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ABSTRACT

High-throughput sequencing of RNAs isolated by
crosslinking immunoprecipitation (HITS-CLIP, also
called CLIP-Seq) has been used to map global
RNA–protein interactions. However, a critical caveat
of HITS-CLIP results is that they contain non-
linear background noise––different extent of non-
specific interactions caused by individual tran-
script abundance––that has been inconsiderately
normalized, resulting in sacrifice of sensitivity. To
properly deconvolute RNA–protein interactions, we
have implemented CLIPick, a flexible peak calling
pipeline for analyzing HITS-CLIP data, which sta-
tistically determines the signal-to-noise ratio for
each transcript based on the expression-dependent
background simulation. Comprising of streamlined
Python modules with an easy-to-use standalone
graphical user interface, CLIPick robustly identifies
significant peaks and quantitatively defines footprint
regions within which RNA–protein interactions were
occurred. CLIPick outperforms other peak callers in
accuracy and sensitivity, selecting the largest num-
ber of peaks particularly in lowly expressed tran-
scripts where such marginal signals are hard to
discriminate. Specifically, the application of CLIPick
to Argonaute (Ago) HITS-CLIP data were sensitive
enough to uncover extended features of microRNA
target sites, and these sites were experimentally vali-
dated. CLIPick enables to resolve critical interactions
in a wide spectrum of transcript levels and extends
the scope of HITS-CLIP analysis. CLIPick is available
at: http://clip.korea.ac.kr/clipick/

INTRODUCTION

Complexity of RNAs in sequences and structures over-
whelms the limited number of primary transcripts, con-

ferring diverse functions through sophisticated regulatory
mechanisms (1). The roles of RNA-binding proteins (RBPs)
underscore this with their relatedness to phenotypic com-
plexity because they directly interact numbers of mRNAs
to regulate their splicing, stability, translation and/or cel-
lular localization (2). Depending on the target RNAs with
which a specific RBP interacts, the biological mechanisms
and consequences of RBP regulation can be determined;
thus, it is important to understand RNA–protein interac-
tions in biology and pathophysiology (1,2).

RNA–protein interactions was initially attempted to be
isolated by RNA immunoprecipitation (RIP) with a cog-
nate RBP antibody (3), but the technique raised the con-
cern of non-specific interactions introduced by in vitro rear-
rangement (4). To overcome this, the crosslinking and im-
munoprecipitation (CLIP) method has been developed to
secure RNA–protein complexes in living cells by irradiating
ultraviolet (UV) to induce covalent bonds (5). This method
allows extremely stringent conditions for immunoprecipi-
tation, minimizing non-specific interactions while specifi-
cally purifying RBP complexes. In combination with high-
throughput sequencing (HITS-CLIP, also called CLIP-
Seq), the recovered fragments of target RNAs have been
comprehensively identified, mapped, and compiled into
clusters (overlapping of reads) as read-counts on genome
sequences (6).

HITS-CLIP has been successfully applied to various
RBPs (7), including Argonaute (Ago), for the identification
of microRNA (miRNA) target sites (8) and even to the anti-
body recognizing N6-methyladenosine (m6A) for mapping
the RNA modification sites (9). However, not all these re-
gions covered by CLIP fragments were analyzed to repre-
sent canonical RBP binding sites (10), especially ambigu-
ous when non-canonical RBP interactions were marginally
mediated in lowly expressed transcripts (11). Increasing ev-
idences, especially for non-canonical miRNA binding sites,
showed the biological importance of the marginally effec-
tive non-canonical RBP interactions (11). Therefore, HITS-
CLIP analysis required to devise experimental and analyti-
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cal procedures for refining binding regions with higher res-
olution and dealing with the remaining background noise.

In lieu of this, sequences of CLIP reads were further
investigated to detect crosslinking-induced mutation sites
(CIMS) (12). During the preparation of CLIP sequencing li-
braries, reverse transcriptase (RT) often skipped crosslinked
residues and thus resulted in predominant deletion in
CIMS. By performing permutation and reclustering of
deleted sites, the statistical significance of the CIMS has
been estimated, enabling the mapping of specific RBP in-
teractions at a higher resolution (13). Alternatively, by cir-
cularly cloning truncated RT products caused by crosslink-
ing, the repertoire of informative CLIP reads has also been
expanded, achieving the individual nucleotide resolution of
UV crosslinking and immunoprecipitation (iCLIP) based
on the analysis of the crosslink-induced truncation sites
(14,15). Later, positioning of the truncated iCLIP fragments
was improved by accounting for fragment length-dependent
distribution changes (16). Moreover, the method was also
experimentally devised to specifically purify cDNA prod-
ucts using an antibody that recognizes BrdU, wherein BrdU
was introduced to cDNA during RT reaction (17).

The CLIP experiment was also modified to increase the
rate of CIMS by using the uracil (U) analog, 4-thiouridine,
in cultured cells (photoactivatable-ribonucleoside-
enhanced crosslinking and immunoprecipitation; PAR-
CLIP), resulting in the enhancement of crosslinking effi-
ciency and the subsequent production of U>C transitions
in CLIP reads (18). However, the usage of 4-thiouridine is
concerned in causing artificial side effects due to nucleoside
cytotoxicity (19). Furthermore, all of these CIMS in CLIP
reads were generally rare––the most of CLIP clusters
(∼80–92%) could not be analyzed by these features (12).
Therefore, to utilize the majority of CLIP reads, it is
also important to systematically analyze the distribution
of CLIP reads regardless of CIMS, eventually resolving
binding sites based only on the statistical observation of
read-counts and overlaps.

By examining the shapes and frequencies of aligned
reads, RBP binding sites were tried to be specifically de-
termined in the CLIP cluster via ‘peak calling’ (20,21).
The peak calling comprises three central steps: (i) select-
ing CLIP clusters with significant height over the back-
ground noise, (ii) refining the selected CLIP clusters into
peaks with defined positions and heights, and (iii) resolv-
ing regions within which RNA–protein interactions have
occurred. Initially, background clusters were filtered out
based on the iterative simulation of random CLIP experi-
ments with matched transcript profiles (8). Then, the shapes
of reads in the CLIP clusters were interpolated by cubic
splines, enabling to pinpoint the locations and heights of the
peaks. Similarly, the modified false discovery rate algorithm
(later implemented in the ‘Pyicoclip’ program (22)) deter-
mined the significance of CLIP clusters by enumerating the
random rearrangement of extended CLIP reads within spe-
cific exploratory regions based on the transcript annotation
(23). Probabilistic models of Poisson distributions were also
applied to filter out the background peaks globally by exam-
ining all other reads on the length of the whole transcrip-
tome and also locally by calculating the gene-specific fre-
quency, the total number of overlapping reads divided by

the length of the corresponding transcript (24). Taken to-
gether, a peak calling tool, named ‘CLIPper’ (HITS-CLIP
peak enrichment recognition), was implemented by interro-
gating the modified false discovery rate algorithm, the prob-
abilistic models of Poisson distribution, and the cubic spline
interpolation methods (25).

Alternatively, based on the observation that CLIP peak
heights (PHs) globally fit a zero-truncated version of neg-
ative binomial distribution (ZTNB), peak callers such as
Piranha (26) and PIPE-CLIP (27) used ZTNB for estimat-
ing background distribution by dividing genomic portions
into bins with fixed sizes. To separate CLIP peaks in abun-
dant transcripts, the CLIP tool kit (CTK) used the ‘valley
seeking’ algorithm, which calls peaks if valleys of certain
depths are identified on both sides, evaluating the statisti-
cal significance of PH using different background models
and scan statistics (28). Different from conventional peak
calling, the MiClip program refined the binding sites of
CLIP clusters by using Hidden Markov Models (HMMs)
and assessed the spatial dependency of CLIP clusters, which
were divided into bins of small lengths (29). Analogously,
dCLIP performed comparative analysis of CLIP clusters
by applying modified Bland–Altman (MA) normalization
and HMMs, enabling to identify differential binding re-
gions without calling peaks (30).

To accurately and sensitively resolve CLIP peaks, the
proper estimation of background is important. Indeed,
CLIP peak signals were found to be differentially affected
by non-specific interactions due to the variability in gene
expression (8). Non-linear noise was imposed in peak call-
ing analysis, initially attempted to be estimated based on
microarray data (8). Transcript abundances were also ac-
counted for by another peak caller, Piranha, as an external
covariate by employing zero-truncated negative binomial
regression (26). Additionally, recently optimized enhanced
CLIP (eCLIP) procedures also used sequencing results of a
size-matched input (SM-Input) to consider such non-linear
noises (31).

Despite the improved sensitivity brought by consider-
ing expression levels, which successfully discovered non-
canonical target sites of miRNAs in Ago HITS-CLIP data
(10), the expression-dependent simulation method for back-
ground noise was not generally implemented in a peak call-
ing analysis. Here, we devised and optimized the expression-
dependent background simulation of random CLIP, imple-
mented together with the cubic spline interpolation and
the peak width refining method, and ultimately offered
CLIPick, an expression-based deconvolution pipeline for
HITS-CLIP analysis. CLIPick outperformed other pre-
existing peak calling programs in sensitivity. By applying
CLIPick to Ago HITS-CLIP data, we even discovered the
additional new features of miRNA target sites, extended
AU-rich motifs of seed sites, particularly enriched in lowly
expressed transcripts. CLIPick includes several devised fea-
tures that improve sensitivity, accuracy and usability of the
peak calling process, significantly expanding the range of
HITS-CLIP analysis. CLIPick offers both an easy-to-use
standalone software with graphical user interface (GUI)
and a flexible streamlined Python modules, of which instal-
lation packages can be downloaded from: http://clip.korea.
ac.kr/clipick/.
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MATERIALS AND METHODS

Implementation

CLIPick was implemented by Python 2.7 or 3.5 using
BedTools (http://bedtools.readthedocs.io), matplotlib
(https://matplotlib.org/), Numpy (http://www.numpy.org/),
Scipy (https://www.scipy.org/) and Pandas (https:
//pandas.pydata.org/), Matplotlib (https://matplotlib.org/)
and PyQt5 (https://pypi.org/project/PyQt5/). Both im-
plemented Python modules and a standalone program
with a GUI are provided with their pre-compiled ver-
sions (http://clip.korea.ac.kr/clipick/) and detailed doc-
uments (https://naturale0.github.io/CLIPick/). Source
codes of the programs are accommodated by Git-
Lab (https://gitlab.com/CLIPick/), where Integrity of
the pipeline has been tested (passed with 95% cover-
age). Especially for CLIPick with GUI, instructions
are also provided (Supplementary Figure S1) to-
gether with video tutorial (Supplementary Video S1,
http://clip.korea.ac.kr/clipick/gui-tutorial.html).

Defining peaks of CLIP clusters

Based on the positions of aligned CLIP reads on the
genome (given as a BED file), CLIP clusters were defined by
using BedTools, which calculated compiled read-counts at
each nucleotide position (BEDGraph). In the case of single-
end reads, experimentally determined insert size during the
preparation of CLIP sequencing libraries was utilized by
defining only start position of mapped reads with exten-
sion of the given insert size. When the inserted size cannot
be definitely determined within intended read length, 50-
nt is used as a default value, as it was generally reported
in the standard CLIP experiments (5,6,8). Thus, any con-
tinuous overlaps of the read lengths was condensed into
one CLIP cluster, behaving that read-count should be reach
zero between clusters. Based on the distribution of CLIP
reads on each cluster, positions of peaks were defined by
cubic spline interpolation, enabling to select multiple peaks
in a given cluster depending on the extent of smoothness.
The cubic spline interpolation method was applied by us-
ing Scipy (scipy.interpolate.splrep) as described previously
(8). The amount of smoothness is adjusted by defining s pa-
rameter in splrep as 0 (no smoothing), m-sqrt(2*m) (weak),
m (moderate) or m+sqrt(2*m) (strong), where m is the num-
ber of datapoints in the BEDGraph. s = m-sqrt(2*m) is
recommended as a default smoothing value for CLIPick,
because increasing the smoothness more than weak did not
improve or change the performance in general (Supplemen-
tary Figure S5E). By determining the derivative of the func-
tion at each point of the interpolation and locating the point
where the derivative became zero, the location and height of
peaks per cluster were calculated.

Expression-dependent background simulation

The CLIP cluster could be derived from transient non-
specific RNA–protein interactions, which are known to cor-
relate with transcript abundance (8). Therefore, expression-
dependent background noise was estimated by iteratively
simulating random CLIP for each transcript. For transcript

abundance, mRNA expression data were provided for each
transcript i (annotated in RefSeq) either with normalized
probe intensity from microarrays (NPi ) or with the RPK Mi
(Reads Per Kilobase Million) value from RNA-Seq exper-
iments. Then, expected read-counts for transcript i (ERi )
were calculated by multiplying the total read count from
actual CLIP experiments (Rtotal) with the fraction of the ex-
pected fragment number of transcript i in the transcriptome
(EFi/

∑
EFn) as follows:

E Ri = Rtotal × EFi∑
EFn

EFi = NPi × Li
Isize

or RPMi

The expected fragment number of transcript i (EFi ),
which accounts for its length and abundance, was estimated
by assigning NPi as the number for each transcript and
multiplying it by the number of fragments per transcript,
estimated by dividing the length of transcript i (Li ) with
the observed average size of fragments generated in RNase
treatment (Isize, 50 nt is used as a default value, generally
reported in CLIP experiments (5,6,8)). In the case of us-
ing RNA-Seq data, EFi was simply calculated from RPMi
(reads per million mapped reads), derived from RPK Mi
value in a baseline expression profile. As mRNA was frag-
mented in CLIP experiments, simulated fragments of tran-
script i were generated based on a Gaussian distribution
(mean = Isize, standard deviation = 20% of Isize, based on
observations in the RNase treatment of CLIP experiments)
until it reached the number of EFi .

To estimate background distribution, the immunoprecip-
itation process of CLIP was iteratively simulated until the
number of trials reached a user-selected number of times
(e.g. n = 1000, default value). The fragments of transcript
i were randomly chosen as many as ERi , only if the size
of the fragments was within an user defined range (between
lower and upper bound). After trimming the selected frag-
ments into the size of a given read length (except in cases
where the size of the fragment was shorter than the given
read length), they were aligned with their position in the
transcript i . Then, the maximum background cluster height
(maximum number of overlapping reads in each running)
was counted from the random alignment. By repeating this
procedure for every transcript, the P-values of correspond-
ing background PHs were differentially calculated. Based
on a user-defined P-value threshold (e.g.P < 0.05 as a de-
fault value), significant CLIP clusters, of which assigned P-
values for their heights were less than the threshold, were
ultimately deconvoluted.

Resolving width of deconvoluted CLIP peaks

As analyzed and validated previously (8), the relative dis-
tances of the deconvoluted CLIP clusters to peak positions
were compiled to refine putative regions of RBP interac-
tions. Adjustment of peak width was attempted by exam-
ining the performance of CLIPick and PH with variable
window size (200, 100, 50 and 20 nt) (Supplementary Fig-
ure S4). By narrowing down the size of the window to span
more than 95% of all the significant CLIP clusters, where
optimal tradeoff between precision and recall was achieved
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(proportion of true sites >60%, ratio of observed versus ex-
pected target sites >1.5, Supplementary Figure S4), RBP
footprints were resolved relative to peak positions, finally
offering the regions to be searched for RBP binding sites.
In other words, all CLIP clusters were compiled depend-
ing on relative positions from the selected peaks, then peak
width was determined by examining the fraction of over-
laps in each nucleotide relative to peak positions, at which
95% of clusters have larger size than the defined range rela-
tive to peak positions (as illustrated in outputs of CLIPick,
Figure 2E and F). Of note, all peak positions, deconvoluted
by CLIPick, were retained but only their widths were ad-
justed by this newly defined peak width, of which size was
statistically supported by 95% of significant clusters.

Datasets

For the validation of the CLIPick program, previously
verified CLIP results were used. Robust Ago HITS-CLIP
reads (8), which were reproducibly derived from experi-
ments using two different Ago antibodies [biological com-
plexity (BC) ≥ 2], were retrieved (http://ago.rockefeller.edu/
rawdata.php or http://ago.korea.ac.kr/Ago Clip data) by
downloading mapped results on the mouse genome (mm8)
within transcribed regions (RefSeq) or processing raw se-
quencing results (FASTQ files). To assess the performance
of CLIPick in parallel with CIMS analysis, raw sequenc-
ing data were processed by following the previously used
criteria (12,13). In brief, FASTQ files were initially filtered
based on quality scores (fastq filter.pl –f mean:0–24:20) and
collapsed (fastq2collapse.pl) (28). Then, the pre-processed
reads, of which length was stretched to the average size of
inserts (50 nt), were mapped to the mouse genome (mm10)
using the NovoAlign program (http://www.novocraft.com)
(Supplementary Table S1A) with the same parameters as
described previously (13). After selecting reads on the repro-
ducible clusters (BC ≥ 2) and annotated transcripts (Ref-
Seq), aligned Ago CLIP reads were finally generated as
BED or BAM files using BedTools and SAMtools (http:
//samtools.sourceforge.net/) and used for the rest of the
analyses. The matched expression profile of the P13 mouse
brain, measured by microarray, was obtained from the GEO
database (GSE16338).

Ago HITS-CLIP reads performed in the frontal cor-
tex (BA4 region, n = 5) of the human brain were down-
loaded from the GEO database (GSE52084) (32), mapped
using Bowtie2 (http://bowtie-bio.sourceforge.net/bowtie2/)
with the local alignment option, allowing one mismatch
in each seed (–local -N1) (Supplementary Table S1B) and
then polymerase chain reaction (PCR) duplicates in each
experiment were removed. After examining variability of
a result from each replicate (GSM1259105, GSM1259107,
GSM259109, GSM1259112 or GSM1259114) (Supplemen-
tary Figure S7B–F), all reads were compiled for the follow-
ing analysis (Supplementary Figure S7A). For CLIPick, a
matched expression profile of the normal BA4 region was
derived as the median value from 16 replicates of microar-
ray data (GSM86957–GSM86972) in the GEO database
(GSE3790) (33). Ago HITS-CLIP reads from human car-
diac tissues (GSE83410) were also mapped (Supplemen-
tary Table S2A) and analyzed by using the same meth-

ods, utilizing the reported abundance of miRNA families
(relative normalized seed abundance, Supplementary Table
S2B) (34). Transcript abundance of human heart was de-
rived from RNA-Seq Atlas (35), pre-built in CLIPick. Of
note, all peak calling programs used the CLIP reads derived
from expressed transcripts, at which the transcript level of
target genes was substantially measured.

eCLIP results (31) performed in HepG2 (n = 42)
and K562 (n = 60) were retrieved from ENCODE
project site (https://www.encodeproject.org/) with their nor-
malized outputs from CLIPper using size-matched in-
put control (SM-Input). RNA-Seq results from HepG2
(ENCSR329MHM) and K562 (ENCSR000AEL) were also
obtained by calculating average FPKM (Fragments Per
Kilobase Milliion) for background simulation of CLIPick.
Intron enrichment of CLIP reads relative to SM-Input reads
(intron enrichment) was calculated to identify eCLIP data
for cytoplasmic RBPs as previously reported (31).

Analysis of miRNA seed sites in Ago CLIP peaks

For the analysis of miRNA target sites in Ago CLIP peaks,
6mer (positions 2–7) or 7mer (positions 2–8) matches to
seed sequences were searched in Ago CLIP cluster regions
or derived from the miRTCat database (http://ago.korea.ac.
kr/mirtcat/) (36). Ago CLIP peaks and miRNA target sites
were visualized as a heat map indicating gene expression
or PH using the UCSC genome browser (http://genome.
ucsc.edu/) or Treeview (http://rana.lbl.gov/EisenSoftware.
htm), as described previously (8). Top 20 expressed miRNA
families were used as in Supplementary Table S1C. But
for Ago HITS-CLIP data from human brain, top 30 ex-
pressed miRNA families (∼80% of miRNAs) were used
according to the previous results (32). Ago HITS-CLIP
results from human cardiac tissues were also analyzed
with top 30 expressed miRNA families (Supplementary
Table S2B) (34). miRNA sequences were obtained from
miRBase (http://www.mirbase.org/). To examine the effects
of sequencing coverage on the peak analysis, given per-
centage of random sampling (25, 50 and 75%) was iter-
ated (n = 10) and analyzed by CLIPick and PH method
(Supplementary Figure S3). To visualize peaks, compiled
reads, and putative miRNA target sites on genome, In-
tegrative Genomics Viewer (https://software.broadinstitute.
org/software/igv/) was applied. For the analysis of adjacent
sequence motifs, WebLogo 3 (http://weblogo.threeplusone.
com) was used.

Comparison of CLIP peak calling programs

To compare the performance of different peak detec-
tion methods, CLIP peak callers were run under differ-
ent stringency of P-values. For analyzing overlaps of CLIP
peaks, we used P < 0.01 with default parameters un-
less otherwise indicated: CLIPick, default parameters in
GUI (P < 0.01) except for the robust Ago HITS-CLIP
data (8), where no smoothing (based on Supplementary
Figures S5 and 6) and 50 nt stretches of reads (insert
size of 50 nt, single-end reads) were used; CIMS analy-
sis (https://zhanglab.c2b2.columbia.edu/index.php/CIMS),
the same procedures and parameters as described previ-
ously (P < 0.01) (13); CLIPper (https://github.com/YeoLab/
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clipper/wiki/CLIPper-Home), –FDR 0.01 –binomial 0.01
–poisson-cutoff 0.01; Piranha (http://smithlabresearch.org/
software/piranha/), -s –b 20 –p 0.01; CTK (http://zhanglab.
c2b2.columbia.edu/index.php/CTK), default parameters
with valley depth 0.9 as described previously (P < 0.01) (28).
When a specific version of genome assembly is required,
LiftOver (https://genome.ucsc.edu/cgi-bin/hgLiftOver) was
used to convert genomic coordinates of mapped reads. In
the case of using expression profiles as covariates for the Pi-
ranha program, a baseline expression profile corresponding
to each binned position was generated and used (derived
from GSE16338 for Ago HITS-CLIP data, mouse brain).
When peaks were linearly filtered, PH > 6 was used as a de-
fault cutoff based on ZTNB analysis unless otherwise indi-
cated. Positional comparison of CLIP peaks was performed
for the results from different programs, wherein overlaps in
genomic coordination were considered as sharing at least
1 nt between defined peak widths. To properly compare
the result from CIMS analysis, realigned reads from the
NovoAlign program were used as recommended (12,13). In
the case of examining precision versus recall for peak call-
ing programs, Ago HITS-CLIP data from moue brain were
used (8). Top 20 miRNA target sites (6mer seed sites) were
searched within the same window sizes (the peak width de-
termined by CLIPick) and their proportion of peaks was
calculated by averaging ratios in 100 nt window, plotted
with the number of significant peaks for different programs
with varying P-value thresholds (derived from the results
running with P < 0.1).

For Ago HITS-CLIP from human brain (32) and heart
(34), 6mer sites of top 30 expressed miRNAs were ex-
amined within peak widths determined by each program
otherwise indicated. For the comparison between CLIPick
and CLIPper (with SM-Input), eCLIP data for cytoplas-
mic RBPs were retrieved from ENCODE based on intron
enrichment values (Supplementary Figure S8A), selecting
FXR1 (ENCSR774RFN), HNRNPA1 (ENCSR769UEW)
and HNRNPU (ENCSR520BZQ) (intron enrichment =
0.262, 0.563 and 0.662, respectively). For the application
of CLIPick, aligned reads from the eCLIPs were used
from BAM files (FXR1; ENCFF070XXP, HNRNPA1;
ENCFF963VIU, HNRNPU; ENCFF881JZG) and further
selected to be mapped on expressed transcripts (average
FPKM>0) in the corresponding cell line, HepG2 or K562.
Because of the similarity (median = 1 749 167 ± 50 000) in
total counts of mapped reads (Rtotal), additional 24 eCLIP
data (n = 25, in case of including eCLIP data for HN-
RNPA1) from HepG2 (n = 80, including all replicates) were
attempted to be analyzed by CLIPick (Supplementary Fig-
ure S8C and D). After narrowing down to 10 eCLIP data
for cytoplasmic RBPs (intron enrichment < 0.84), analy-
sis of relative abundance between CLIPick (P < 0.01) and
CLIPper with SM-Input (enrichment relative to SM-Input
> 0, P < 0.01) was performed. For analyzing accuracy of
the selected eCLIP data (BED files) for cytoplasmic RBPs
(FXR1; ENCFF963VIU, HNRNPA1; ENCFF070XXP,
HNRNPU; ENCFF881JZG), a known binding site of each
RBPs (ACUK or WGGA; FXR1 (37), UAGG; HNRNPA1
(38,39), GUGUG; HNRNPU (40)) was used. Distribution
of transcript abundance within which eCLIP peaks were se-
lected by CLIPper with SM-Input (enrichment relative to

SM-Input > 0, P < 0.05) or CLIPick (P < 0.05) was ex-
amined for every available eCLIPs in ENCODE (n = 102),
which included ones analyzed by CLIPick (n = 27; hepG2,
n = 2; K562), and depicted as a box plot (Supplementary
Figure S9).

Meta-analysis of miRNA-mediated global target repression

Meta-analysis was performed by obtaining published com-
piled data, comprising normalized microarray data from 74
different miRNA or siRNA transfections as described pre-
viously (41). Based on nucleotides at position 9 or 10, dif-
ferent sets of transcripts with corresponding miRNA seed
sites (7mer, positions 2–8) were separately examined by cu-
mulative fraction analyses depending on fold change (log2
ratio). To delineate the compounding effects of multiple
sites on target repression, transcripts with only one site
of interest were analyzed in the cumulative distribution.
Kolmogorov–Smirnov tests (KS tests) were performed us-
ing Scipy [scipy.stats.ks 2samp].

Construction of luciferase reporters

To measure the efficiency of miRNA-mediated gene
silencing, the psiCheck-2 vector (Promega) was used
to construct luciferase reporters as described previ-
ously (42). In the 3′-UTR of synthetic Renilla lu-
ciferase, following sites were inserted. In general,
synthetic duplex oligos (Bioneer, Korea) containing
various target sites for miR-124 (8mer-AA, forward:
5′-TCGAGAAGTGCCTTAAAGTGCCTTAGC-3′,
reverse: 5′-GGCCGCTAAGGCACTTTAAGGCACTTC-
3′; 9merC-C, forward: 5′-
TCGAGCCGTGCCTTACCGTGCCTTAGC-3′, reverse:
5′-GGCCGCTAAGGCACGGTAAGGCACGGC-
3′; 10merCG, forward: 5′-
TCGAGGCGTGCCTTAGCGTGCCTTAGC-3′, reverse:
5′-GGCCGCTAAGGCACGCTAAGGCACGCC-
3′; 8mer-GC, forward: 5′-
TCGAGCGGTGCCTTACGGTGCCTTAGC-3′, reverse:
5′-GGCCGCTAAGGCACCGTAAGGCACCGC-
3′) and for miR-9 (8mer-AA, forward: 5′-
TCGAGAAACCAAAGAAAACCAAAGAGC-3′, re-
verse: 5′-GGCCGCTCTTTGGTTTTCTTTGGTTTC-
3′; 8mer-CC, forward: 5′-
TCGAGCCACCAAAGACCACCAAAGAGC-3′, re-
verse: 5′-GGCCGCTCTTTGGTGGTCTTTGGTGGC-
3′; 10merUA, forward: 5′-
TCGAGTAACCAAAGATAACCAAAGAGC-3′, re-
verse: 5′-GGCCGCTCTTTGGTTATCTTTGGTTAC-
3′; 8mer-AU, forward: 5′-
TCGAGATACCAAAGAATACCAAAGAGC-3′, reverse:
5′-GGCCGCTCTTTGGTATTCTTTGGTATC-3′) were
cloned into the psiCheck-2 plasmid through XhoI and
NotI sites.

Luciferase reporter assays

Luciferase reporter assays were performed as described
previously (42). In brief, psiCheck-2 plasmids (Promega)
were co-transfected with duplexed miRNAs into HeLa

https://github.com/YeoLab/clipper/wiki/CLIPper-Home
http://smithlabresearch.org/software/piranha/
http://zhanglab.c2b2.columbia.edu/index.php/CTK
https://genome.ucsc.edu/cgi-bin/hgLiftOver
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cells (ATCC CCL-2) using Lipofectamine 2000 (Invitro-
gen) following the manufacturer’s protocol. HeLa cells were
maintained in Dulbecco’s modified Eagle’s medium (Gibco)
supplemented with 10% fetal bovine serum (Gibco),
100 U ml−1 penicillin and 100 �g ml−1 streptomycin at 37◦C
with 5% CO2 incubation. Custom RNA synthesis services
of Bioneer (Korea) were used for constructing miRNAs
(mmu-miR-124, mmu-miR-9) according to the sequences in
miRBase. miRNA duplexes were produced in vitro by the
following reaction: 90◦C for 2 min, 30◦C for 1 h and 4◦C
for 5 min. Twenty-four hours after the transfection, rela-
tive activity (Renilla luciferase activity normalized to firefly
luciferase) was measured by the Dual-Luciferase Reporter
Assay System (Promega) with the GloMax-Multi Detection
System (Promega) with replicates (n = 6) according to the
manufacturer’s protocol. Ultimately, half inhibitory con-
centration (IC50) was calculated by performing non-linear
least squares fitting for the sigmoid function using Scipy
[scipy.optimize.curve fit].

RESULTS

Overview of CLIPick

In HITS-CLIP analysis, clusters (overlapping of aligned se-
quencing reads) were interpreted as signatures of consistent
RNA–protein interactions in vivo (7). In contrast to clus-
ter signals derived from analogous ChIP-Seq experiments,
where the interactions occurred in even amounts of DNA,
read-counts of CLIP clusters and their backgrounds were
differentially generated depending on the level of transcripts
(e.g. high expression versus low expression, Figure 1A).

For this reason, a peak calling program, named
‘CLIPick,’ was developed to evaluate the significance of
peak signals based on expression-dependent background
simulation. CLIPick is organized into three main steps (as
schematically represented in Figure 1B): (i) refining CLIP
clusters (overlapping reads) into peaks with defined posi-
tions and heights, (ii) selecting CLIP peaks with significant
height over the estimated background noise, (iii) resolving
RBP footprint regions as peak widths within which RNA–
protein interactions were mediated. First, from aligned
CLIP reads (Figure 1C, upper panel), CLIPick interpo-
lates the distribution of CLIP clusters with cubic splines,
thus enabling to pinpoint peak positions and heights of the
clusters based on read-counts (Figure 1B, left panel). Sec-
ond, CLIPick uses matched expression profiles either de-
rived from RNA-Seq or microarray experiments (Figure
1C, lower panel) and iteratively performs in silico random
CLIP (Figure 1D) to evaluate the probability of PHs that
can be observed significantly by chance (e.g. P < 0.05, n
= 1000). Therefore, CLIPick can determine the significant
threshold of PHs differentially by considering the abun-
dance and length of each transcript (Figure 1B, middle
panel). Third, with selected peaks, the relative distribution
of CLIP clusters from peak positions is examined to resolve
the regions of RBP footprints, narrowing down the rela-
tive size of the window from peak positions (peak width)
where it covers the majority of CLIP clusters (95%; Figure
1B, right panel). Details of algorithms were described in the
‘Materials and Methods’ section.

As a standalone program with a GUI, CLIPick software
takes inputs with aligned CLIP reads, transcript annota-
tion and matched expression profiles (Figure 1C and Sup-
plementary Figure S1A–C). Separately, streamlined Python
modules used in CLIPick were also offered for the ad-
vanced utility (Figure 1E, details are described in the
CLIPick project website; http://clip.korea.ac.kr/CLIPick/).
Users should provide aligned CLIP reads either in single-
end or paired-end reads (BED format) with notice of the
mapped reference genome (RefSeq annotation, Supplemen-
tary Figure S1A). Transcript annotation can be either up-
loaded or selected in CLIPick, where the several annota-
tions of the human and mouse genomes (e.g. RefSeq for
mm10 or hg38) were available. PCR duplicates also could be
processed either by looking at both start and end positions
(generally for paired-end reads) or start position only (gen-
erally for single-end reads). Users could adjust the amount
of smoothness for the interpolation (e.g. ‘moderate’, default
option in CLIPick), controlling tradeoff between closeness
and smoothness of fit to find optimal peaks. If the length
of mapped read was not the same as the actual fragmented
RNA in the case of single-end reads, CLIPick offered an
option to extend its mapped reads up to the given size
of stretch (e.g. 50 nt was used for the robust Ago HITS-
CLIP dataset (8)), recommended to use the average frag-
ment size estimated during the preparation of HITS-CLIP
experiments. Types of matched expression data (microarray
or RNA-Seq) should be instructed to CLIPick (Supplemen-
tary Figure S1B). In the current version of CLIPick, expres-
sion data for eleven human tissues were already available
(prebuilt from RNA-Seq Atlas (35)) or could be uploaded
by users.

For the accurate simulation of CLIP experiments, con-
ditions of preparing HITS-CLIP libraries, such as the av-
erage size of inserts (which can also be further defined as
lower and upper bound, mimicking size selection in CLIP
experiments), should be provided with the read length (Fig-
ure 1F and Supplementary Figure S1C). Furthermore, for
the flexibility of stringency in the deconvoluting and resolv-
ing process, default parameters, such as the P-value cutoff
(0.05), number of iterations (n = 1000), and coverage used
for refining peak width (95%), are adjustable. CLIPick of-
fers options to select several types of outputs either in text or
figures (Figure 2A; Supplementary Figure S1D and E). In
addition to summary as a text, detailed information about
identified significant peaks is provided, containing all ge-
nomic locations of resolved RBP footprints (as refined peak
width), peak positions, PHs and P-values, together with the
abundance of mRNA transcripts at which the correspond-
ing peaks resided (Figure 2B). As a report of expression-
based background simulation, the number of significant
CLIP peaks depending on the determined P-value thresh-
old is represented as a cumulative distribution (Figure 2C).

The application of CLIPick to the robust Ago HITS-
CLIP data (8), which were derived in single-end reads of
∼50 nt insert size, selected 23 876 peaks (P < 0.05) from 61
554 raw peaks (Figure 2C). Furthermore, the selected peaks
were also graphically plotted on genomic coordination in
comparison with all peaks (Figure 2D). Finally, output fig-
ures that indicated RBP footprints were offered as a part of
the process to refine the width of the deconvoluted peaks,

http://clip.korea.ac.kr/CLIPick/
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Figure 1. CLIPick overview. (A) Different extent of non-specific CLIP peaks caused by varying transcript abundance [CLIP reads on highly expressed
mRNA (upper panel) versus lowly expressed mRNA (lower panel)] is schematically represented to determine the different stringencies of cutoffs. (B)
Summary of three central peak calling steps. Positions of peaks, defined by cubic-spline interpolation, are displayed with both arrows and dotted lines.
Cutoffs used for deconvolution are represented as dotted arrows. Compilation of selected significant clusters relative to peak positions is indicated and
used to refine the peak widths of CLIP footprints (denoted as a double-headed arrow in the filled box, covering ∼95% of selected clusters). (C) Diagrams
illustrate the required inputs for CLIPick comprising HITS-CLIP data (BED format of aligned reads, upper panel) and a matched expression profile
(RNA-Seq or microarray, lower panel). (D) Illustration of expression-based background simulation, referred to as ‘in silico random CLIP,’ shows iterative
processes of random fragmentation, random selection as many as expected read-count (ERi) and calculation of maximum height distribution (n = 1000, P
< 0.05, used as default parameters). Details in ‘Materials and Methods’ section. (E) Python modules implemented and provided in CLIPick. (F) Adjustable
parameters shown in the CLIPick GUI for in silico random CLIP simulation.
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Figure 2. CLIPick outputs. (A) A screen shot of the CLIPick GUI for choosing output options (texts and figures). (B) Output text describing selected
significant peaks, comprising genomic coordinates of the peak width (resolved footprints), position and height together with estimated P-values. Moreover,
names (RefSeq) and mRNA abundance are also provided. Partial results from Ago HITS-CLIP data are shown. (C) Cumulative distribution of the number
of peaks was plotted depending on P-values assigned by the background simulation. As an example, the result from the robust Ago HITS-CLIP peaks (n
= 61 554, derived from single-end reads of ∼50 nt insert size) is represented with P-value cutoffs (indicated as a red dotted line, P < 0.05, n = 23 876).
(D) Graphical output of selected peaks. Significantly called peaks (P < 0.05, colored in red) are plotted on a genomic coordination together with all peaks
(colored in black). Partial results from Ago HITS-CLIP data are shown as an example. (E and F) Figures indicating footprint analyses were provided
to refine width of the significantly selected peaks, which covered 95% of the selected clusters (0.95 in fraction), shown separately for upstream (E) and
downstream (F) regions from the peak positions. As a result, regions spanning −48 to +40 (relative position from the peaks) were resolved as peak widths
indicating Ago footprint regions.

which cover 95% of the clusters. As a result, regions span-
ning −48 to +40 (relative position from the peaks) were re-
solved as Ago footprint regions (Figure 2E and F). Similar
results with 18 100 peaks (P < 0.05) and 59 nt peak width
(−32 to +26) were also obtained when the size of insert was
not stretched to 50 nt (Supplementary Figure S2A–C).

CLIPick sensitively and accurately defines RBP footprints in
a broad range of expression

To evaluate the results from CLIPick, the selected peaks (n
= 18 100, P < 0.05) from the robust Ago HITS-CLIP data
(8) were examined for the prevailing binding sites of miR-
124, relative to peak positions (Figure 3A). There, 7mer seed
sites (positions 2–8) were enriched near the selected peaks
(excess kurtosis [k] = 1.45), more leptokurtic than the distri-
bution of width of all CLIP clusters (k = −1.39 versus −1.2
in uniform distribution). Within a 100-nt distance from the
peak position (from −100 to +100), miRNA binding sites
were observed (n = 1120, true positives) ∼5 times more than

expected (n = ∼221, false positives). However, the resolved
footprints by CLIPick (from −32 to +26, n = 779) showed
∼12 times more binding sites than expected (n = 64, cal-
culated as explained in Figure 3A legend). The results indi-
cated that the refined width by CLIPick outperformed with
92.4% precision (improved from 83.5% in ±100 nt windows)
while preserving sensitivity (69.6%) and specificity (71.0%)
(details are described in Figure 3A legend). Moreover, tran-
scripts containing the deconvoluted peaks with binding sites
showed a wide range of expression levels, often observed in
low abundance (Figure 3A).

When Ago CLIP peaks were inspected across the
genome-wide landscape (Figure 3B), PH had the propensity
to be affected by gene expression levels (Figure 3C). How-
ever, CLIPick properly deconvoluted peak signals consid-
ering non-linear noise from transcript abundance (Figure
3D), which was especially evident for the selected peaks in
lowly expressed (Figure 3B–D, lower panel of zoomed inset)
versus highly expressed regions (Figure 3B–D, upper panel
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Figure 3. CLIPick enables the deconvolution of peaks in lowly expressed transcripts. (A) Deconvoluted peaks (CLIPick, 18 100 peaks, P < 0.05) from
robust Ago HITS-CLIP reads (66 266 peaks), where the size of insert was not stretched to 50 nt, were examined for miR-124 binding sites (7mer seed
sites, −100 to +100, n = 1120) within refined footprint regions (−32 to +26, indicated by the blue double arrow, n = 779) relative to peak positions.
Transcript expression levels are represented by different intensities of gray coloring as indicated (0–3000, normalized probe intensity, microarray). Of note,
the expected number of 7mer sites in footprint regions (−32 to +26) is ∼64 = [18 100 (total peaks) × 58 (window size)]/47, but 779 sites were observed.
Since the expected number of sites in the given interval (±100 nt) is ∼221 = (18 100 × 200)/47, the resolved peak width (−32 to +26) was estimated to
perform 92.4% precision [779/(779 + 64)], 69.6% sensitivity (779/1120) and 71.0% specificity [(221 − 64)/221]. (B and C) Genome-wide mapping of all
Ago CLIP peaks (n = 66 266) with defined heights (B) and matched mRNA expression level (C) are displayed as intensity as in (A). Chromosome numbers
are indicated. (D) The same analysis as (B) except for Ago CLIP peaks after the deconvolution (n = 18 100, P < 0.05). Representative examples of peaks
are shown in the zoomed inset (B–D). (E) Number of peaks depending on the level of located mRNA transcripts [log10(normalized probe intensity)] is
plotted before (all peaks, n = 61 554, considering ∼50 nt insert size in single-end reads) and after the deconvolution (CLIPick, n = 23 876), compared with
applying static threshold of PH (PH > 6, n = 14 790, determined by ZTNB as equivalent to P < 0.05). (F) The same analysis as (E) but represented as a
cumulative fraction.

of zoomed inset). Indeed, the distribution of CLIP peaks
was skewed toward the high mRNA level, implicating the
existence of bias compounded by mRNA abundance (Fig-
ure 3E). Such bias became more distinct when the global
threshold of PH (PH > 6, determined by ZTNB of all CLIP
peaks as equivalent to P < 0.05) was applied. In compari-
son, CLIPick (23 876 selected out of 61 554 peaks, P < 0.05)
found more peaks in lowly expressed transcripts as a con-
sequence of normalizing the bias toward high expression,
but still enable to select large number of peaks in highly ex-

pressed transcripts (Log10(mRNA level) = ∼4–4.5) compa-
rable to the PH method (Figure 3E). The relative enrich-
ment of peaks in low expression was also significantly ob-
served in CLIPick by cumulative distribution analyses (Fig-
ure 3F, P < 0.01, KS test, CLIPick versus all peaks). All
these results demonstrate that CLIPick can specifically re-
solve RBP binding regions with increasing accuracy and
sensitivity. This is presumably due to its ability to normalize
expression-dependent bias, particularly useful in identifying
CLIP peaks for low-level transcripts.
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CLIPick robustly outperforms other peak callers in both ac-
curacy and sensitivity

To prove the improvement of CLIPick over other peak
callers, corresponding peaks from different programs were
tested using the same CLIP dataset (realigned Ago HITS-
CLIP reads, Supplementary Table S1A) under the same
cutoff stringency (P < 0.01; Figure 4A). In the pairwise
comparison of peak positions, CLIPick covered most of
the peaks identified by other programs (∼63–97%). De-
spite the fact that only few peaks overlapped between CIMS
(∼27%) and Piranha (∼8%), CLIPick also shared ≥94%
of both peaks, representing its superior sensitivity which
could cover results from different peak callers. Of note,
CIMS has generally been reported to be accurate but called
fewer peaks because of the examination of rare events,
crosslinking-induced mutations (12,43). Thus, albeit pre-
cise, CIMS identified only a limited number of peaks (n =
249), raising concerns about its performance in recall. The
same problem in sensitivity was observed for Piranha (n =
532), of which peaks were still restricted regardless of us-
ing expression profiles as covariates (+cov, n = 497). Al-
though CLIPper and CTK also exhibited superior perfor-
mance, its number of peaks (CLIPper; n = 20 780, CTK;
n = 16 883) was average ∼1.7 times (CLIPper; 1.51 times,
CTK; 1.87 times) less than that of CLIPick (n = 31 561)
with more than 65% overlap, indicating insufficient cover-
age of true positives. The similar results were also observed
for different Ago CLIP datasets derived from human brain
(left panel, Figure 4B) (32)–– CLIPick selected ∼1.5 times
more peaks (n = 39 432 versus n = 26 714) than CLIP-
per, which shared ∼34% more peaks with Piranha (77 ver-
sus 43%) than CLIPper, and ∼1.3 times more peaks than
CTK, which shared ∼9% more peaks with Piranha than
CTK––that supports the comprehensiveness of the peak
calling process in CLIPick (n = 39 432, P < 0.01). In ad-
dition, CLIPick was also applied to Ago CLIP data from
human heart (34), where CLIPick (n = 88 265, P < 0.01)
showed comparable sensitivity to CLIPper (n = 98 323, P
< 0.01) (right panel, Figure 4B).

Next, the accuracy of CLIPick was investigated for
the robust Ago CLIP dataset (8) by taking advantage of
miRNA binding sites (6mer seed sites), which could serve as
an objective estimation of precision (Figure 4C). As shown
in the ratio of seed sites of top 20 miRNAs (Supplemen-
tary Table S1C) within a refined peak width of CLIPick (89
nt, −48/+40), CTK outperformed in accuracy but selected
smaller number of peaks, which was ∼1.6 times less than
CLIPper and ∼2.4 times less than CLIPick (P < 0.1, the end
of the line, Figure 4C). Compared with CLIPIck, CLIPper
also showed limited potency in expanding sensitivity––both
CTK and CLIPper performed more accurately for a limited
number of peaks with low P-values, but the number of sig-
nificant peaks negatively correlated with accuracy. Includ-
ing PH methods (with global threshold), every pre-existing
peak calling program showed a decrease in accuracy that
was proportional to the increasing number of peaks, re-
sulted from lowering stringency of thresholds. However,
CLIPick consistently achieved high precision (0.63 ± 0.02)
throughout all acceptable P-value thresholds (all values
≤0.1). Even with the least stringent P-value cutoff (P < 0.1,

the end of the line), the accuracy shown in CLIPick was
maintained to the extent that is only observed with higher
P-value stringency in CLIPper (0.61, P < 0.0005). More-
over, under default P-value cutoff (P < 0.05), CLIPick sen-
sitively deconvoluted ∼1.4 times more peaks than CLIPper
and ∼2.4 times more peaks than CTK (Figure 4C).

Such improved accuracy and sensitivity of CLIPick
was hypothesized to be achieved by deconvoluting sig-
nals from expression-dependent background noises, sup-
ported by observing enhanced precision relative to PH
method––especially evident when analyzed from the lowly
expressed transcripts (Supplementary Figure S2D and E).
CLIPick also exerted robust performance, consistently be-
having accurate and sensitive peak calling rather than the
PH method regardless of sequencing coverage (Supplemen-
tary Figure S3), size of peak width (Supplementary Figure
S4) or the amount of smoothness in the interpolation (Sup-
plementary Figure S5). Of note, sequencing depth corre-
lated number of peaks with sustained accuracy in CLIPick
(∼0.61, P < 0.1, Supplementary Figure S3) but increas-
ing peak width did sacrifice specificity to enhance preci-
sion (with consistent sensitivity, n = 26 012, Supplementary
Figure S4). Thus, resolving the peak width by determin-
ing the window size that covered 95% of all the significant
CLIP clusters, was supported in CLIPick due to appropri-
ate tradeoff between precision and specificity (Supplemen-
tary Figure S4). The extent of smoothness did not affect the
accuracy of CLIPick, but impacting sensitivity––resolution
of the fitting determined the number of peaks in one clus-
ter, where increasing the smoothness could miss true posi-
tives (Supplementary Figure S6). Therefore, no smoothing
was used for robust Ago HITS-CLIP dataset due to its per-
formance in choosing large number of true positive peaks
(Supplementary Figure S5).

After validating the performance and set-up of CLIPick,
realigned Ago HITS-CLIP reads from mouse brain were
also analyzed to further compare with other peak callers
including CIMS, wherein CLIPick performed more ac-
curately than CLIPper throughout all ranges of P-value
thresholds (e.g. 0.56 versus 0.49, P < 0.05, Figure 4D). Al-
though only restricted to small number of peaks (<1000
peaks), Piranha showed to perform the most precisely
within top ranked peaks and CIMS showed similar accu-
racy with CLIPick (P < 0.05; inset, Figure 4D). By consid-
ering transcript abundance as a covariate (+cov), Piranha
was able to improve precision but the number was still much
smaller than that in CLIPIck (Piranha+cov, inset, Figure
4D). Furthermore, CLIPick was also validated to show su-
perior sensitivity with sustained accuracy for the Ago CLIP
results from human brain (32), where its accuracy within se-
lected peak widths were comparing with those determined
by other methods (Figure 4E). Of note, variability of exper-
imental replicates, derived from different patient samples,
was shown to confound the analysis of CLIP data from
human brain, wherein compiling of replicates could over-
come such fluctuation in the results (Supplementary Figure
S7). Similar results were also observed for the Ago CLIP
data from human heart (34), showing improved accuracy
of CLIPick comparing with others. In some cases, CLIPper
performed comparable (Figure 4E) to or even better sensi-
tivity (Figure 4D and F) than CLIPick, but the results were
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Figure 4. Comparative evaluation of CLIPick and other peak calling programs for precision and sensitivity. w(A) Ago CLIP peaks identified by the
indicated programs (P < 0.01) were analyzed for positional overlaps, and the pairwise comparison results are shown. Each panel indicates the ratio and
number of total peaks from one program (Y column) that are shared with another program (X row). From realigned Ago CLIP reads by NovoAlign
(Supplementary Table S1A), peak widths were refined by each program and used in the analysis as follows: CLIPick (74 nt; −40/+33), CLIPper (46 ±
21 nt), CTK (74 nt was used as CLIPick, since CTK could not define size of peak width), CIMS (42 nt), Piranha (24 ± 15 nt) and Piranha+cov (24 ±
15 nt, ‘+cov’ denotes running with covariate of transcript abundance). Of note, realignment of the reads by NovoAlign gave CLIPick to have different
peak width from the robust Ago HITS-CLIP results. (B) The same comparison analyses as performed in (A) except for the Ago HITS-CLIP from human
brain (left panel, details in Supplementary Table S1B) using CLIPick (79 nt; −41/+37), CLIPper (56 ± 30 nt), CTK (79 nt as in CLIPIck) and Piranha
(22 ± 8 nt). The same analyses were conducted for the data from human heart (right panel, details in Supplementary Table S2A) using CLIPick (47nt,
−26/+21), CLIPper (28 ± 18 nt), CTK (47 nt as in CLIPIck) and Piranha (26 ± 27 nt). The ratio is also denoted by a color code (upper panel) for
(A) and (B). (C) The fraction of peaks with miRNA seed sites (top 20 expressed miRNAs, Supplementary Table S1C; 6mers) in robust Ago CLIP reads
(http://ago.korea.ac.kr/Ago Clip data) is shown for different programs depending on varying thresholds up to P < 0.1. PH denotes ‘peak height,’ which
was used as a global cutoff in peak selection. To avoid bias from varying peak widths, 89 nt windows (−48/+40) determined by CLIPick were also used
for other programs. (D) The same analyses as performed in (C) except applied to the realigned Ago CLIP reads to include CIMS results. An inset figure
represented only up to 1000 peaks because numbers of significant peaks from using Piranha (P < 0.05), CIMS (P < 0.05), Piranha+cov (P < 0.05) were
relatively low. Although Piranha, CIMS and Piranha+cov were run with P < 0.05 as threshold, their top margins of P-values were often less than the
threshold. A total of 74 nt peak width (−40/+33), defined by CLIPick, was used for this analysis. (E) Similar analysis in (C) and (D) applied to the human
brain Ago HITS-CLIP datasets (Supplementary Table S1B) for top 30 expressed miRNAs (P < 0.1). For this analysis, peak widths determined by each
program were used as in (B). Piranha results were also examined after using peak widths of CLIPick (Piranha+CLIPick width). (F) The same analyses as
in (E) except for human heart (Supplementary Table S2). Details were described in ‘Materials and Methods’ section.

http://ago.korea.ac.kr/Ago_Clip_data
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always less accurate than CLIPick (Figure 4C–F). Notably,
Piranha became ∼2 or ∼3.5 times more accurate when its
peak widths were changed to those defined by CLIPick (Pi-
ranha+CLIPick width, Figure 4E and F), implicating the
importance of resolving the appropriate size of peak width
as implemented in CLIPick.

Beside Ago HITS-CLIP, 102 eCLIP results (42 from
HepG2 and 60 from K562 cells), processed by CLIPper
and further normalized by sequencing results of a size-
matched input (SM-Input) (31), were examined for the com-
parison. To be properly compared with CLIPick, that re-
quires an accurate gene expression profile, eCLIP data were
initially selected into only ones for the cytoplasmic RBPs
(HNRNPA1, FXR1 and HNRNPU) according to intron
enrichment values (Supplementary Figure S8A and B). In
the enrichment analyses of known binding sites of the se-
lected RBPs (ACUK or WGGA; FXR1 (37), UAGG; HN-
RNPA1 (38,39), GUGUG; HNRNPU (40)), CLIPick also
outperformed CLIPper (even with SM-Input normaliza-
tion) significantly in sensitivity and generally in accuracy,
selecting at least two times more peaks in all cases (Fig-
ure 5A–C) while exhibiting ∼1.3 times more improved pre-
cision throughout all ranges of P-value threshold in the
cases of HNRNPA1 (Figure 5A) and HNRNPU (Figure
5C). For FXR1 eCLIP, CLIPick outperformed within only
top ranked peaks of FXR1 eCLIP data and became slightly
less accurate after it reached the same number of peaks that
CLIPper with SM-Input called at P < 0.01 (Figure 5B). Af-
ter that, additional 26 eCLIP data (n = 27, including HN-
RNPA1 in Figure 5A) were selected based on their simi-
lar numbers in total read count (Rtotal) out of all data in-
cluding replicates (n = 80, HepG2) for CLIPIck (Supple-
mentary Figure S8C), showing that CLIPick tended to se-
lect more peaks in lowly expressed transcripts than CLIP-
per with SM-Input (Figure 5D). Notably, 10 eCLIP data for
cytoplasmic RBPs (intron enrichment <0.84) had average
3.48 times (±1.86) more peaks in CLIPick than in CLIP-
per with SM-Input (Supplementary Figure S8D). Such in-
creased sensitivity of CLIPick could be brought by the ca-
pability of selecting peaks in transcript with low abundance,
whereas all eCLIP results analyzed by CLIPper (with SM-
Input) showed that expression of their target transcripts
were relatively high in HepG2 (n = 80, Supplementary Fig-
ure S9A) and K562 (n = 108, including FXR1 and HN-
RNPU in Figure 5B and C; Supplementary Figure S9B).
Taken together, we concluded that CLIPick outperformed
existing peak callers in sensitivity with high precision, yield-
ing expanded numbers in the peak calling process.

CLIPick uncovers extended AU-rich motifs of miRNA seed
sites

As expected from expression-dependent deconvolution,
CLIPick was able to identify more true positives in lowly ex-
pressed transcripts, which was confirmed by estimating the
cumulative enrichment of seed sites in the robust Ago CLIP
dataset (especially evident for the transcripts ranked in low
25%, Figure 6A). Such improved performance of CLIPick
perpetuated to search any additional sequence feature of
miRNA binding sites. Focusing on miR-124, the nucleotide
composition in the adjacent positions of seed sites (6mer,

positions 2–7) was analyzed according to transcript levels
(Figure 6B and C). In low abundant transcripts (ranked in
low 25%), miR-124 seed sites (6mer, positions 2–7) seemed
to preferentially contain A or U in positions 9 and 10 as well
as known features––A in position 1 and a match in position
8 (G for miR-124, the rest of the nucleotide within the seed
region)––based on analyses of information content (Figure
6B, lower panel) and probability (Figure 6C, lower panel).
The extended AU-rich motifs were also confirmed for 7mer
seed sites in the transcripts of which expression ranked in
low 50% (Figure 6C, middle panel). Generally, the AU-rich
motifs in positions 9 and 10 were frequently observed for
other miRNAs (top 20 miRNAs, 8mer seed sites; Figure 6C,
upper panel), prevailing as much as A in position 1 in the
CLIPick-selected peaks (Figure 6D).

Next, the efficacy of miRNA-mediated target repression
was examined for the AU-rich motifs by analyzing com-
piled microarray data (41), which measured the global al-
teration of transcript abundance induced by expressing 74
different small RNAs. In the analysis of the cumulative frac-
tion depending on nucleotide composition in positions 9
and 10 (Figure 6E and F), putative miRNA targets (8mer
seed sites) with extended A or U seemed to be more sus-
ceptible, wherein the AU content significantly enhanced the
repression relative to the GC content in both position 9 (P
= 6.8 × 10−7, KS test, Figure 6E) and 10 (P = 8.5 × 10−7,
KS test, Figure 6F). To further confirm this, luciferase re-
porter assays were performed for miR-124 seed sites with
AA in positions 9 and 10, showing increasing efficiency of
inhibitory activity (8mer-AA, IC50 = 0.18 nM) compared
with GC (8mer-GC, IC50 = 5.96nM) and CG (10merCG,
IC50 = 4.83 nM) regardless of pairing potency (Figure 6G).
Furthermore, luciferase reporter assays for miR-9 (Figure
6H) also showed similar results––all extended AU-rich mo-
tifs (positions 9 and 10) improved miRNA-mediated silenc-
ing (10merUA, IC50 = 0.58nM; 8mer-AU, IC50 = 0.89nM;
8mer-AA, IC50 = 0.36 nM) relative to the other without any
A or U (8mer-CC, IC50 = 1.54 nM). Overall, CLIPick was
sensitive enough to discover extended AU-rich motifs of
seed sites in Ago HITS-CLIP data, supporting the strength
and usage of CLIPick in resolving specific interactions in
lowly expressed transcripts.

DISCUSSION AND CONCLUSION

Among features that influence peak calling procedures,
transcript abundance substantially correlates with non-
specific interactions in CLIP, exerting different signal-to-
noise ratios depending on the individual transcript level.
Since assessing CLIP peaks is crucial in determining precise
RBP binding sites (43), such non-linear background noise
must be taken into account to delineate their compounding
effects. Nevertheless, CLIP peaks have often been analyzed
without additional information of gene expression by try-
ing to indirectly infer a different statistical background on
a gene-by-gene basis (such as in Pyicoclip (22) and CLIP-
per (25)). Such inconsiderate normalization could sacrifice
sensitivity by using a stringent threshold for precision al-
though they could become specific. Particularly when the
background probability model was derived from an under-
lying distribution of all read-counts (26,27), it was not feasi-
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Figure 5. Comparative analyses of eCLIP results with CLIPick. (A–C) Analysis of precision and sensitivity of eCLIP peaks, previously analyzed and
normalized by CLIPper with SM-Input (blue line) (31) for HNRNPA1 (A), FXR1 (B) or HNRNPU (C), compared with results from CLIPick (red line)
using reported binding site (UAGG for HNRNPA1, ACUK or WGGA for FXR1 and GUGUG for HNRNPU). CLIPick used RNA-Seq data from the
corresponding cell lines (HNRNPA1; HepG2, FXR1; K562, HNRNPU; K562) as analyzed in Figure 4C. The same peak widths defined by CLIPick
(HNRNPA1; −38/+36, FXR1; −68/+54, HNRNPU; −46/+43) were used for CLIPper. Of note, these three RBPs were selected due to their preferential
interactions with mRNA in cytoplasm based on intron enrichment values (0.262 from HNRNPA1, 0.563 from FXR1 and 0.662 from HNRNPU; Sup-
plementary Figure S8). (D) Twenty-seven eCLIP data were analyzed by CLIPick in HepG2 (right panel, shaded in red), where abundance of transcripts
(log2(FPKM)) harboring the selected peaks were compared with results from CLIPper (with SM-Input, left panel, shaded in blue) and represented as box
plots. The rest of the analyses were also displayed in Supplementary Figure S9. Details were described in ‘Materials and Methods’ section.

ble to infer noise differentially for each transcript. Although
Piranha (26) and PIPE-CLIP (27) allow external covariates,
such as transcript abundance, by employing zero-truncated
negative binomial regression, they rather generally sacri-
ficed too much sensitivity for accuracy––calling much fewer
peaks than other programs (21,43).

Particularly in cases where CLIP sequencing reads con-
tain little noise, background estimation from all read
counts, used in ZTNB-based methods, could be inappro-
priate, requiring to separate background reads from the ma-
jority of signals in all reads. Of note, Piranha was initially
designed to be usable on general cases of RIP, intending to
deal with noisy data inherently derived from RIP-Seq. Thus,
Piranha may not be well tuned to analyze more specific
HITS-CLIP data. Furthermore, the bin size used for fit-
ting a ZTNB-based model is manually selected, which could
make the analysis variable depending on its size (21,43). In
lieu of this, simple changes of peak widths in Piranha to
the size that defined by CLIPick were observed to increase
the accuracy of Ago HITS-CLIP results (Figure 4E, Pi-
ranha versus Piranha+CLIPick width), suggesting that ad-
justment of peak width is also important determinant for

the performance of peak calling. Although CTK was gen-
erally accurate in our benchmark studies, CTK showed lim-
ited sensitivity comparing with CLIPick (Figure 4C, E and
F) and possibly had the same variability problem caused by
manually deciding its peak width (28).

By determining the signal-to-noise ratio for each tran-
script based on expression-dependent background simu-
lation, CLIPick can properly deconvolute RBP binding
sites. Based on the distribution of CLIP clusters, CLIPick
also statistically refines peak widths, within which RNA–
protein interactions have been occurred. CLIPick offers an
easy-to-use standalone program with a GUI and stream-
lined Python modules as a unified pipeline for peak call-
ing. CLIPick is generalized to accept either single-end or
paired-end CLIP reads. For the matched information of
transcript abundance, users can select corresponding gene
expression profiles listed in CLIPick (currently pre-built for
several human tissues from RNA-Seq Atlas (35)) or manu-
ally provide their own microarray or RNA-Seq results. Be-
sides the expression profile, matched IgG CLIP results have
been used often to estimate background control, but they
were unfavorably sparse and artificially over-amplified (31).
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Figure 6. Identification of the extended AU-rich feature of miRNA target sites by CLIPick. (A) Numbers of identified Ago CLIP peaks by CLIPick (P <

0.05) versus PH threshold (PH > 6), which contain 6mer (upper panel) and 7mer (lower panel) seed sites (top 20 miRNAs), were compared as cumulative
distribution depending on the expression level of located mRNA transcripts in the mouse brain. (B) Adjacent sequences of miR-124 6mer sites (positions
2–7) in the deconvoluted CLIPick peaks are represented as bits scores (analyzed by Weblogo 2.0), based on expression levels categorized as high 50% (n
= 1510, upper panel), low 50% (n = 230, middle panel) and low 25% (n = 16, lower panel) in (A). (C) The same analysis as in (B) except represented as
probability for 7mer sites (positions 2–8) of top 20 expressed miRNAs in low 25% (upper panel), 7mer sites of miR-124 in low 50% (middle panel, n =
121) and 6mer sites of miR-124 in low 25% (lower panel, n = 16). (D) Plotting of AU versus GC rich motifs in positions 1–10 of seed sites, identified in
the deconvoluted Ago CLIP peaks. (E and F) Meta-analysis of compiled microarray data showing the fold changes induced by the overexpression of 74
individual small RNAs. (E) Cumulative distributions are represented for transcripts containing 8mer seed sites of corresponding miRNAs with different
nucleotides in position 9; 8mer-9A (n = 1491), 8mer-9U (n = 1554), 8mer-9G (n = 952) and 8mer-9C (n = 933). Indicated P-value was from the KS test
between the combined distribution of 8mer-9A (A) and 8mer-9U (U) versus 8mer-9G (G) and 8mer-9C (C). (F) The same as (D) except for the analysis of
nucleotide composition at position 10. (G) Luciferase reporter assays for estimating the efficiency of suppressing 10mer (8mer-CG), 9mer (8mer-CC), 8mer-
GC and 8mer-AA sites by different concentrations of miR-124 (left panel). Sequences of the sites and corresponding half maximal inhibitory concentrations
(IC50) are indicated (right panel). (H) Same luciferase assays as performed in (F) except for miR-9 seed sites.
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Although sequencing of a size-matched input control prior
to immunoprecipitation is informative to improve the peak
calling process, shown in the eCLIP (31) and an HMM-
based peak calling method with individual crosslink site de-
tection (PureCLIP) (44), performing such matched experi-
ments with CLIPper is neither always feasible nor so much
beneficial in terms of accuracy and sensitivity as show in the
comparison (Figure 5 and Supplementary Figure S8). This
is likely due to relatively superior performance of CLIPick
in refining peak signals from lowly expressed transcripts
(Figure 5D and Supplementary Figure S9). In contrast to
the limited availability of the matched CLIP controls, gene
expression profiles were easily accessible for diverse tissues
and cell lines, thus generally applicable to normalize the va-
riety of CLIP results by simply utilizing the CLIPick pro-
gram.

CLIPick robustly outperformed other peak calling pro-
grams in terms of accuracy and sensitivity, regardless of
variability in sequencing depth (Supplementary Figure S3),
size of peak width (Supplementary Figure S4), or the
amount of smoothness in the interpolation (Supplementary
Figure S5), implicating that expression-dependent back-
ground noise matters the most. CLIPick was proven to be
especially good at detecting specific RBP interactions in
transcripts at low expression level where the signal-to-noise
difference is difficult to discriminate. With sustained accu-
racy, CLIPick identified at least 1.5 times more significant
peaks (P < 0.01) than CLIPper (Figure 4), of which core im-
plementation, Pyicoclip (22), had been reported to outper-
form in previous benchmark studies (43). CLIPick was also
able to determine the resolution of binding sites in CLIP
peaks by examining the distribution of CLIP cluster widths
(e.g. 95% of overlaps as default), within which RBP binding
sites were validated to be sensitively identified (69.6%) with
high accuracy (90.8%) and specificity (71.1%; Figure 3A).
Notwithstanding, other peak callers generally use a user-
defined size of peak widths (∼50–100 nt windows), often
neither optimized nor narrow enough to be accurate. More-
over, every peak callers including CLIPick requires to deter-
mine smoothness of the interpolation although amount of
closeness and smoothness of the fits is important for peak
calling process.

With combination of expression-dependent background
estimation and statistical determination of peak widths,
CLIPick enables to call more peaks with high resolution
and accuracy, informative enough to identify sequence fea-
tures of RBP interactions. Therefore, by applying CLIPick
to Ago HITS-CLIP data, we were able to discover and val-
idate extended AU motifs (positions 9 and 10) of miRNA
seed sites enriched in lowly expressed target transcripts. In-
triguingly, neither the extended AU motifs nor the well-
known feature of A in position 1 was observed to be en-
riched in the highly or moderately expressed transcripts
(ranked in high 50% of expression; Figure 6B and C, upper
panels). This could imply that lowly expressed miRNA tar-
gets might require additional features to be efficiently recog-
nized by Ago–miRNA complex because they are too rare in
abundance to be passively bound by Ago–miRNA. As it has
been practically validated, CLIPick analysis should be used
for revisiting CLIP data or applying forthcoming CLIP re-
sults to identify unknown or non-canonical features of RBP

binding sites, of which the signals are too marginal to be
detected by conventional peak callers, but biologically im-
portant to understand their mechanisms of RNA regulation
(11).

In summary, we developed an expression-based decon-
volution pipeline, named ‘CLIPick’, to sensitively resolve
HITS-CLIP peaks with ease, facilitating and expanding us-
age of HITS-CLIP for studying RBP regulations. CLIPick
showed the unprecedented sensitivity with sustained accu-
racy and usability which have not been offered by other
CLIP analysis programs. By applying CLIPick to Ago
HITS-CLIP data, we even discovered additional new fea-
tures of miRNA target sites, extended AU-rich motifs of
seed sites, especially enriched in lowly expressed transcripts.
CLIPick extends the current scope to a wide range of tran-
script levels and provides new opportunities to uncover de-
tailed characteristics of RBP binding sites that would oth-
erwise be invisible.
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