
Random Addition Concatenation Analysis: A Novel
Approach to the Exploration of Phylogenomic Signal
Reveals Strong Agreement between Core and Shell
Genomic Partitions in the Cyanobacteria

Apurva Narechania1,�, Richard H. Baker1,�, Ryan Sit1, Sergios-Orestis Kolokotronis1,3, Rob DeSalle1, and
Paul J. Planet1,2,*
1Sackler Institute for Comparative Genomics, American Museum of Natural History
2Department of Pediatrics, College of Physicians and Surgeons, Columbia University
3Present address: Department of Biology, Barnard College, Columbia University

*Corresponding author: E-mail: pjp23@columbia.edu.

�These authors contributed equally to this work.

Accepted: 12 November 2011

Data deposition: All alignments are available upon request from the authors.

Abstract

Recent whole-genome approaches to microbial phylogeny have emphasized partitioning genes into functional classes, often

focusing on differences between a stable core of genes and a variable shell. To rigorously address the effects of partitioning

and combining genes in genome-level analyses, we developed a novel technique called Random Addition Concatenation
Analysis (RADICAL). RADICAL operates by sequentially concatenating randomly chosen gene partitions starting with a single-

gene partition and ending with the entire genomic data set. A phylogenetic tree is built for every successive addition, and the

entire process is repeated creating multiple random concatenation paths. The result is a library of trees representing a large

variety of differently sized random gene partitions. This library can then be mined to identify unique topologies, assess overall

agreement, and measure support for different trees. To evaluate RADICAL, we used 682 orthologous genes across 13

cyanobacterial genomes. Despite previous assertions of substantial differences between a core and a shell set of genes for

this data set, RADICAL reveals the two partitions contain congruent phylogenetic signal. Substantial disagreement within the

data set is limited to a few nodes and genes involved in metabolism, a functional group that is distributed evenly between
the core and the shell partitions. We highlight numerous examples where RADICAL reveals aspects of phylogenetic behavior

not evident by examining individual gene trees or a ‘‘‘total evidence’’ tree. Our method also demonstrates that most

emergent phylogenetic signal appears early in the concatenation process. The software is freely available at http://

desalle.amnh.org.
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Introduction

In recent years, debates over the feasibility of the Tree of Life

(TOL) have taken center stage in the phylogenetic research
community (Ciccarelli et al. 2006; Bapteste et al. 2008).

With respect to the prokaryotic portion of this tree, evidence

for horizontal gene transfer (HGT) has polarized this debate

(Bapteste et al. 2009; Degnan and Rosenberg 2009). One

central issue is how best to combine information from indi-

vidual genes that may have divergent histories or whether to

combine them at all. The practice of concatenating gene

alignments to generate a putative species tree (Lerat et al.

2003, 2005; Susko et al. 2006) has yielded important in-

sights into microbial evolution, and many researchers agree

that even in the face of HGT, prokaryotic data sets often

have a ‘‘central tendency’’ (Bapteste et al. 2008).

A perceived drawback of the concatenation method is

the expectation that the process yields a single definitive tree

despite high levels of homoplasy and rampant incongruence
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among individual gene trees (Kubatko and Degnan 2007).
This problem is exacerbated for large genomic data sets con-

taining hundreds, or thousands, of genes (Rokas and Carroll

2006). Opponents of concatenation have pointed out that

the concatenated tree could be spurious, unreflective of un-

derlying diversity, and supported by inflated bootstrap val-

ues (Degnan and Rosenberg 2006). But concatenation is

more than the sum of its parts. Proponents maintain that

concatenated data can draw out mutually reinforcing (or
conflicting) character states that amplify one another’s his-

torical signal in an emergent phenomenon known as hidden

support (or conflict) (Gatesy et al. 1999; Gatesy and Baker

2005). This is especially important when a small gene size

limits the amount of phylogenetic information available

to resolve relationships among a large number of taxa

(Castresana 2007; Rasmussen and Kellis 2007; Galtier

and Daubin 2008). Overall, hidden support’s signal amplifi-
cation is expected to minimize the effects of HGTand noise.

Methods that probe the dynamics of concatenation at inter-

mediate stages may provide a perspective that illuminates

the benefits of emergent support while avoiding the tyranny

of ‘‘total evidence’’ (TE; Kluge 1997).

Another major question in concatenation analyses is

which of the many genes in a genome should be concate-

nated. Numerous studies emphasize the need to find a stable
core of genes with mostly congruent historical signal pres-

ent in most or all taxa under investigation (Makarova et al.

1999; Charlebois and Doolittle 2004; Shi and Falkowski

2008; Tang et al. 2010). Pursuing core genes is expected

to isolate vertical phylogenetic signal from the noise present

in a set of shell genes that are more readily exchanged

among bacteria. Some researchers have searched for the

core by probing genomes for genes with similar or congru-
ent information (Brochier et al. 2002; Ciccarelli et al. 2006),

others have suggested that genes involved in complex cel-

lular machinery, such as information processing genes that

code for components comprising transcriptional and trans-

lational macromolecular complexes, are more likely to be re-

fractory to HGT (Rivera et al. 1998; Jain et al. 1999; Daubin

et al. 2002). Disparate approaches to identifying the core

have arrived at the same or a similar set of genes dominated
by ribosomal proteins. Thus, phylogenies from these techni-

ques often agree. However, it is not clear what effect exclud-

ing shell genes has on phylogenetic inference, and the shell

is rarely analyzed on its own.

Here, we introduce a technique called Random Addition

Concatenation Analysis (RADICAL), a method that gener-

ates a library of trees along a set of random concatenation

chains varying from one gene to whole-genome concatena-
tion. RADICAL catalogs tree heterogeneity while allowing

for emergent support through concatenation. Moreover,

RADICAL monitors the dynamics of concatenation by calcu-

lating support statistics for candidate test topologies

assessed against the library of trees.

To evaluate RADICAL, we chose the cyanobacterial clade,
an ancient and diverse microbial phylum that through oxy-

genic photosynthesis was likely responsible for the oxidation

of the early atmosphere (Blankenship and Hartman 1998;

Whitton and Potts 2000). As with many microbial groups,

phylogenetic relationships among the cyanobacteria are

challenging because of substantial incongruence due in part

to HGT (Ochman et al. 2000; Nakamura et al. 2004). In an

attempt to overcome some of the difficulties presented by
gene tree diversity, Shi and Falkowski (2008) conducted an

analysis aimed at selecting genes with similar evolutionary

histories. Using principle component analysis to differentiate

congruent partitions, the authors identified 323 core genes

of a total of 682 fully represented orthologs across 13 se-

quenced cyanobacterial genomes. Here, we show that

when RADICAL is applied to genomic data from the cyano-

bacteria, random concatenation chains converge quickly on
stable relationships for the majority of nodes. Moreover,

with respect to the core versus shell distinction proposed

by Shi and Falkowski (2008), we find that the shell genes

recover the core topology with greater efficiency than the

core itself. Examination of the concatenation path and

associated statistics highlight examples where RADICAL re-

veals patterns not immediately obvious from either the in-

dividual gene tree or the TE approach. In addition, we
explore gene partitions based on broad functional catego-

ries and show that these are mostly in agreement—with

some notable exceptions. Finally, we present evidence that

hidden support does emerge on concatenation and that this

support builds early in the concatenation process.

Materials and Methods

Random Addition Concatenation Analysis

RADICAL creates a user-defined number of random parti-

tion concatenation paths. Each concatenation path consists

of a chain of sequentially added gene partitions in which no

gene is included more than once (fig. 1A). Every path ends

with a total concatenation of all of the genes in the data set,

which we refer to as the TE data set. At select points along

these chains, RADICAL calculates trees representing the
data concatenated to that point, creating a library of phy-

logenetic trees. The average level of topological agreement

between this set of trees and a reference topology is calcu-

lated at each concatenation point and then plotted across

the entire concatenation path. The resulting curve provides

a summary of how topological support, relative to the ref-

erence topology, builds during the concatenation process.

Because inference of large numbers of trees at numerous
concatenation points can be computationally demanding

(especially for phylogenetic reconstruction methods relying

on probabilistic inference, such as maximum likelihood [ML]

and Bayesian inference), RADICAL allows the user to sample

along the concatenation path using a step function that
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corresponds to a set number of genes. For instance, if this
function is set to one, then individual genes are added to

each concatenation step, but if the function is set to ten,

then ten genes are added to each concatenation point be-

fore a tree is recalculated. Stepping through the chains while

controlling the total number of chains constructed gives the

user the ability to sample the dynamics of concatenation

with great depth in cases where tree inference is computa-

tionally easy or reduce the number of trees sampled for
challenging data or demanding phylogenetic methods.

For all the trees generated at each concatenation point,

RADICAL compiles a list of all the unique topologies within

that sample and calculates the average Consensus Fork Index

(CFI) (Colless 1980) between this set of trees and a reference

topology. The normalized CFI measures the number of

identical nodes between any two topologies divided by the

maximum number of nodes possible in either tree and pro-
vides a straightforward measure of concordance among all

topologies created during the RADICAL process. It also is con-

sistent with other common measures of tree support, such as

the bootstrap (Felsenstein 1985) and jackknife (Farris et al.

1996), that express support as the percentage that a given

node is present in a sample of trees. A normalized CFI varies

between 0 and 1, where 0 indicates trees with no nodes in

common and 1 where all nodes are identical. To create
a ‘‘RADICAL curve,’’ the average CFI that is calculated at each

concatenation point is then plotted along the entire concat-

enation path from individual gene trees to the TE tree (fig. 1).

The RADICAL curve visualizes the dynamics of concatenation

and can be used to measure the extent of agreement be-

tween the data matrix and a chosen topology. When a hy-

pothesis is generally well supported by the data set, the

RADICAL curve is convex, often quickly approaching a fixation
point after which all subsequent trees mirror the reference

topology. But if the data set is composed of numerous genes

that are incongruent with the reference topology, the curve

will be linear or even concave (fig. 1B).

Generating a RADICAL curve may require a large number

of tree searches and considerable computational investment

depending on the data set size and concatenation interval.

In order to mitigate some of the computational burden,
RADICAL is designed to terminate its tree searches once

the trees have consistently converged on the reference to-

pology. RADICAL monitors the percentage of randomiza-

tions that produce the maximum CFI among all the

randomizations at a given concatenation point and will ter-

minate the search when this percentage is above a user-

specified amount for a user-specified number of consecutive

concatenation intervals. For example, if the user sets the per-
centage cutoff at 95% for five concatenation intervals, then

RADICAL will stop searching once 95% of the randomiza-

tions produce the TE tree for five consecutive concatenation

intervals. Because CPU requirements related to tree searches

increase linearly with concatenation size (supplementary

fig. S1, Supplementary Material online), the tree searches
for the largest concatenation points are the most computa-

tionally demanding. Therefore, even RADICAL runs that are

terminated near the end of the complete concatenation

path can substantially reduce the overall computational

requirements of the analysis.

In addition to measuring overall topological similarity,

RADICAL can assess the presence/absence of individual no-

des in the concatenation trees and plot the frequency of
a node’s occurrence along numerous concatenation paths.

RADICAL counts the number of times a given node appears

in all the trees at a given concatenation point and calculates

the average level of occurrence across all these randomiza-

tions. This value is then plotted on a graph in which the y axis

represents the average frequency of occurrence on a scale of

0–1 (0: the node never appeared in any of the randomized

data sets and 1: the node appeared in all the randomized
data sets) and the x axis represents the concatenation path

from smaller concatenation steps to TE.

Using these topology-based and node-based curves,

RADICAL produces two measures of overall tree and branch

support. First, the program estimates the total proportion of

concatenation space occupied by a tree or node as the area

under the RADICAL curve (AUC). RADICAL curves are

transformed such that the number of partitions at each
point is expressed as a fraction of the total available. For re-

lationships strongly supported by the data, the theoretical

maximum for the area under the RADICAL curve (AUC) is

one. The theoretical minimum is zero. The integration pro-

cedure does not model mathematical functions because the

concatenation dynamics can be complex and unpredictable.

Instead we used the empirical data, approximating the AUC

using trapezoidal integration. In cases where a large step
function lowers the resolution of the chain sample, RADI-

CAL employs a LOESS curve (Cleveland 1979) averaging

technique in R (http://www.r-project.org) and infers points

from a local nonlinear regression.

The second measure of support provided by RADICAL in-

volves calculating the number of partitions at which a given

topology or node either becomes fixed or disappears in the

concatenation population: referred to here as fixation and
degradation points, respectively. This measure can be com-

puted either for the entire tree or for the individual nodes.

A fixation point describes the minimum number of genes

required to always recover that tree or node. For instance,

if the fixation point for a tree or node is 30, then any com-

bination of 30 genes randomly selected from the overall

data set produces the tree or node of interest. Similarly,

the degradation point describes the minimum number of
genes needed to ensure that a given tree or node does

not appear in any random selection of that size.

RADICAL is written in Perl and employs external phyloge-

netic reconstruction programs, such as RAxML (Stamatakis

2006), GARLI (Zwickl 2006), or PAUP (Swofford 2003). It is
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FIG. 1.—RADICAL diagram. (A) A schematic of the RADICAL pipeline is shown for a hypothetical data set containing six taxa, four genes, and

three concatenation randomizations. Starting with a single gene, concatenation sets are created by randomly adding a single gene to the existing data

set. Each gene appears only once in any given randomization. Tree searches are conducted for each concatenation set. Therefore, for the three

randomizations illustrated here, RADICAL produces a total of 12 trees. The Consensus Fork Index (CFI), which measures the number of nodes in
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enabled for parallel handling of tree-building jobs across
a cluster that uses the Sun Grid Engine for job scheduling

and submission or on multicore architectures and can also

be used serially on a laptop or desktop computer. The soft-

ware is freely available under a GNU General Public License

at http://desalle.amnh.org. Though we chose ML here, it

is possible to use RADICAL with other phylogenetic optimal-

ity criteria, such as parsimony and Bayesian inference.

Some of the computational requirements associated with
a RADICAL analysis are presented in supplementary figure

S1 (Supplementary Material online).

The Cyanobacterial Data Matrix

We conducted a RADICAL analysis using an alignment of 13

cyanobacterial genomes provided by Shi and Falkowski

(2008). In their study, an all-against-all BLAST (Altschul
et al. 1997) was mined for reciprocal best hits using an E value

cutoff of 1 � 10�4. The final matrix is composed of 682 or-

thologous groups (192,464 characters) containing only one

gene per genome and no missing data (supplementary data

S1, Supplementary Material online). Throughout our analysis,

we employed the core and shell gene supergroups as defined

by Shi and Falkowski (2008) and maintained the Cluster of

Orthologous Groups (COGs) (Tatusov et al. 2001) functions
they assigned to the 682 genes.

In order to generate the RADICAL curves for the cyano-

bacterial data set, we ran 100 randomized chains. To assess

the effect of sampling density, we also sampled from select

concatenation points using 500 randomized chains (sup-

plementary fig. S2, Supplementary Material online). We

sampled at the first gene on the chain and every five par-

titions thereafter until reaching TE for a total of 13,800
trees. ML trees at each concatenation step were generated

with the fine-grained parallel Pthreads (POSIX Threads Li-

brary) build of RAxML v7.2.6–7.2.8 (Stamatakis 2006; Sta-

matakis and Ott 2008) using the JTT amino acid

substitution matrix (Jones et al. 1992), empirical amino

acid residue frequencies, and among-site rate heterogene-

ity modeled with the C distribution and four discrete rate

categories (Yang 1994) (exact RAxML search parameters:

-T 1 -m PROTGAMMAJTTF -f d -N 1 -o GVI). Model param-
eters were chosen to be consistent with the analysis con-

ducted by Shi and Falkowski (2008). We built RADICAL

curves and calculated RADICAL statistics for seven data

classes: all genes; core and shell as defined by Shi and

Falkowski (2008); and the COG superclassifications’ cellu-

lar processes, information processing, metabolism, and un-

known. Using the CFI-based metrics, the concatenation

dynamics of each data type were assessed relative to the
core species tree specified in Shi and Falkowski (2008)

A few alternative nodes that appear in a high proportion

of individual gene trees were also used as reference nodes

in the RADICAL analysis.

Bootstrap Support

Branch support was assessed with 500 nonparametric boot-
strap pseudoreplicates (BS) (Felsenstein 1985) and 500 rapid

nonparametric bootstrap pseudoreplicates (RBS) in the case

of highly repetitive and time-consuming tasks, such as for all

individual gene tree searches (Stamatakis and Ott 2008). We

employed the so-called bootstrap convergence criteria of

Pattengale et al. (2010) and found that in the vast majority

of the data sets, more than 50 bootstrap pseudoreplicates

would not alter branch support, that is, 50 would be
enough, with the exception of core and metabolism parti-

tions, where 250 and 450 pseudoreplicates would be the

necessary. All ML tree searches started with an initial max-

imum parsimony tree built with a stepwise taxon addition

process; in the case of the complete and function-

partitioned data sets, we launched ten independent ML

searches and chose the best for ML score and branch length

refinement. The full data set was also subjected to a single-
gene ML analysis, where each of the 682 protein partitions

was allowed to evolve under a different among-site rate

heterogeneity model and distinct branch lengths later

proportionally averaged across all partitions for the full data

set ML tree. Branch support is shown by filtering the tree

topology of interest through the swarm of BS/RBS trees,

thus displaying the percent proportion of BS/RBS trees that

contain a given node.

common between the randomization tree and a reference topology, is calculated for all trees generated for each concatenation set. The CFI values

across all randomizations for a concatenation set of a specific size (e.g., three genes) are averaged together and plotted relative to concatenation size. In

this example, the concatenation interval is a single gene, but RADICAL can generate average CFI curves based on concatenation intervals of any size. For

example, if the concatenation interval is five, then five genes are randomly added to the concatenation set in between each tree search step. (B) The

RADICAL curve visualizes the conflict/agreement of the tree population with some reference tree. In this case, the reference tree is taken from TE. The

population of trees at each concatenation point is compared with the TE tree using the CFI. In the case of a six taxa tree, once all four genes are

concatenated, comparison to TE will yield a CFI value of three, the fixation point. However, the path to the fixation point will depend on the

phylogenetic consistency of the data set. In (i ), the tree library is highly consistent with TE: at the single-gene stage, over 2 TE tree nodes, on average,

are already recovered in the tree population. However, in (iii ) less than one TE node, on average, is recovered even after three random partition

additions. By definition, curve (iii ) accelerates to the fixation point because comparisons are being made to the TE tree. Curve (ii ) illustrates intermediate

RADICAL behavior. The area under the RADICAL curve (AUC) provides a convenient overall measure of the data set’s support for the tree hypothesis in

question. The concatenation point at which a given tree hypothesis either fixes in the population (fixation point) or disappears completely (degradation

point), is also a useful measure of support/congruence.

)
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Measuring Emergent Support

RADICAL is not limited to measuring topological congruence

along the concatenation process but can also track changes

in support and incongruence for different characters and

partitions along the concatenation path. In this analysis,

we examined the concatenation dynamics of a likelihood sup-
port (LS) (Lee and Hugall 2003) measure normalized by the

size of the data set. LS calculates the difference in negative

log-likelihood scores between a tree in which a given node is

constrained to exist and a tree in which the same node is con-

strained not to exist. A large positive value indicates the node

is well supported and a negative value indicates the node

does not appear in the best-known ML tree. If all the genes

in an analysis support a node the value of LS will likely increase
as genes are concatenated together. In order to normalize LS

by the size of the data set, we divided the measure by the

maximum negative log-likelihood score for that data set.

The maximum negative log-likelihood score scales linearly

with concatenation size (supplementary fig. S3, Supplemen-

tary Material online). This normalized LS (LSn) score was used

to evaluate the presence of emergent support during the con-

catenation process. If there is no emergent support, we ex-
pect LSn to remain unchanged during the concatenation

process. However, if LSn increases as genes are concatenated

this suggests there is emergent support for that node because

support is increasing beyond what we would be expect as

data set size increases. We used GARLI v1.0 (Zwickl 2006)

in the calculation of this statistic because RAxML does not

implement negative constraints. GARLI model parameters

were identical to those used in our RAxML analysis. To front
weight our calculation of support statistics, we used a base-

two exponential sampling distribution: in addition to the ini-

tial state (1 partition), we sampled submatrices at 2, 4, 8, 16,

32, 64, and 128 partitions for our LS calculations. Beyond 128

partitions, deriving LS statistics is too computationally

demanding.

Results and Discussion

RADICAL at the Tree Level: Is the Core Really a Core?

RADICAL is a technique that can be used to dissect complex

phylogenomic patterns by probing the phylogenetic signal

garnered through stepwise concatenation from the smallest
data sets through the largest (fig. 1; for an in depth descrip-

tion, see Materials and Methods). We applied the method to

a cyanobacteria data set comprised of 682 fully represented

orthologs across 13 species (Shi and Falkowski 2008). Shi

and Falkowski (2008) divided these genes into a stable core

of genes that have similar phylogenetic signal and therefore

could be combined to generate a species tree, and a variable

shell containing the remaining genes that are characterized
by increased HGTand more rapid rates of protein evolution.

We conducted a combined ML analysis of all 682 genes that

produced a topology (fig. 2A) identical to the core tree from
Shi and Falkowski (2008; T3 in fig. 2). This tree (also referred

to as T3 in this paper) was used as the reference topology for

the RADICAL analysis.

Shi and Falkowski (2008) found a high degree of topo-

logical incongruence among the 682 gene trees generated

in their study. Less than 2% of the gene trees were fully con-

gruent with the T3 topology. Despite this high level of dis-

agreement, RADICAL analysis reveals that the topological
diversity rapidly diminishes during concatenation (fig. 2B).

At the individual gene tree level, 89% of all genes have

a unique topology. However, random concatenation sets

comprised 20 genes yield only 20 unique trees, and this

number drops to seven unique trees when 60 genes are an-

alyzed together. The RADICAL curves also highlight that to-

pologies for any combination of genes quickly approach the

core topology during concatenation (fig. 2C). This trajectory
is dramatically different than the behavior exhibited by ran-

domly permuted data (supplementary fig. S4, Supplemen-

tary Material online). Individual gene trees share an

average of 61% of their nodes with the T3 topology, but

this value rises to 88% topological similarity for any combi-

nation of ten genes. Despite this rapid ascent, a substantial

portion of the entire data set (490 genes) is required before

the concatenation process fixes on T3.
The most striking pattern revealed by the RADICAL anal-

ysis is the similarity in concatenation dynamics between the

core and shell genes. Contrary to the distinction made by Shi

and Falkowski (2008), the shell genes converge on the T3

topology more rapidly than do the core genes. All 100 ran-

dom combinations of 245 shell genes produced the T3 tree

when combined, whereas 310 core genes are required to

produce the T3 tree in all 100 randomizations. To establish
whether this difference resulted from limited sampling of

the concatenation space, we generated 500 additional ran-

domizations at 100-gene concatenation intervals for the

core, shell, and all partitions (supplementary file S3, Supple-

mentary Material online). The average percent difference in

CFI estimates between the 100 randomization and the 500

randomization sampling schemes was very small (0.5%),

suggesting the difference in the concatenation dynamics
of the shell and core genes is not an artifact of sampling

effects. In terms of the number of phylogenetically informa-

tive characters (PICs), the shell genes (154 PICs) are slightly

larger, on average, than the core genes (134 PICs), but if the

RADICAL curves are plotted relative to the total number of

PICs at each concatenation interval, the shell genes still

reach fixation sooner than the core genes. The average

AUC for 100 replicates in the shell is 0.966, whereas the av-
erage AUC for the core is 0.956. The distribution of unique

topologies is also similar between the core and the shell

genes (fig. 2B). T3 accounts for 76.2% of all shell topologies

generated during RADICAL, whereas only 66.6% of the

core topologies are identical to T3.

Random Addition Concatenation Analysis GBE

Genome Biol. Evol. 4(1):30–43. doi:10.1093/gbe/evr121 Advance Access publication November 16, 2011 35

http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evr121/-/DC1
http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evr121/-/DC1
http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evr121/-/DC1
http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evr121/-/DC1
http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evr121/-/DC1
http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evr121/-/DC1
http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evr121/-/DC1
http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evr121/-/DC1
http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evr121/-/DC1


Branch Support

Given the large number of genes required to produce the T3

topology in all random concatenation paths, it is likely that

a few nodes on the tree are characterized by weak support.

Bootstrap resampling of the entire data set, however, pro-

duces strong support values (100%) for all the nodes on the

tree (fig. 3A). RADICAL assesses nodal support by calculat-

ing the number of genes required to recover that node in all

random concatenation paths and the percentage of total

concatenation space in which a given node is recovered

(AUC values). These values, and their associated RADICAL

curves, are presented in figure 3 and reveal several instances

in which RADICAL uncovers differences not evident from

bootstraps or analysis of individual gene trees (supplemen-

tary data S2, Supplementary Material online). For instance,

both nodes 5 and 3 occur in similar frequencies in the

individual gene trees (0.356 and 0.361, respectively) and

have bootstrap values of 100% but substantially different

RADICAL support values. Node 5 becomes fixed for any con-

catenation set larger than 60 genes, whereas node 3 re-

quires 225 genes before it occurs in all the concatenation

paths. Similarly, node 7 appears in 57.8% of the individual

gene trees and node 9 appears in 45.6% of the individual

gene trees, but these values provide little indication of their

support during concatenation. Node 9 reaches fixation

quickly, occurring in every concatenation set larger than

35 genes, but node 7 requires 490 genes before becoming

fixed. Overall, the RADICAL support values clearly identify

nodes 3, 7, and 10 as problematic (fig. 3) and provide

greater sensitivity for assessing relative branch support than

do bootstraps or summation of gene tree occurrences.

Assessment of nodal support with RADICAL is not limited
to the nodes in the best ML tree but can be evaluated for

alternative nodes of interest. Because node 7 has the weakest

signal throughout concatenation and is the primary reason

that 490 genes are required to always recover the T3 topol-

ogy, we focused on relationships that conflict with this group-

ing. Two other nodes—one uniting Prochlorococcus marinus
MED4, P. marinus SS120, and P. marinus MIT9313 (Alt-1) and

a second uniting P. marinus SS120, P. marinus MIT9313, and
Synechococcus sp. WH8102 (Alt-2)—occur in relatively high

frequency in the individual gene trees (0.268 and 0.299, re-

spectively). Examination of the concatenation dynamics for

these two nodes suggests that despite their similar frequency

of occurrence in the gene trees, only one node represents

a major source of conflict. The first alternative node (Alt-1)

persists throughout much of the concatenation space and

is only eliminated from all the randomizations when more
than 490 genes are analyzed, whereas the second alternative

node (Alt-2) does not appear in any trees constructed from

more than 20 genes (fig. 3).

It is also clear from the RADICAL curves in figure 3B
that there is a tug-o-war among the genes with respect

to the resolution of node 7 and node Alt-1 as the curves
for these two genes are mirror images of one another. It

is possible that much of this conflicting signal results from

HGT. Numerous studies on the evolutionary history of the

Prochlorococcus and Synechococcus have identified abun-

dant gene tree disagreement with respect to the monophyly

of the Prochlorococcus, and HGT is believed to be particu-

larly prominent among species in these genera (Palenik et al.

2003; Rocap et al. 2003; Beiko et al. 2005; Zhaxybayeva
et al. 2006, 2009; Kettler et al. 2007; Shi and Falkowski

2008; Yerrapragada et al. 2009; Zhaxybayeva 2009). Al-

though all Prochlorococcus species possess a unique light-

harvesting system (Ting et al. 2002), most phylogenetic

analyses using large data sets have failed to recover a mono-

phyletic Prochlorococcus (Beiko et al. 2005; Zhaxybayeva

et al. 2006, 2009; Dufresne et al. 2008; Shi and Falkowski

2008; Zhaxybayeva 2009; Gupta and Mathews 2010). De-
finitive determination of species level relationships and tests

of genus-level monophyly requires more extensive taxon

sampling than is available in this data set, but the RADICAL

curves show that approximately 87% of the entire concat-

enation space supports a polyphyletic Prochlorococcus (fig.

3). Given that the genes in this data set are present in all

species (and therefore do not represent any clade-specific

gene acquisitions), this would appear to be a remarkably
high level of HGT, if, in fact, that is the primary cause of

the dominant phylogenetic signal. It is possible that the

use of alternative ML models or the inclusion of additional

species may shift the relative proportion of signal more

in favor of a monophyletic Prochlorococcus. Regardless,

RADICAL provides a valuable technique for assessing the

distribution of support within the total concatenation space

and should help assess the overall levels of HGT in a system.

Functional Subgroups and Conflicting Signal

In addition to identifying a core set of genes, many prokary-

otic phylogenomic studies focus on the behavior of other

functional groups of genes in order to illuminate possible

sources of discordance and protein functions that are

either refractory or susceptible to HGT (Beiko et al. 2005;

Zhaxybayeva et al. 2006, 2009; Zhaxybayeva 2009). Here,
we performed RADICAL analyses using gene subgroups

based on the COG supercategories cellular processes (CELL),

information processing (INFO), metabolism (METAB), and un-

known (UNK). These categories exhibit strong agreement

with the T3 topology with one notable exception (fig. 4A
and supplementary fig. S5, Supplementary Material online).

The metabolism category has a substantial proportion of

genes that disagree with the T3 tree at node 3, node 7,
and node 10. For the metabolism genes, both node 3 and

node 10 stabilize only when 300 or more genes are concat-

enated together, whereas node 7 does not appear in the best

ML tree for metabolism and fails to appear in any concate-

nation set larger than 300 genes. As with the nodal analysis
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of all the genes, examination of the concatenation dynamics
provides information not immediately apparent from gene

tree analysis. For instance, node 7 occurs in 57% of METAB

gene trees but is slowly lost during concatenation, whereas

node Alt-1, which specifies a contradictory relationship, oc-

curs in only 29% of the METAB gene trees but occurs in the

concatenation of all METAB genes (fig. 4B). Similarly, node 5

occurs in fewer gene trees than node 7 (34% vs. 57%) but

reaches fixation relatively fast, occurring in all concatenation
set larger than 90 genes (fig. 4).

Previous studies have identified elevated levels of incon-

gruence for genes involved in metabolism (Beiko et al. 2005;

Zhaxybayeva et al. 2006) and a similar result emerges from

the RADICAL analysis. It is important to note that the distri-

bution of metabolism genes is equivalent between the core

set (45% of core genes are metabolism genes) and the shell

set (44% of shell genes are metabolism genes). In fact, com-
bination of the core and shell genes appears to reinforce the

conflicting signal present in the metabolism genes more

than it reinforces support for the T3 tree. For nodes 3, 7,

and 10, the core and shell partition both reach fixation

for these nodes faster when analyzed separately than does

the combined data set that includes both core and shell

genes (fig. 2C). The extent to which the phylogenetic signal

provided by the metabolism genes is driven by HGT requires
more detailed analysis of additional taxa as well as an eval-

uation of syntenic relationships among genes. However, it is

noteworthy that the primary source of conflict between the

metabolism genes and the rest of the data concerns the

monophyly of the genus Prochlorococcus, with the metab-

olism genes being the only functional class of genes sup-

porting this relationship. Therefore, if metabolism genes

are disproportionately prone to HGT, there is virtually no
support in this data set for a monophyletic Prochlorococcus.

Emergent Support

Several of the nodes on the T3 tree achieve rapid fixation

during the concatenation process despite a substantial

amount of incongruence among individual genes (fig. 3).

For instance, node 4 appears in only 62% of the gene trees

but occurs in all concatenation sets larger than ten genes.

This rapid fixation may reflect the presence of emergent sup-

port, a situation in which the accumulation of nodal support
is more rapid than would be predicted based on the levels of

support on individual gene trees (Gatesy et al. 1999; Gatesy

and Baker 2005). In this case, congruent phylogenetic signal

is amplified as genes are combined together during concat-

enation, whereas divergent patterns of homoplasy specific

to single genes or a small set of genes cancel each other out

during concatenation.

In this analysis, we evaluated the presence of emergent
support by tracking the behavior of a LSn score during con-

catenation. If there is little emergent support, then LSn should

remain constant as genes are combined, while increases in

LSn as concatenation sets get larger suggest emergent sup-

port. Figure 5 plots the concatenation behavior of LSn for

each node on the T3 tree, and in nearly, all cases shows clear

evidence of emergent support. Four nodes (3, 5, 7, and 10)

have a negative average LSn for individual gene analyses. In
these cases, the average gene has more support for relation-

ships that conflict with one of these nodes than for the nodes

themselves. As genes are concatenated, however, this nega-

tive support quickly diminishes. For example, at node 5 (fig.

5B), the amount of negative LSn is reduced by more than half

when two genes are combined together and disappears al-

together (i.e., the average LS becomes positive) for all con-

catenation sets larger than eight genes. Similar trajectories
exist for the other nodes, although node 7 exhibits a more

haphazard behavior. Node 6 also exhibits a pattern that is

more irregular than that for the other nodes. This, however,

is largely due to the low amount of emergent support at this

node (fig. 5A). The node exhibits a more stable trajectory

when viewed on a scale comparable to the amount of emer-

gent support present at other nodes.

Regardless of whether the LSn curves begin in negative
territory or not, most of the curves exhibit a similar trajectory

that is characterized by a rapid ascent during the early stages

of concatenation followed by asymptotic leveling for the

later stages of concatenation (fig. 5B). Averaged across

all nodes, 86% of all the emergent support on the tree oc-

curs by the time 16 genes have been concatenated, a data

set size that comprises only 2% of the total gene space. The

degree of emergent support is largely independent of the
level of support for a node among the gene trees. For

FIG. 2.—RADICAL analysis of cyanobacterial data set. (A) T3 reference tree used as the basis for the CFI calculation. The ML tree was calculated

from a concatenated data set of 682 genes, and the topology is identical to the T3 tree presented in Shi and Falkowski (2008). Circles at the nodes

provide the reference numbers used throughout the text. Species abbreviations are as follows: ANA—Anabeana sp. PCC7120, AVA—Anabeana

variabilis, NPU—Nostoc punctiforme, TER—Trichodesmium erythraeum, CWA—Crocosphaera watsonii, SYN—Synechocystis sp. PCC6803,

PMS—Prochlorococcus marinus SS120, PMM—P. marinus MED4, PMT—P. marinus MIT9313, SYW—Synechococcus sp. WH8102, SCO—Synecho-

coccus elongatus, TEL—Thermosynechococcus elongatus, GVI—Gloeobacter violaceus. (B) A histogram of the number of unique topologies among the

100 randomized concatenation sets at each concatenation size. Frequencies were calculated for all sets up to a concatenation size of 682, but only

concatenation sets of 200 or less are displayed in the histogram. (C) RADICAL curves for data sets comprising all the data, the core genes and the shell

genes. The CFI indicates the proportion of all the nodes in the T3 reference tree that occur in the concatenation set tree. At each concatenation size,

100 random sets of that size are generated to calculate an average CFI score. When a curve asymptotes at a CFI of 1, then all the trees in the

randomized sets are identical to T3. All partitions maintained an average CFI of 1 for concatenation set sizes between 500 and 682.

)
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Node GT Freq 80Boot GT Bootstrap AUC FP-all FP-core FP-shell

1 0.962 0.887 100 1 5 5 5
2 0.916 0.754 100 1 5 10 5
3 0.361 0.059 100 0.965 225 180 185
4 0.617 0.352 100 1 10 20 20
5 0.356 0.065 100 0.995 60 45 60
6 0.626 0.326 100 1 20 35 55
7 0.578 0.271 100 0.871 490 310 245
8 0.979 0.924 100 1 1 5 5
9 0.456 0.192 100 0.999 35 35 55
10 0.264 0.035 100 0.972 235 160 180
Alt -1 0.268 0.060 - 0.133 490* 310* 245*
Alt -2 0.299 0.075 - 0.002 20* 35* 55*
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FIG. 3.—RADICAL analysis of nodal support. (A) ‘‘GT Freq’’ provides the percentage of gene trees in which a given node occurs and ‘‘80Boot GT’’

provides the percentage of gene trees in which a given node occurs with greater than 80% bootstrap. The ‘‘Bootstrap’’ column indicates the bootstrap

value at the node for an ML analysis of all 682 genes concatenated together. ‘‘AUC’’ measures the area under the RADICAL curves (for details, see

Materials and Methods) and indicates the total proportion of concatenation space in which a given node occurs. The ‘‘FP’’ columns indicate the fixation

points for each node measured as the concatenation size at which a given node appears in all 100 randomizations. The metric is calculated for all the

genes, the core set and the shell set. Asterisks indicate a degradation point, which is defined as the gene size at which a node never occurs. Node

numbers refer to number on the tree in figure 2A. Node Alt-1 defines a relationship uniting PMS, PMM, and PMT and node Alt-2 defines a relationship

uniting PMS, PMT, and SYW. (B) RADICAL curves for each node on the T3 tree as well as the two alternative nodes. The occurrence of each node is

derived from an average across 100 randomizations at each concatenation point. Concatenation sets are sampled at intervals of five genes. Only nodes

that do not reach fixation in 20 genes or less are distinguished by a colored curve. The other nodes are shown in black.
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FIG. 4.—RADICAL analysis of functional subgroups. (A) AUC values (left column) and fixation points (right column) are provided across all T3

nodes for the functional groups cellular processes (CELL), information processing (INFO), metabolism (METAB), and unknown (UNK). AUC values

indicate the proportion of total concatenation space occupied by that node and the fixation point indicates the number of genes required before the

node appears in all concatenation sets of that size. The asterisk indicates a degradation point, which is defined as the number of genes for which a node

no longer occurs in any randomized concatenation set of that size or larger. (B) RADICAL curves for the metabolism genes. Node Alt-1 appears in the

ML tree for all the metabolism genes and, therefore, is included in the figure. Only nodes that do not reach fixation in twenty genes or less are

distinguished by a colored curve. The other nodes are shown in black.
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FIG. 5.—Emergent support during concatenation. Average LSn values (see Materials and Methods) are tracked across concatenation set sizes

corresponding to 1, 2, 4, 8, 16, 32, 64, and 128 genes. Averages are calculated from 100 random concatenation sets at each step. (A) The total amount

of emergent support for each node as measured by the difference in LSn values at the concatenation set size of 1 and 128. (B) LSn curves during

concatenation for each node on the T3 tree. The red lines in the figures for nodes 3, 5, 7, and 10 indicate the threshold at which the average

concatenation set shifts from not supporting the node to supporting the node.
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instance, node 1 and node 8 are both well supported among
the gene trees (they occur in 98% and 96% of the gene

trees, respectively), but node 8 has nearly ten times the total

amount of emergent support as does node 1 (fig. 5A).

The dynamics of emergent support demonstrate that con-

catenation is not simply a ‘‘brute force’’ method that produ-

ces a definitive topology as a result of overwhelming data set

size. A primary concern associated with concatenated phylo-

genomic studies is that many nodes will be strongly sup-
ported if enough data is analyzed together (Doolittle and

Bapteste 2007; Bapteste et al. 2008). Rokas and Carroll

(2006) point out that bootstrap support increases as a conse-

quence of increasing the number of PICs analyzed without

any changes in the relative distribution of homoplasy among

these characters. In their example, a data set of 100 PICs pro-

duces a bootstrap of 72%, but when that same data is du-

plicated ten times to produce a data set of 1,000 PICs, the
bootstrap value increases to 97%. RADICAL provides a tech-

nique to evaluate the relative impact of data set size on sup-

port and, for the cyanobacteria, demonstrates increases in

nodal support are not simply a function of combining addi-

tional characters but reflect a disproportionate amplification

of phylogenetic signal at the earliest stages of concatenation.

Concatenation Debate

RADICAL is fundamentally a concatenation method. Concat-

enation has recently been criticized as a source of bias

(Edwards et al. 2007; Leigh et al. 2008). Simple concatena-

tion of genome data in the context of incomplete lineage

sorting may mislead species level inferences (Kubatko and

Degnan 2007). But we have shown here that for the majority

of the nodes in cyanobacterial genomic data, concatenation
can lead to rapid convergence on well-accepted topologies.

Indeed, not concatenating data may obscure the general

agreement between genomic partitions, with the agreement

between the core and the shell set of genes representing

a prominent example. More importantly, concatenation

may also increase the efficiency of a given gene’s phyloge-

netic signal through the accumulation of hidden support

(Gatesy et al. 1999; Gatesy and Baker 2005). The value of
RADICAL derives from the fact that it attaches no special sig-

nificance to the TE solution as it builds a topology library

along multiple distinct concatenation paths. Therefore, re-

searchers can distinguish situations in which nodes rapidly

reach fixation in concatenation sets, often via emergent sup-

port, from situations in which internal conflicts persist

throughout concatenation and are only resolved in the TE so-

lution. As we demonstrate in this study, these dynamics may
not be readily apparent using more traditional measures of

support from either individual gene trees or TE trees and

we suggest phylogenomic studies will benefit from an in

depth exploration of the concatenation dynamics of large

data sets using methods such as RADICAL.

Supplementary Material

Supplementary figures S1–S5, data S1 and S2, and file S3
are available at Genome Biology and Evolution online

(http://www.gbe.oxfordjournals.org/).
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