 72 418 252 2 019 833 3 943 739 650 507 3.50 4.11 2.63
Total 854 420 90 530 719 4 201 813 8 570 652 1 493 652 3.56 4.19 2.68

Number of molecular function (MF), biological process (BP) and cellular component (CC) terms statistically enriched (enriched terms) for different
types of architectures in the INGA database. (Average depth) Average minimum distance from the corresponding ontology root. All architectures contain
an InterPro signature, dark architectures also contain a non-globular signature (Dark). The same architecture can have multiple ‘dark’ signatures, partial
counts are provided in separate rows (transmembrane, signal, etc.).

Consensus and training

The training set is the one provided by the CAFA or-
ganizers and published on the official web page (https://
biofunctionprediction.org/cafa) as ‘CAFA 3 Training Data’
corresponding to all experimental GO terms available in
UniProtKB, including 35 086, 50 813 and 49 328 proteins
with 371 584, 2 047 227 and 582 454 terms for the MF, BP
and CC ontologies respectively. The training set is used to
estimate with a ten fold cross-validation the correlation be-
tween precision and ranking position for the three INGA
components: Homology, Architectures and Interactions. In
Figure 1 the distribution of precision in relation to the rank-
ing is provided. When generating predictions, INGA as-
signs a confidence score which is the average precision of
the ranking. The ranking is calculated in different ways for
the three INGA components. For Homology it corresponds
to the BLAST output position and ranking 1 means the
hit (or set of hits) with the best Bit-score. For the Architec-
ture and Interaction components the ranking is provided by
the enrichment. Ranking 1 corresponds to all those terms
with the lowest P-value (see methods for details). The fi-
nal consensus is calculated in the same way as in the previ-
ous INGA version, i.e. calculating the joint probability for
terms provided by different methods. An additional weight-
ing parameter to balance the contribution of different meth-
ods has been trained using the same dataset and applying a
simple grid search algorithm.

Evaluation

INGA has been evaluated in the CAFA2 (6) and CAFA3
(manuscript in preparation) blind test experiments as
‘INGA-Tosatto’. In CAFA2, considering the Fmax and the
full-evaluation/no-knowledge mode, INGA ranked among
the top 10 methods for MF and BP ontologies. In CAFA3,
INGA (version 2.0) is in the top 10 also for CC and for
both the Fmax and Smin metrics. The latter takes into con-
sideration the information content of the terms and gives
an indication about prediction specificity (28). Terms with
high information content are less frequent in the annota-
tion databases and therefore more difficult to predict. A
fair comparison with other methods is very difficult out-

side the CAFA context due to a number of variables which
cannot be controlled, for example the version of training
databases, ontology, etc. In Table 2, we report a compari-
son with the previous INGA and baseline methods as im-
plemented in CAFA using the benchmarking data provided
in CAFA2 which contains 2618 BP, 2938 CC and 1828 MF
protein targets. It has to be noted that numbers in the table
are not comparable with CAFA evaluations as we consider
the whole reference instead of subcategories and differences
in calculation details exist. For example, no- and limited-
knowledge examples were not separated in order to maxi-
mize the dataset size and the source of GO terms (UniProt-
GOA) contains new terms not present in the benchmark-
ing. Also, the test is not fully blind, as the training data
(UniProtGOA) overlaps with test examples. Table 2 is pro-
vided just to show the contribution of the different INGA
components and a comparison with baseline methods. We
used the same input (when applicable), i.e. same BLAST
database, UniProtGOA, Gene Ontology version, etc. in or-
der to equally propagate the effect of possible biases. For a
fair evaluation we refer to the official CAFA3 results. Ta-
ble 2 also reports performance for the INGA Architectures
component as it can be used for fast large-scale prediction
and also for the same component without ‘dark’ features
(INGA Arch Non-dark). The evaluation is provided as in
the full CAFA evaluation, where methods with a lower cov-
erage are penalized because recall is calculated averaging
over the benchmark size. INGA 2.0 outperforms all meth-
ods and has ∼10% higher Fmax compared to its previous
version for all ontologies. The INGA Architecture compo-
nent has generally an 18% lower Fmax than the consensus
but 6% higher than the one without ‘dark’ features. The Smin
shows the same trend with a stronger difference between
INGA 1.0 and INGA 2.0. Figure 2 shows the precision re-
call curves for methods reported in Table 2. The higher per-
formance of INGA 2.0 over other methods (and INGA 2.0
Arch over INGA 2.0 Arch Non-Dark) can be explained by
the higher number of considered features, as ‘dark’ features
are expected to be extensively represented both in the train-
ing and test examples. All INGA CAFA3 predictions and
benchmarking data are available for download from URL
https://inga.bio.unipd.it/documentation/cafa.

https://biofunctionprediction.org/cafa
https://inga.bio.unipd.it/documentation/cafa
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Figure 1. Estimated precision of three INGA components. Precision is reported for different ranking positions. Ranking is provided by BLAST Bit-score
for Homology and by the enrichment P-value for Architectures and Interactions (see methods). The horizontal axes is cut at 10.

Figure 2. Precision recall curves for methods compared in Table 2 for the three GO ontologies. In the legend, (F) is the Fmax and (C) is the coverage as the
fraction of predicted targets.

Implementation

The INGA web server is implemented using the REST
(Representational State Transfer) architecture. The INGA
services can be accessed both from a web interface or a cus-
tom client. Submitted jobs can be retrieved at a later time

by providing the session identifier or the URL to the result
page. INGA guarantees to maintain job sessions for at least
two weeks. Predictions are stored permanently in a database
where entries are indexed by their sequence in order to speed
up the service when requesting a cached protein.
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Table 2. INGA performance in comparison with other methods

Ontology Method Th (Fmax) Precision Recall Fmax Th (Smin) Smin Coverage

MF INGA 2.0 0.49 0.660 0.730 0.693 0.67 5.83 0.93
INGA 2.0 Arch 0.28 0.545 0.495 0.519 0.60 13.25 0.61
INGA 2.0 Arch
Non-Dark

0.47 0.600 0.365 0.454 0.60 11.20 0.46

INGA 1.0 0.78 0.658 0.583 0.618 0.95 10.33 0.90
BLAST 0.68 0.568 0.321 0.410 1.0 19.25 0.90
Naive 0.06 0.296 0.082 0.128 0.6 28.93 1.00

BP INGA 2.0 0.40 0.515 0.632 0.567 0.56 29.91 0.93
INGA 2.0 Arch 0.16 0.394 0.396 0.395 0.46 71.96 0.59
INGA 2.0 Arch
Non-Dark

0.21 0.370 0.321 0.344 0.57 62.54 0.47

INGA 1.0 0.59 0.482 0.499 0.490 0.76 56.98 0.90
BLAST 0.22 0.422 0.097 0.158 1.0 123.91 0.91
Naive 0.22 0.030 0.027 0.029 0.46 150.09 1.00

CC INGA 2.0 0.40 0.589 0.641 0.614 0.56 3.78 0.96
INGA 2.0 Arch 0.16 0.480 0.337 0.396 0.40 12.78 0.54
INGA 2.0 Arch
Non-Dark

0.16 0.431 0.314 0.363 0.50 11.51 0.48

INGA 1.0 0.65 0.503 0.508 0.505 0.87 10.19 0.85
BLAST 0.79 0.452 0.184 0.262 1.0 25.77 0.90
Naive 0.09 0.152 0.188 0.168 0.09 32.12 1.00

This evaluation corresponds to the CAFA full-evaluation with both no- and -limited-knowledge examples merged in a single benchmark. Precision and
recall measures are reported for the confidence threshold which maximize the F-score. The coverage is the fraction of predicted targets. INGA Architecture
(INGA Arch.) component includes ‘dark’ signatures. INGA 2.0 corresponds to the full algorithm. BLAST and Naive are implemented and trained as
described in CAFA2. Table values do not correspond to a fair blind test as training and test examples overlap.

SERVER DESCRIPTION

Input

The INGA website is free and open to all users and there is
no login requirement. The interface can alternatively accept
either protein sequences (Sequence input tab) or BLAST
and InterPro predictions (Prediction input tab). In the first
case INGA outputs single or multiple predictions (up to
50 or 1000 in slow and fast mode respectively) from pasted
or uploaded FASTA sequences or UniProtKB accessions
(e.g. P04050). A checkbox group allows the user to choose
which component to run, i.e. limiting the execution to the
INGA Architectures for a faster prediction. A single job
(e.g. 10 sequences) lasts around 30 min in default mode and
15 min in fast mode considering only the INGA Architec-
tures component. The alternative Prediction input tab al-
lows to provide intermediate files, namely InterPro output,
a BLAST search against UniProtKB and another BLAST
search against the STRING sequence database. In this case
input sequences are not necessary and INGA generates pre-
dictions in constant time independently of the input size.

Output

The server provides a results page listing all submitted se-
quences. Once predictions are ready, the user can access sin-
gle protein pages listing the predicted GO terms. Terms are
split into three tables available in three different tabs corre-
sponding to the different ontologies. For each GO term the
score (probability) and annotation source (UniProtKB an-
notated entries) provided by different methods are reported
in the same row. Predicted terms are sorted by INGA score
and then by specificity, i.e. terms more distant from the root
are shown first. A left sidebar provides filters and widgets
to explore the graph structure of the predicted terms. The

specificity and INGA score can be filtered on the fly. An-
cestors and children of a given term can be highlighted in a
single click in order to visualize specific GO branches. The
protein architecture (where available) is shown on the top
of the table and a feature viewer can be optionally open to
visualize sequence position of the detected signatures. Both
prediction and predicted features are available for download
both in JSON and text formats.

CONCLUSIONS

We have presented a new version of the INGA algorithm
for the prediction of Gene Ontology terms from the protein
sequence. The new version integrates ‘dark’ proteome infor-
mation to improve prediction accuracy, in particular intrin-
sic disorder and transmembrane region detection. INGA
ranked in the top ten for both CAFA2 and CAFA3. A new
option allows fast prediction of entire genomes at the cost of
partially losing accuracy. The web server was completely re-
designed to provide a better interpretation of the function
and visualization of the different predicted GO branches.
We believe that improving the characterization and classifi-
cation of ‘dark’ features will provide a better description of
protein function and quality of predictors.
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