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Abstract: Sleep apnea syndrome (SAS) is a breathing disorder characterized by recurrent episodes of
upper-airway collapse, resulting in intermittent hypoxia (IH) during sleep. Experimental studies with
animals and cellular models have indicated that IH leads to attenuation of glucose-induced insulin
secretion from pancreatic β cells and to enhancement of insulin resistance in peripheral tissues and
cells, such as the liver (hepatocytes), adipose tissue (adipocytes), and skeletal muscles (myocytes),
both of which could lead to obesity. Although obesity is widely recognized as a major factor in
SAS, it is controversial whether the development of SAS could contribute directly to obesity, and the
effect of IH on the expression of appetite regulatory genes remains elusive. Appetite is regulated
appropriately by both the hypothalamus and the gut as a gut–brain axis driven by differential
neural and hormonal signals. In this review, we summarized the recent epidemiological findings
on the relationship between SAS and feeding behavior and focused on the anorexigenic effects of
IH on the gut–brain axis by the IH-induced up-regulation of proopiomelanocortin and cocaine- and
amphetamine-regulated transcript in neuronal cells and the IH-induced up-regulation of peptide YY,
glucagon-like peptide-1 and neurotensin in enteroendocrine cells and their molecular mechanisms.

Keywords: sleep apnea syndrome; intermittent hypoxia; appetite; neuronal cells; enteroendocrine
cells; proopiomelanocortin; cocaine- and amphetamine-regulated transcript; peptide YY; glucagon-
like peptide-1; neurotensin

1. Introduction

Sleep apnea is a sleep disorder in which pauses in breathing or periods of shallow
breathing during sleep occur more often than normal. Each pause can last for a few sec-
onds to a few minutes and they happen many times a night. Sleep apnea may be either
obstructive sleep apnea (OSA), in which breathing is interrupted by a blockage of air
flow, central sleep apnea (CSA), in which regular unconscious breath simply stops, or a
combination of the two [1]. Sleep apnea syndrome (SAS), which includes OSA, CSA, and
the combination of the two, is one of the common forms of sleep disorder, characterized
by repetitive episodes of oxygen desaturation during sleep, the development of daytime
sleepiness, and a reduction in quality of life [2]. SAS is associated with many systemic
complications, such as obesity; type 2 diabetes mellitus (DM) [3–6]; dyslipidemia [7]; car-
diovascular disease, including hypertension, coronary disease, heart failure, and stroke [8];
pulmonary hypertension [9]; neurocognitive deficits [10–12]; and depression [13].
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SAS is often caused by a partial or total closure of the upper airway, resulting in a re-
duction in airflow during sleep, and the prevalence of SAS defined by an apnea–hypopnea
index (AHI) ≥ 5 was a mean of 22% in men and 17% in women in eleven published
epidemiological studies published between 1993 and 2013 [14]. During sleep, repeated
episodes of apnea and/or hypopnea in SAS patients, whether the type is OSA, CSA, or the
combination of the two, can result in organs’ and tissues’ exposure to the alternation of
low oxygen pressure and normal oxygen pressure, that is, intermittent hypoxia (IH) [6].
IH generates oxidative stress abnormalities that are similar to those seen in ischemia-
reperfusion injury [15–19] and lead to redox-activated signal transduction pathways in
inflammation [20–22]. IH has also been extensively reported to induce sympathetic ex-
citation, leading to IH-induced cardiovascular complications [23]. Many authors have
described a variety of causes among SAS patients, although obesity is a major risk factor.
Other than obesity, many factors, including tonsillar hypertrophy, macroglossia, narrowed
nasal cavities, laxity of the soft palate, and retrognathia, have been involved in the patho-
genesis of SAS as anatomical factors [24]. As non-anatomical pathophysiological factors,
instability of ventilatory control, also known as high loop gain; neuromuscular inefficiency
of the dilator muscles of the upper airways; and an increased inclination for nocturnal
awakenings due to respiratory stimuli or a reduced awakening threshold, also known as
low arousal threshold, have been reported [25,26].

In this review, we gave an overview of the current knowledge on IH, a hallmark
manifestation of SAS, and highlighted the findings of our own cellular studies on the effect
of IH on glucose metabolism and the expression of appetite-regulating genes.

2. The Reciprocal Relationship between IH and Obesity

Obesity is a very common challenge in association with the metabolic syndrome, the
commonly used term for the cluster of obesity, insulin resistance, hypertension, and dyslipi-
demia [27]. Obesity can cause SAS due to the narrowing of airways induced by an excess of
fat tissue around the neck, which can predispose a patient to airway obstruction [28]. In fact,
obesity is one of the most important risk factors for the development of SAS [29–31], and
more than 70% of patients with SAS are obese [32]. Olga et al. have also shown that SAS is
considerably present in severely obese patients [33]. A longitudinal study by Peppard and
his colleagues indicated that a 10% gain in body weight increased the odds of developing
moderate or severe SAS by six-fold [34].

On the other hand, it is reported that about 20% of the adult population with SAS
are not obese [35]. A prospective non-randomized controlled study revealed that body
mass index (BMI) was significantly lower in SAS Far East-Asian men than that in SAS
white men when controlled for sex, age, and disease severity, and that the mean BMI of the
Far East-Asian men with SAS was below the norms for men in the United States [36]. A
community study in China also showed that BMI < 25 was an independent risk factor for
SAS [37]. Thus, it is controversial whether the development of SAS directly contributes to
obesity, although a previous systematic review concluded that the energy balance in SAS
patients appeared altered to have a positive energy balance [38].

Although the etiology of overweight and obesity is complex, and energy balance is
regulated by many neurobiological and physiological mechanisms, weight gain generally
results from excessive food intake driven by excessive appetite, which leads to a positive
energy balance. Accumulating evidence indicates that obesity and SAS are strongly related
to each other [39]; however, the associations between dietary habits or amount and the
predisposition to SAS are not fully understood. Regarding food preference, it was reported
that the severity of SAS is associated with a liking for high-fat food, based on the respiratory
disturbance index in a hierarchical multiple regression model including sex and BMI [40].
A cross-sectional study of 243 patients (21–70 years old) diagnosed with SAS by overnight
attended polysomnography in Greece were recruited and showed a positive association
between total red meat or unprocessed red meat intake and apnea or hypopnea indices [41].
Another cross-sectional study of 269 patients (21–70 years old, 73.2% males) diagnosed
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with SAS via an attended in-hospital polysomnography were recruited and reported that
SAS is associated with cereal grain intake and suggested that a higher intake of refined
cereal grains may be a risk factor for SAS severity [42]. A clinical study with 5076 Mexican
adults (20–59 years old) showed that the industrialized dietary pattern (high in sugar-
sweetened beverages; fast foods; and alcohol, coffee, or tea) yielded higher odds of sleep
apnea (odds ratio 1.63) compared with the traditional dietary pattern (high in legumes and
tortillas) [43]. Accordingly, there are various trends in the food preferences of patients with
SAS. Moreover, regarding the dietary amount in SAS patients, few studies to date have
investigated actual measures of food intake, although one study demonstrated that higher
amounts of food intake during the evening period may diminish sleep quality in moderate
and severe SAS patients [44]. It is still undetermined whether SAS patients’ appetite is
increased or not in spite of several recent epidemiological studies.

3. Molecular Mechanisms of the IH-Induced Gene Expression

Many studies have investigated the effects of IH on animals, individuals, and tissues;
however, the molecular mechanisms of IH-regulated gene expression are not fully under-
stood. As one of the major mediators associated with IH, much attention has been paid to
hypoxia-inducible factor (HIF)-1. IH vigorously activates HIF-1 [45–48], a transcriptional
activator that plays an essential role in regulating cellular adaptive mechanisms in response
to a low-oxygen environment [49,50]. Three members of the HIF family have been identi-
fied, all of which consist of a heterodimeric structure composed of an O2-sensitive α subunit
(HIF-1α, HIF-2α, and HIF-3α) and an O2-insensitive β subunit (HIF-1β), also known as
aryl hydrocarbon receptor nuclear translocator (ARNT) [51]. HIF-1α is responsible for
transcriptional activity, as it includes the transactivation domains, and its stability and
functionality are controlled by the cellular oxygen pressure [52]. In fact, HIF-1α serum
protein concentration was higher in patients with SAS compared with control patients
in both the evening (1490.1 pg/mL vs. 727.0 pg/mL; p < 0.001) and the morning (1368.9
pg/mL vs. 702.1 pg/mL; p < 0.001) samples [53].

Cell cultures and animals exposed to IH have shown HIF-1–dependent transcriptional
activation of NADPH oxidases (Noxes) [54–56], leading to the enhancement of reactive
oxygen species (ROS) production [56]. In turn, ROS generation is essential for increased
HIF-1α expression in response to IH [46]. Regarding IH-regulated gene expression, it has
been reported that lysine demethylases (KDMs) facilitate HIF-1-dependent transcriptional
activation of certain genes by hypoxia [57]. Furthermore, it was reported that under IH,
KDM6B is recruited to hypoxia-response element (HRE) binding sites through interaction
with HIF-1α and that KDM6B regulates HIF-1 transcriptional activity by demethylating
H3K27, of which methylation is regulated by increased KDM6 enzyme activity [58]. Thus,
there is increasing evidence of possible IH-induced gene regulatory mechanisms, including
epigenetic regulation.

4. IH and Impaired Glucose Tolerance

SAS is an independent risk factor for the development and progression of type
2 DM [59] and for insulin resistance [60]. The retrospective study also indicated that
desaturation parameters assessed by polysomnography examination are associated with an
increased risk of type 2 DM [61]. The level of serum HIF-1α was found to be significantly
increased in patients with type 2 DM compared to a control group [62], and cell culture
studies show that HIF-1α regulates both glucose uptake and glycolytic enzyme activity,
significantly promoting the process of glycolysis [63].

IH is reported to cause β cell replication and apoptosis without hyperglycemia [64],
suggesting a possible mechanism by which IH acts as a β cell replication factor. In fact, Ota
et al. have demonstrated that IH significantly decreases the gene expression of cluster of
differentiation (CD)38 (ADP-ribosyl cyclase/cyclic ADP-ribose [cADPR] hydrolase: EC
3.2.2.6) [6], which is essential for glucose-induced insulin secretion through the mobiliza-
tion of Ca2+ from the intracellular Ca2+ pool via type 2 ryanodine receptor Ca2+ channel,
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by cADPR in primary cultured rat and mouse pancreatic islets and animal model exper-
iments [65–71]. IH also increased rodent pancreatic β cell replication by up-regulation
of the regenerating gene (Reg) family of genes, which encode autocrine and paracrine
growth factors for β cell replication [72–75], and by the up-regulation of an antiapoptotic
hepatocyte growth factor, the up-regulation of which may combat the occurrence of β cell
dysfunction and insulin resistance [76]. In human hepatocytes, Uchiyama et al. demon-
strated that IH stress up-regulates the levels of SELENOP, which encodes selenoprotein P, a
causative factor of insulin resistance, and up-regulates the levels of hepatocarcinoma-intestine-
pancreas/pancreatitis-associated protein (HIP/PAP) mRNAs to proliferate the hepatocytes, via
the microRNA (miR)-203 mediated mechanism, resulting in the proliferation of liver cells
with high levels of SELENOP mRNA [5]. Concerning miR-203-mediated mechanisms in
IH, Takeda et al. recently reported that the expression of renin in juxtaglomerular cells was
significantly increased in response to IH stimulation via down-regulation of miR-203 [77].
The most common complications in SAS patients are hypertension and diabetes, and IH
(caused by SAS) decreases miR-203 in hepatocytes [5] and juxtaglomerular cells [77], re-
sulting in increased selenoprotein P in hepatocytes (a diabetogenic hepatokine) and renin
in juxtaglomerular cells (which induces hypertension) simultaneously. Uchiyama et al.
also indicated that the expression of resistin (RETN), tumor necrosis factor-α (TNF-α),
and C-C motif chemokine ligand 2 (CCL2), which are bioactive mediators produced and
released from adipocytes and called adipokines, was increased by IH via down-regulation
of miR-452 [78]. This suggests that the up-regulation of RETN, TNF-α, and CCL2 in SAS
patients may induce a pro-inflammatory phenotype of the adipose tissue, leading to the
development of insulin resistance and decreased insulin sensitivity, and miR-452 could
play crucial roles in the regulation of these gene expressions. Skeletal muscles also play
a major role in insulin-sensitive glucose uptake via glucose transporter 4 (solute carrier
family 2, facilitated glucose transporter member 4); however, there are few studies that
have examined the effect of IH on glucose uptake and metabolism. Recently, IH was shown
to up-regulate some myokines, such as IL-8, osteonectin (also known as secreted protein
acidic and rich in cysteine), and myonectin (also known as C1q/TNF-related protein 15
or erythroferrone), which are all involved in inflammation and glucose metabolism, via
transcriptional activation of the myokine genes in human and mouse muscle cells [79–81].

Taken together, there is accumulating evidence indicating that IH induces the im-
pairment of glucose tolerance and insulin resistance in pancreatic β cells, hepatocytes,
adipocytes, and skeletal muscle cells, which may contribute to obesity [82] (Figure 1).
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tion from pancreatic β cells via down-regulation of CD38 [6]; up-regulation of Reg I and hepatocyte 
growth factor in pancreatic β cells [76]; up-regulation of selenoprotein P and HIP/PAP in hepato-
cytes via down-regulation of miR-203 [5]; up-regulation of adipokines, such as CCL2, TNF-α, and 
RETN in adipocytes via down-regulation of miR-452 [78]; and up-regulation of myokines, such as 
IL-8, osteonectin, and myonectin in skeletal muscle cells [79–81], all of which can contribute to insu-
lin resistance, glucose intolerance, and obesity [82]. 
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The hypothalamus is a crucial relay region for integrating signals from central and pe-
ripheral pathways in the neuronal circuits controlling energy homeostasis [84,85], being 
constituted of distinct hypothalamic nuclei, including the arcuate nucleus (ARC), the par-
aventricular nucleus, the lateral hypothalamic area, the dorsomedial nucleus, and the ven-
tromedial nucleus. In particular, the ARC is considered one of the best characterized areas 
of the brain involved in the regulation of feeding behavior through the close coordination 
of multiple neuronal populations [86]. The ARC contains two main neuronal populations 
with opposite effects on the feeding behavior: the neurons that express orexigenic neuro-
peptide Y/agouti-related peptide (NPY/AGRP) and those that express anorexigenic 
proopiomelanocortin/cocaine- and amphetamine-regulated transcript (POMC/CART), 
both of which constitute the central melanocortin system, with downstream target neu-
rons expressing the melanocortin 3 receptor (MC3R) and melanocortin 4 receptor (MC4R) 
[84]. NPY/AGRP neurons are inhibited by leptin, insulin, and the enteric hormone peptide 
YY (PYY)3-36, and they are stimulated by ghrelin (GHRL), an orexigenic hormone released 
from gastric mucosa [87]. Galanin (GAL) is an orexigenic neuropeptide expressed by a 
majority of the noradrenergic neurons in many tissues throughout the body, including the 
hypothalamus [88]. Pyroglutamylated RFamide peptide (QRFP) is another orexigenic 
neuropeptide and is produced in cells of the paraventricular and ventromedial nuclei of 

Figure 1. The relationship between IH and insulin resistance, glucose intolerance, and diabetes. IH,
frequently observed in SAS patients, is involved in the reduction in glucose-induced insulin secretion
from pancreatic β cells via down-regulation of CD38 [6]; up-regulation of Reg I and hepatocyte
growth factor in pancreatic β cells [76]; up-regulation of selenoprotein P and HIP/PAP in hepatocytes
via down-regulation of miR-203 [5]; up-regulation of adipokines, such as CCL2, TNF-α, and RETN
in adipocytes via down-regulation of miR-452 [78]; and up-regulation of myokines, such as IL-8,
osteonectin, and myonectin in skeletal muscle cells [79–81], all of which can contribute to insulin
resistance, glucose intolerance, and obesity [82].

5. Appetite Regulation in SAS Patients

In appetite regulation, hypothalamic neuroendocrine cells control homeostasis through
the production and secretion of neurohormones into the systemic circulation [83]. The
hypothalamus is a crucial relay region for integrating signals from central and peripheral
pathways in the neuronal circuits controlling energy homeostasis [84,85], being constituted
of distinct hypothalamic nuclei, including the arcuate nucleus (ARC), the paraventricular
nucleus, the lateral hypothalamic area, the dorsomedial nucleus, and the ventromedial
nucleus. In particular, the ARC is considered one of the best characterized areas of the
brain involved in the regulation of feeding behavior through the close coordination of
multiple neuronal populations [86]. The ARC contains two main neuronal populations
with opposite effects on the feeding behavior: the neurons that express orexigenic neu-
ropeptide Y/agouti-related peptide (NPY/AGRP) and those that express anorexigenic
proopiomelanocortin/cocaine- and amphetamine-regulated transcript (POMC/CART),
both of which constitute the central melanocortin system, with downstream target neurons
expressing the melanocortin 3 receptor (MC3R) and melanocortin 4 receptor (MC4R) [84].
NPY/AGRP neurons are inhibited by leptin, insulin, and the enteric hormone peptide YY
(PYY)3-36, and they are stimulated by ghrelin (GHRL), an orexigenic hormone released
from gastric mucosa [87]. Galanin (GAL) is an orexigenic neuropeptide expressed by a
majority of the noradrenergic neurons in many tissues throughout the body, including
the hypothalamus [88]. Pyroglutamylated RFamide peptide (QRFP) is another orexigenic
neuropeptide and is produced in cells of the paraventricular and ventromedial nuclei of the
hypothalamus in humans [89]. Galanin-like peptide (GALP) is a neuropeptide responsible
for energy homeostasis discovered in the porcine hypothalamus. GALP mRNA has also
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been detected in the human brain, and it has both species- and time-dependent effects on
feeding and body weight in rodents [90].

Appetite regulation governed by the central nervous system (CNS) responds to a short-
term signal from gastrointestinal (GI) hormones to control food intake and to a long-term
signal from adipose tissue to ensure energy storage [91]. In addition to the CNS, the enteric
nervous system (ENS) works together as the gut–brain axis, representing a bi-directional
signaling axis, along which neurotransmitters contribute to conveying information from
the gut to the brain via afferent fibers and sending appropriate signals from the brain via
efferent fibers to control gut secretion and motility [92]. The gut–brain axis is driven by
differential signals, including neural and hormonal signals, as a key mechanism to transmit
information from the gut to the brain via the vagus nerve [93–95].

Gut peptides released from enteroendocrine cells lying within the epithelium through-
out the GI tract activate vagal and spinal afferents indirectly via activation of neurons of
the ENS and relay nutrient-derived energy signals to the brain so that appetite and food
intake can be regulated appropriately through the gut–brain axis [96].

The regulation of appetite and food intake requires various circulating peptides and
hormones, including hypothalamic factors (POMC, CART, GAL, GALP, orexin, NPY, QRFP,
AGRP), gut hormones (GHRL, glucagon-like peptide [GLP-1], PYY, neurotensin [NTS]),
and adiposity signals (leptin, insulin). Within these peptides, the hunger signals AGRP,
GHRL, orexin, GAL, and NPY stimulate eating behavior, while satiety peptides POMC,
CART, QRFP, GLP-1, PYY, NTS, and leptin terminate food consumption.

In SAS, leptin, a satiety signal and a gut hormone, has been the most intensively
investigated. Most studies have reported significantly higher levels of serum leptin in SAS
than in controls [97–99]. However, no significant differences in serum leptin levels have
been reported between SAS and control groups [100,101]. A meta-analysis demonstrated
that plasma and serum GHRL levels had no significant differences between the SAS group
and the control groups [102]. There are no available data on the serum levels of POMC,
CART, GAL, GALP, AGRP, QRFP, and NTS in patients with SAS. It was reported that the
serum level of fasting GLP-1 was elevated in the SAS group without diabetes [103]. It was
reported that the plasma levels of NPY and PYY were similar to those of the controls [99].

6. IH in Neuronal Cells

The mechanism by which IH affects SAS patients’ appetite regulation has not been
fully elucidated. While many clinical studies have investigated the relationship between
appetite control and SAS by means of serum examination, few studies have investigated
the gene expressions of the major appetite regulatory genes in IH-treated cells.

We previously investigated the effect of IH on the expression(s) of major appetite
regulatory neuropeptide and receptor genes, such as POMC, CART, GAL, GALP, GHRL,
QRFP, AGRP, NPY, and MC4R using human neuronal cells (NB-1, SH-SY5Y, and SK-N-SH)
and an in vitro IH system, which is a controlled gas delivery system that regulates the flow
of nitrogen and oxygen to generate IH, and demonstrated that IH significantly increases
the mRNA levels of POMC and CART, which are anorexigenic neuropeptides, in human
neuronal cells. Subsequently, we conducted promotor assays, which indicated that the
IH-induced up-regulation of POMC and CART mRNAs is caused by the transcriptional
activation of the POMC and CART genes and that the −705 to −686 promoter region of the
POMC gene and the −950 to −929 region of the CART gene are essential for the IH-induced
promoter activity. Furthermore, using a computer-aided search, we revealed that both
the −705 to −686 promoter region of the POMC gene and the −950 to −929 region of the
CART gene contains possible GATA transcription factor binding sequences, and real-time
RT-PCR showed that among GATA family members, GATA2 and GATA3 mRNAs were
mainly expressed in human neuronal cells. Both human GATA2 and GATA3 siRNAs were
introduced into human neuronal cells, and they abolished the IH-induced up-regulation of
POMC and CART mRNAs, indicating that both GATA2 and GATA3 are key transcription
factors for the IH-induced up-regulation of POMC and CART mRNA expressions [104].
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These results suggest that IH can have an anorexigenic effect on patients with SAS through
the up-regulation of POMC and CART mRNA expression via GATA transcription factors
in neuronal cells. In terms of clinical research, to date, there are no available data on the
serum levels of POMC and CART in patients with SAS. Regarding the significance of GATA
factors in IH condition, Park et al. reported the involvement of Gata4 in the IH-induced
up-regulation of B cell lymphoma 2 (Bcl-2) and B cell lymphoma-extra large (Bcl-xL) in
mouse myocardial cells, although the mechanism by which IH activates Gata4 to induce
Bcl-2 and Bcl-xL has been elusive [105].

7. IH in Enteroendocrine Cells

Appetite and food intake are controlled not only by the CNS but also by the GI tract,
both of which work together as the gut–brain axis. We tested the hypothesis that IH could
have an anorexigenic effect on the ENS, as well as the CNS. In addition to neuronal cells,
using human and rodent enteroendocrine cell lines (Caco-2 and STC-1) and the same
in vitro IH system, we previously investigated the effect of IH on the gene expression (s)
of major appetite-inhibiting gut peptide hormones, PYY, GLP-1, and NTS, and explored
their gene regulatory mechanism in human enteroendocrine cells exposed to IH. This
study showed that IH stress up-regulates the mRNA levels of PYY, GLP-1, and NTS, which
are appetite inhibitory hormones, in enteroendocrine cells, suggesting that SAS patients’
appetite could be suppressed in the ENS as well as in the CNS [106]. Regarding the gene
regulatory mechanism, the promoter activities of PYY, Glucagon (GCG) (which encodes a
preprotein, part of which is cleaved into GLP-1), and NTS were not up-regulated by IH.
Moreover, real-time RT-PCR showed that the levels of miR-96, miR-527, and miR-2116,
which target and silence PYY, GLP-1, and NTS, respectively, in IH-treated cells were not
decreased by IH, indicating no involvement of microRNA-mediated posttranscriptional
regulation. Subsequently, considering the possibility that the promoter assays did not reflect
the authentic chromatin structure of nuclear DNAs (which can alter the transcriptional
efficiency), we treated human enteroendocrine cells with 5-azacytidine (5AZC), genistein,
trichostatin A (TSA), resveratrol, and quercetin (which affect the epigenetic regulation
of gene expression by modifying chromatin structure of nuclear DNAs) and indicated
that TSA significantly up-regulated the mRNA levels of PYY, GLP-1, and NTS even in the
normoxia condition and that 5AZC significantly decreased the mRNA levels of PYY, GLP-1,
and NTS in the IH condition. Furthermore, the combined treatment of TSA and 5AZC
recovered the IH-induced up-regulation of PYY, GLP-1, and NTS mRNAs [106]. These
results suggest that the IH-induced up-regulation of PYY, GLP-1, and NTS could be caused
by an alteration in the chromatin structure of the genes and that TSA has an effect similar
to IH and 5AZC has an effect opposite to IH on PYY, GLP-1, and NTS mRNA expressions.
In this study, we indicated the possibility that IH has an anorexigenic effect on SAS patients
by up-regulating PYY, GLP-1, and NTS gene expressions in enteroendocrine cells and that
IH can alter the chromatin structure of the PYY, GLP-1, and NTS genes.

From these results of our studies on IH-treated neuronal and enteroendocrine cells,
IH observed in SAS patients up-regulates the expression of POMC and CART mRNAs
in neuronal cells and PYY, GLP-1, and NTS mRNAs in enteroendocrine cells; therefore,
it is possible that IH itself suppresses SAS patients’ appetite through the gut–brain axis
(Figure 2).
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regulation of POMC and CART mRNA expression via GATA transcription factors in neu-
ronal cells [104] and the up-regulation of PYY, GLP-1, and NTS mRNAs through alteration 
in the chromatin structures of the PYY, GLP-1, and NTS genes in enteroendocrine cells 
[106], both of which suggest possible anorexigenic effects of IH on the gut–brain axis. 
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of the PYY, GLP-1, and NTS genes in enteroendocrine cells [106].
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involved in the reduction in glucose-induced insulin secretion by down-regulation of CD38
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regulation of miR-203 in hepatocytes [5]; the up-regulation of adipokines, such as CCL2,
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