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Abstract: During evolution, several types of sequences pass through genomes. Along with mutations
and internal genetic tinkering, they are a useful source of genetic variability for adaptation and
evolution. Most of these sequences are acquired by horizontal transfers (HT), but some of them may
come from the genomes themselves. If they are not lost or eliminated quickly, they can be tamed,
domesticated, or even exapted. Each of these processes results from a series of events, depending
on the interactions between these sequences and the host genomes, but also on environmental
constraints, through their impact on individuals or population fitness. After a brief reminder of the
characteristics of each of these states (taming, domestication, exaptation), the evolutionary trajectories
of these new or acquired sequences will be presented and discussed, emphasizing that they are not
totally independent insofar as the first can constitute a step towards the second, and the second is
another step towards the third.
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1. Introduction

Transposable elements (TE), frequently called “selfish genes” [1], “selfish DNA” [2], or
junk or garbage DNA, according to the categories defined by Graur et al. [3], present
several genetic characteristics that allow them to rapidly invade genomes and populations,
as well as to sometime to settle there permanently. Generally, after their arrival in a naïve
genome and an invasion phase, their overall activity decreases drastically, leading to the
maintenance of very few autonomous copies. However, several non-autonomous or dead
copies, or even pieces of TE, can be preserved with non-neutral effects on individual fitness,
due to their particular insertion site or the acquisition of new characteristics after a more or
less lengthy coevolution with genomes.

During this coevolution process between TE and genomes, various interactions and
trajectories can lead to the emergence of relatively stable evolutionary states, usually
described as taming, domestication, or exaptation. Although these different terms seem to
be closely related, they cover different phenomena, as briefly described below.

Taming. This interaction tends to rapidly reduce and limit the negative fitness impact of
an excessively high transposition rate of a new invading TE on both genome structure and
function. This is not an irreversible phenomenon because, sometimes, it must be reset at
each generation, especially if it is due to non-transgenerational epigenetic marks. Moreover,
in stressful conditions, an element can escape and have an intensive transposition activity.
This can be illustrated by the regulation of TE activity, with occasional wake-up and
bursts [4–9]. In this respect, the epigenetic regulation of TE activity plays an important
role, and a few autonomous and silenced copies present in the genome can be reactivated
occasionally by biotic, abiotic, genomic, or demographic stress. At the populational level,
this is crucial for creating new genetic variability to cope with stress and adapt to new
environmental conditions.

Domestication. The general definition of domestication is: a sustainable interaction,
maintained over generations, resulting from a hierarchical relationship, based on a di-
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rectional transformation of one entity by another for its own benefit. This leads to deep
modifications of genetic material of the domesticated entities, like acquisition, loss, or
transformation of one or several traits. In a genomic context, TEs are the domesticated
entities and genomes of the “hierarchical superior”. Moreover, while there is no emer-
gence of a new function, they can have an impact on the genome’s functioning. Indeed, a
copy, through its genomic insertion site, can impact individual fitness and rapidly invade
and settle in the population if it provides an advantage. In this respect, work based on
populational analyses has reported many examples [10–13].

Exaptation. This term, introduced by Gould and Vbra in 1982 [14], refers to the
emergence of a new function that enhances the fitness of individuals. More precisely, it
(in Table 1 of their publication) suggests two different processes: “1—character, previously
shaped by natural selection for a particular function (an adaptation), is coopted for a new use-
cooptation; 2—A character whose origin cannot be ascribed to the direct action of natural selection
(a nonaptation), is coopted for a current use-cooptation”. It is, therefore, a sequential evolution
of a trait that was initially shaped (or not) by natural selection to a trait today shaped by
natural selection and adapted to a new function.

Numerous biological examples, at the morphological, physiological, and molecular
levels, can illustrate such an evolutionary trajectory, such as the feathers of birds originally
“designed” for thermoregulation and today exapted in flight. At the molecular level and,
more particularly, in the TE world, several examples will be detailed below.

During evolution, genetic tinkering is a major source for the emergence of new reg-
ulation systems, genome reorganization, and new functions [15–17]. Within species, this
tinkering may be due to the shuffling and association of different parts of a genome by
ectopic recombination, transposition, gene duplication, frameshift mutation, translocation,
or, again, autopolyploidy in plants. However, this dynamic can also be fueled by the acqui-
sition of external genetic material, as a result, for example, of interspecific hybridizations
or horizontal transfers (HT). Such phenomena are responsible for the emergence of genetic
novelties, as, for instance, the acquisition of new genes, paralogs of existing genes, and
xenologous gene displacement [18]. In addition, they can occur in distantly related species,
from different kingdoms within eukaryotes, or even between prokaryotes and eukaryotes.
Many example of adaptive horizontal transfers are reviewed by Crisp et al. [19]. According
to these authors, 2% of the foreign genes of primates come from archaea, 25% from bacteria,
57.6% from protists, 5.4% from plants, and 10% from fungi.

Based on all genome analyses during the last decade, it has been evidenced that the
exchange of genetic material between closely or distantly related species is probably much
more frequent than previously assumed. Concerning TE, HT are possible both after an
interspecific hybridization or between distantly related species. Nowadays, such transfers
do not appear to be rare evolutionary events, and the number of descriptions or suspicions
continues to increase [20–23]. For instance, in insects, Peccoud et al. [22] found that out of
195 genomes, 4500 HT can be detected.

More precisely, inter-specific hybridizations occur between closely related species,
which can hybridize and are able to produce fertile offspring. In plants, such a phenomenon
is frequent and leads to the emergence of allopolyploids [24]. This favors the addition of
genetic material in both species and the introduction of new variants, which can become
the raw material for new genetic tinkering. In animals, inter-specific hybridization can
also be observed between species with sexual reproduction. In such a case, and according
to Haldane’s rule, only the homogametic sex is fertile (for instance, XX females in the XY
system and ZZ males in the ZW system). The fertile sex can then be backcrossed with
individuals (males XY or females ZW) of one of the two parental species, leading to the
transfer of genetic material of one species to the other (introgression).

On the other hand, horizontal transfers also occur between distantly related species
when no sexual reproduction is possible. They were probably very frequent during the
early steps of life [25] and were at the origin of important evolutionary steps, such as
the exchanges between prokaryotes and eukaryotes or between bacteria/archaea and
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extremophilic eukaryotes [26,27]. This also occurs during the endosymbioses of proteobac-
teria and cyanobacteria, leading to the emergence of mitochondria and chloroplasts [28]
or between prokaryotes (see for instance the numerous examples in Escudero et al. [29],
or San Millan et al. [30]), where they frequently promote the exchange of resistance to
environmental stress via conjugation, transduction, and transformation, whether or not
they use TE as vectors [31,32].

Since TEs are entities subject to HT between species—the source of genetic variability
and tinkering within the genome—it is interesting to detail their dynamics through the
evolutionary “dialogue” between them and their genomic ecosystems, after their arrival in
a naïve genome.

2. Short-Term Co-Evolution of Transposable Elements and Genomes: Taming

While in prokaryotes, the HT mechanisms are known and responsible for rapid
diffusion of resistance to environmental stresses [30], the transfer mechanisms remain
unknown in eukaryotes, and several scenarios have been proposed [21,33,34]. However,
it is likely that the arrival of a new TE in a eukaryotic genome probably occurs in most
cases by horizontal transfer [21,35]. At this point in the TE life cycle, there is only one copy
in a single individual. Therefore, the probability of losing this copy through genetic drift
is very high. To maintain it and allow genome and populational invasion, the impact on
fitness must be positive and very high or more likely, TEs have to adopt a parasitic strategy,
i.e., a low phenotypic effect, with a relatively high transposition rate [36]. In addition,
it seems that several TE, among which some members of the Tc1-mariner superfamily,
such as Bari1, Bari3, and Sleeping Beauty would facilitate their genomic diffusion after a
horizontal transfer, might have evolved as “blurry promoters” [37,38].

After this more or less lengthy invasion phase, a plateau is reached, during which the
number of copies is stabilized. Few copies of this element will then remain autonomous,
while the others will become non-autonomous but trans-mobilizable, with the remaining
copies degenerating. In this context, it is interesting to observe that a competition can take
place between the different types of copies from the same family (between autonomous
vs. non-autonomous but trans-mobilizable copies), leading to a dynamic similar to that
described by Lokta [39] and Volterra [40] for the prey-predator relationship in population
biology [41,42].

This basic TE life cycle can be viewed as a parasitic strategy in the invaded genome.
However, the golden rule of many parasitic entities is to be as “silent” as possible. In other
words, to be maintained over long evolutionary periods, the TE copy number must be
neither too low to avoid elimination by genetic drift or ectopic recombination nor too high
to avoid a negative impact on individual fitness.

In this phase, TE silencing may be promoted by epigenetic regulation. The term
“epigenetics” generally refers to several mechanisms, such as cytosine methylation in
Arabidopsis thaliana, where most copies are methylated and inactivated [43]; small RNA
(siRNA and piRNA), as described in different tissues in D. melanogaster (in germline to
control I and P element transposition [44], testes and ovaries [45–48]), and somatic and
germinal tissues of arthropods [49] (as a stress response in A. thaliana [50]), as well as
long non-coding RNA in plants with differential expression in tissue and depending on
environmental conditions [51]. While the epigenetic regulation seems to be dominant,
other mechanisms of TE-silencing can be evoked, such as those involving a self-encoded
repressor (such as the internally deleted KP element, derived from the P element), [52] or
to splicing events, such as for the Bari1 element [53].

One of the evolutionary interests of such silencing is its reversibility. This has two
main effects. First, when epigenetic marks are removed, a transposition burst can be
observed [54,55] and second, genes located near the TE insertion site can also be reacti-
vated because the methylated area may be larger than the TE itself and can encompass
neighboring sequences [56–59]. Therefore, this type of reversible interaction between TE
and genomes can be useful for the genome, insofar as it allows it to maintain a func-
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tional “genetic toolbox”, which can be reactivated when necessary to generate new genetic
variability and evolve rapidly in a changing environment.

3. Long Term Co-Evolution of Transposable Elements and Genomes: Domestication
and Exaptation

Two common characteristics are shared by the processes of domestication and exapta-
tion. The first is the “capture” of a copy in a specific genomic location, and the second its
maintenance, which can go as far as fixing itself in a population or a species. Regarding the
genomic location, this raises the question of the distribution of TE copies in a genome. Is
there a random distribution or a patchy distribution with hot insertion regions?

For more than 30 years, it has been observed that TE distribution is patchy [60].
On a coarse scale, this distribution can vary from one chromosome to another, but also
within a chromosome, and again among the main TE Classes. For instance, in the human
genome, the Alu distribution is not similar between chromosomes 21 and 22 [61], and
L1 elements are not randomly distributed, although they seem able to target all genomic
regions [62]. A similar distribution bias is also observed in Drosophila [63], catfish [64], and
woodpeckers [65], among others. All these results suggest that even if TEs are potentially
capable of jumping everywhere in the genomes, purifying selection against new insertion
and ectopic recombination can remove several of them and reshape distribution [66,67].
However, the alternative hypothesis, assuming that TEs insert into peculiar regions, cannot
be ruled out.

With the accumulation of complete genome sequences and the new molecular tools
recently developed to explore them, it is now clear that this distribution is patchy. In
addition to the evolutionary forces previously mentioned, new parameters must be taken
into account, such as the status (condensation vs. decondensation) of chromatin [68] or
“DNA sequence, chromatin and nuclear context and cellular proteins” because they are
also involved in TE integration [69], showing that peculiar genomic territories are more
prone to TE insertions than others.

More precisely, several results show that regions with a specific chromatin structure
seem to be more “attractive”, such as the regulatory regions of genes or heterochromatin,
whether they are centromeric, telomeric or interspersed in euchromatin [70–74]. Insertions
of TEs in gene-rich regions have also been frequently described in numerous species, such
as Drosophila for retrotransposons [75], for the retroposon Accord in 5′ of a gene involved in
resistance to insecticides [76–78], and, more recently, for diverse TE families, frequently
associated with stress-related genes [79]. Similar observations have been reported in
mice [80] and wheat [81]. Moreover, the existence of nested accumulation of TEs in
euchromatin [82], useful for TE “paleontology” [83], must also be considered. Especially,
since they could be at the origin of Pi clusters, involved in regulation of TE activity by
small RNA [48,84–87].

Some regions are the main targets of TEs, probably because of their accessibility [88–90].
In addition, patchy distribution due to the accessibility effect could be reinforced by the
existence of low recombination rates, leading us to consider some of these regions as TE
graveyards [91–94].

Therefore, patchy TE distribution is the result of multiple factors, and two steps
must be considered: first, an insertion phase with random or non-random insertions, and
second, a differential elimination or maintenance phase, due to selection against deleterious
insertions, positive selection on insertion with beneficial host impact and elimination in
regions with a high recombination rate.

In this review, I will differentiate domestication and exaptation. Can an insertion close to
a gene and modifying its expression profile not be considered as an exaptation? Although
such insertions have an impact on the host genome, as illustrated by many examples such
as Mendel’s wrinkled pea [95], the industrial melanism of Biston betularia [96], the resistance
to insecticides [77,97,98] or to xenobiotics [78] in D. melanogaster. Their frequency may
increase in natural populations more or less rapidly, depending on their effect on host
fitness [99] and/or the genetic drift, due to the effective population size (Ne). Domestication
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applies to a whole TE copy or a part of it, and frequently a copy is completely domesticated
as soon as its mobility and its capacity to encode a functional transposition machinery is
lost. Whatever the situation, these copies have an impact on the expression profile of the
surrounding genes, but they are not initially the source of new functions or new genes.
However, domestication can be a step towards exaptation.

On the other hand, in an exaptation process, all or part of the sequence of a copy
is fixed in the population or species. This is the source of new functions and sometimes
new genes, which significantly increase host fitness. Such novelties are present in a single
species when exaptation is recent or in a group of phylogenetically related species for an
older exaptation that occurred before the speciation events. Several examples detailed later
will illustrate such a phenomenon, such as the telomeric element in arthropods [100], the
vertebrate immune system [101], or placenta development in mammals [102].

Domestication and exaptation can be detected from analysis of the evolution of polymor-
phism along the chromosome by the existence of regions with low variability due to the
effect of selective sweep or background selection. As recently suggested in very interesting
articles [103,104], these phenomena require several successive stages. Here, I would just
like to summarize this process and add several considerations.

4. How to “Capture” a Transposable Element in a Genomic Position

To “capture” a copy at least two steps must be completed: (i) insertion into a particular
region and (ii) its maintenance in the population. The insertion may have a phenotypic
and a fitness impact, as soon as the copy is inserted, or this impact may occur during the
maintenance phase or later as discussed below.

The first step, at the genome level, is the insertion of a copy in an area of influence. In
the present context, an “area of influence” means a region where an insertion can potentially
impact the phenotype of the host. In addition, even if at the beginning this insertion is
neutral, after various events, such as genetic tinkering and/or events, due to environmental
(including genomic) modifications, it can become positively selected.

Secondly, this insertion must be maintained and “captured”, that is to say that it must
increase within the population up to the fixation. This means that the insertion occurring
in a single individual, must invade the population and the species. A priori, at this stage,
the insertion need not be responsible for a phenotype. However, in this particularly critical
period if the initial insertion is selectively neutral or slightly advantageous, the probability
of losing it by genetic drift is very high [36]. Therefore, the chance of its maintenance in a
population or species will be higher if the host fitness is significantly increased. The greater
the fitness effect, the faster the invasion will be.

During the population invasion, the impact of the insertion may be different from that
which will be selected later for a new function. The population is not necessarily totally
invaded and a frequency-dependent equilibrium can be established. The important point
remains the maintenance of the insertion in the population. Then, due to many factors
already mentioned (such as genomic tinkering including recombination, mutation, and
environmental or genomic changes, among others) a new function may emerge. Such a
process is not driven by need but by chance, even if in some cases primary factors, such as
environmental, genomic, and populational stresses, can indirectly enhance the emergence
of novelties.

In general, domesticated TEs are not necessarily immobilized, since this phenomenon
may concern their activity which can be modulated according to various factors such
as stress. On the other hand, exapted TEs are in most cases immobilized since they are
at the origin of new functions based on one of their characteristics. However, a few
exceptions exist, such as the telomeric elements in D. melanogaster. In this species, the LINE
elements, TART, Heta-A, and Tahre are still active and jump exclusively to the telomere
to act as a telomere maintaining system and to protect them against the erosion due to
successive replications [73,105,106]. Moreover, they could have played an important role
in eukaryogenesis [100].
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5. Immobilization of TEs

An immobilized copy can remain partly active if it provides all or part of the trans-
position elements for other copies. However, unless natural selection keeps it intact, an
insertion usually quickly becomes inactive due to an accumulation of mutations. This
immobilization of a copy can be done in different ways, in particular by point mutations, in-
sertions/deletions (indels) and truncation (5′ or 3′ ends) recombination. It then degenerates
and can disappear, i.e., the TE sequence is no longer recognizable.

Recombination will occur between regions similar enough to allow them to hybridize.
This recombination will lead to a complete or partial loss of a copy after an unequal
crossover between two copies. Deletion or inversion will occur after an ectopic recombina-
tion between two copies or between repeated sequences within a single copy, as between
the LTRs of retrotransposons. In all cases, the remaining copy is a hybrid of the two
original ones. Regarding the LTRs of retrotransposons, these sequences at the ends of the
elements are usually about 300–400 bp long, and due to the transposition mechanisms of
the elements, they are exactly the same just after the insertion of the copy. So, an ectopic
recombination between the two LTRs of a copy leaves a solo-LTR containing the sequences
involved in the regulatory activity of the element. Such solo-LTRs have been described in
many eukaryotes, including fungi [107], plants [108], and metazoans [109]. Some have an
impact on the expression profile of surrounding genes and have been retained by natural
selection [11,110].

Another mechanism observed for some retroelements, like retroposons, is a truncation
due to their insertion mechanism. For example, the insertion and reverse transcription of
LINE occur simultaneously. If the reverse transcriptase stops before it has transcribed the
entire sequence, this leads to a 5’ truncation. These inactivated copies are called “Dead On
Arrival” [DOA copies—see for example, [111,112].

For Class II elements, in addition to unequal crossover and ectopic recombination,
specific mechanisms must be mentioned because they move by a copy-paste mechanism. To
fix a copy in a given genomic position, its excision must be impossible or environmentally
counter-selected. So, all mutations affecting the transposase-transposon interaction at the
fixed site such as the transposase binding site on the ITRs (Inverted Terminal Repeats) will
prevent their excision.

Due to the cellular mechanism, induced by the double strand break leaving after an
excision, the abortive gap-repair can be at the origin of an internal deletion in DNA trans-
posons [113–115]. Indeed, to repair such a break, the copy present on the sister chromatids
will be used as a template. But a stop can occur before the complete repair, followed by a
hybridization of the two neo-synthetized strands from short direct repeats (SDRs). These
SDRs are short sequences of 5–8 bp and thanks to their small size they can be frequent in
TE transposons [113–115].

So, the final copy is no longer active and presents an internal deletion between the two
SDRs [113,114]. However, such copies can move if both ITRs are preserved and if a source
of transposase is present elsewhere in the genome. This can be at the origin of MITEs
(Miniature Transposable Elements). All these mechanisms are summarized in Figure 1.
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Figure 1. Mechanisms leading to the immobilization of a TE copy insertion, then to its domestication
or exaptation. (A): Unequal crossover between two copies. This leads to (i) to the deletion of all the
sequences between the two copies and (ii) to the duplication of the sequences. In both cases, the new
copy (copy 2/1) or the remaining copy (copy 1/2) are hybrid copies due to the crossover between the
copies 1 and 2. (B,C): Ectopic recombination between repeated sequences at the extremities (B) or
within a single copy (C). In both cases, this leads to the emergence of a hybrid copy with an internal
deletion. (D): Incomplete insertion of retroelements with no LTR. For these elements, the insertion
and the reverse transcription (RT) occur at the same time. Frequently, the RT stops before the 5′ end
of the element, leading to a 5′ truncation. This is the reason why these new insertions are “dead on
arrival”. (E): Abortive gap repair. This occurs after the excision of a Class II element and has been
described in maize and in Drosophila. The internal deletion is generated after the detachment of the
polymerase and a hybridization of the two neo-synthetized strands thanks to the existence of Short
Direct Repeats (SDR) in the TE sequence. This Figure is partly redrawn from Brunet et al. [113]; Levin
and Moran [90].
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6. Fate of a “Captured” Copy and Emergence of New Functions

Once a copy is immobilized, it usually becomes inactive or dead. There are only
few exceptions in which full length elements and their activity are conserved, as in the
maintenance of telomere in Drosophila species by the LINEs elements Het-A, TART, TAHRE.
These active copies jump exclusively to the telomere and prevent their erosion [106,116,117].
Otherwise, even if an immobilized copy can no longer be considered as a TE, some of its
characteristics can be recovered occasionally and participate in the emergence of a new
function that can be selected in a particular context and increase the average fitness of the
population. The distribution of these new functions is generally limited to closely related
species or to a single species in the case of a recent exaptation.

Many examples with a strong selective impact have been reported (see for instance
Table 2 of [118]), and new cases are regularly described in eukaryotes, even if the new
functions are more or less well established or remain putative. These functions are quite
diverse [119,120] and encompass impacts on reproduction [121], the brain [122,123], cell
proliferation or death, DNA elimination (piggyback [124,125]), vertebrate development [103],
diverse CGG-binding protein (TE of the hAT family [126]), transcription factors and their
binding site (various transposases [127]), new regulatory regions (see for instance Harbinger
in plants [128]), the emergence of new protein-coding genes via new exon(s), intron(s) with
alternative splicing or chromosomal rearrangements [129–131], substrate for satellites [132],
and small non-coding RNA leading to a kind of immunity against the extension of mobile
genetic elements [47,84,133].

At the beginning of the process, the location of the insertion (germinal versus somatic
cells) is another crucial point to ensure its inheritance. For unicellular organisms or those
in which the germinal line is directly derived from the somatic one, like in plants, this
question is not relevant. For other kingdoms, such as the metazoan, such a question is
more complicated. Indeed, when an insertion occurs in a somatic line, its inheritance will
depend on the stage of formation (early or late) of the germ line during the development.
However, exchanges from a somatic to a germinal line have been reported, highlighting
that the Weismann barrier is not so impermeable. In addition, several genetic or epige-
netic modifications occurring in somatic cells can be transmitted in-extenso to germinal
cells [134–136].

As mentioned above, direct modifications of the germ line are also possible. These can
be non-reversible genetic mutations or reversible changes of epigenetic profiles. In the first
case, if the mutation occurs late in gametogenesis, it will be present in a single individual of
the population, and the probability is very high of losing it [36]. On the other hand, if this
mutation occurs early in gametogenesis, it may be present in several individuals, increasing
its probability of maintenance in the population. Concerning epigenetic modifications,
several individuals in the population can present different epigenetic profiles, and natural
selection will retain those (epialleles or combination of epigenetic marks) increasing host
fitness. Such modifications can be maintained over a few generations until genetic muta-
tion(s) fix(es) them [137–139]. This last scenario can be seen as a “trial and error” process
for rapid adaptation with few consequences for the population, since these epigenetics
modifications are reversible.

All the events described above in a general context can be applied to TEs. In this
case, modifications can be due to new insertions, mutations (punctual mutation, truncation
of one or both ends or internal indels) of copies already inserted, involvement in genetic
tinkering, epigenetic modifications of copies and of their genomic environment, production
of small regulatory RNA (Figures 2 and 3). Several examples of TE impact have already
been mentioned at the beginning of the previous paragraph. Otherwise, it has been known
for a long while that TE activity and its regulation is different in somatic and germinal
lines. More recently, differences were also reported between sexes, even if no general
trend has been detected in different taxa. For example, Saint-Léandre et al. [47,48] show
that in D. melanogaster and its sibling D. simulans, TE activity is regulated in ovaries and
not always during spermatogenesis. On the other hand, Zamudio and Bourc’his [140]
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show that in mammalia, inactivation of the factors involved in TE repression leads to male
sterility, while in females the same genetic context does not allow the reactivation of TE.
Again, Barau et al. [141] show that in some mammals (rodentia and muroidea), the DNA
methyltransferase DNMTC3 protects the male germline from retrotransposon activity. All
these results clearly evidence that TE activation in both female and male germlines is
clearly different.

Figure 2. Steps leading to domestication or an exaptation of a TE copy insertion.

Figure 3. Possible conditions for the emergence of a new function based on a TE copy insertion in species with somatic and
germinal cells.



Cells 2021, 10, 3590 10 of 19

Moreover, many results can also illustrate the existence of communications between
somatic and germinal cells, like the maternal control of TE activity in their descendants. It
is now well established that in many animals, mothers can deposit small RNAs in their
eggs, which generally prevents TE mobility in their progeny. This is a crucial step, since
during early development the zygotic genome is not active, but transcription is based
on the maternal products injected into the eggs [142], probably through a gap junction
between somatic and germinal cells [143]. For example, in Drosophila, the ZAM element
can be transferred from somatic follicular cells to oocytes using vesicular particles during
the vitellogenin transfer [144]. This is probably also true for the Gypsy element [145,146].
Since ZAM, Idefix and Gypsy are errantiviruses with a functional env gene, such a result
is not totally surprising. However, even when the env gene is inactivated, such a transfer
still occurs [145]. Another example, in Drosophila, is provided by the P element, recently
transferred horizontally into the D. melanogaster genome from D. willistoni, and which
has invaded all the natural populations in a few years [147,148]. The hybrid dysgenesis
(sterility of descendants observed when active P elements are transmitted from the father
and when the mother is devoid of this element) is regulated by small RNA deposit by
females in their eggs [149–151].

7. How to Detect Domesticated or Exapted Copies?

Whole-genome analyses of different species and comparative/functional genomics
allow us to follow the emergence and the evolution of domesticated or exapted sequences.
In this regard, several approaches can be useful in detecting such sequences. In fact, if a
sequence is suspected of having been domesticated or exapted, the questions we can ask
are: (i) Is this sequence transcribed or not? (ii) For the coding sequences, what is the ratio
dN/dS within species or Ka/Ks between species; (iii) Is the region of its location under a
selective sweep?

Regarding the first point, this is not a blocking criterion, since many sequences can
have a function without any transcription. For instance, while domesticated/exapted TEs
may not be transcribed, they can have a structural function along the chromosome like
an insulator with a role as barriers between adjacent genes or to prevent heterochromatin
expansion. For example, in Drosophila insulators have been described in Gypsy, idefix and
ZAM elements [152–154]. More generally, TE can be at the origin of promotors, silencers,
enhancers and insulator sequences, among others, which are not transcribed. All of these
structures can play a major role in regulating gene activity thanks to their conformation
and/or the existence of binding sites of several factors [103,155]. On the other hand, even
if the sequence is transcribed, this is not a sufficient condition to reject their putative
domestication/exaptation because many sequences can be transcribed without a known
function via pervasive transcription [156–158].

The second criterion is much more informative. Indeed, for coding sequences dN/dS
or Ka/Ks ratio gives indications about the type of selection acting on the sequences: a
ratio equal to 1 corresponds to selectively neutral sequences, a ratio superior to 1 to
sequences under positive selection, and a ratio below 1, a sequence under purifying
selection to maintain a function [159]. A Ka/Ks < 1 suggests that the new function is already
acquired and the purifying selection maintains it by removing all mutations leading to
its degradation; while a Ka/Ks > 1 means that the sequence is evolving through a new
function but that the optimal genetic combination has not yet been reached. For example,
the piggyBac element found in many eukaryotes has been exapted several times, and
these sequences are subject to strong purifying selection [160]. Similarly, in plants several
cases of TE exaptation have been reported, such as for the MUSTANG gene derived from
members of the MULE superfamily [161] or for other TEs [104,119] and in vertebrate for all
Host-Transposase Fusions (HTF) tested [127].

The third criterion can also be very informative, but in many cases, there is not enough
data to test it. Indeed, such a phenomenon can be observed if the genetic tinkering is recent
(at the evolutionary scale), if it strongly increases the fitness of the individuals and if the
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recombination rate of its genomic location is not too high. The combination of these factors
leads to a loss of genetic variability in the genomic region surrounding the loci exapted.
This was illustrated in many examples, among which the LINE-like element Doc or the LTR
retrotransposon Accord both involved in insecticide resistance in Drosophila [10,77,162] or
the TE-derived promoters in humans [163]. Of course, genetic variability will be restored
more or less rapidly, according to the substitution rate and recombination rate in this region.

Finally, another possible clue that can be used when enough copies, both within
species and/or from more or less closely related ones, is the TE phylogenies. While these
phylogenies are generally incongruent with those of the species, it could be interesting
to compare the evolution rate of the different copies. Indeed, even if in these types of
constructs are based on a mixture of dead, non-autonomous, and active copies, an indication
of a domestication/exaptation can be provided by the existence of long branches, which
are the signatures of rapid evolution. Although this hypothesis is not clearly expressed for
TE in most of the works, it is nevertheless suspected in a few of them [164,165] and could
be combined with the existence of the ratio Ka/Ks > 1 (if the optimal peak of adaptation is
not reached) or Ka/Ks < 1 (if the peak is already achieved). This can also be related to the
rapid evolution of the species if TE domestication is involved in the emergence of one or
more genes of evolutionary importance, as suspected in plants [166,167], eukaryotes [168],
opisthokonts [169], and vertebrates [127], among others.

8. Conclusions and Perspectives

The relationship between TEs and the genome is not always as simple as one might
imagine. On the one hand, when TE activities are modulated by epigenetic marks, the
two entities can benefit from such a situation, particularly if epigenetic regulation persists
over several generations, due to their inheritance, as described in Arabidopsis thaliana [170].
On the other hand, the epigenetic status is reversible, and ETs can be reactivated after a
modification of their epigenetic profile, due to, for example, environmental stress. Thus,
they become a source of genetic variation, useful for a rapid adaptation of populations
but also for themselves, because it allows for the maintenance of active copies, at least, as
long as the epigenetic marks are not accompanied by a greater mutability TE immobilizing
them. In addition, TEs can participate in their own regulation via the establishment of Pi
cluster, genesis of small RNAs, or modification of the chromatin conformation.

In this context, taming, domestication, and exaptation are the result of different
trajectories of co-evolution. While taming must be rapid to avoid a strong impact on
population, fitness, domestication, and exaptation take longer, as described throughout
this review.

9. Remaining Questions

To be as complete as possible, many questions remain unsolved, such as those men-
tioned by Jangam and his collaborators [119]. Indeed, although the cases of domestication
or exaptation are steadily increasing in the literature, their number remains too low to
draw general conclusions. However, from all the analyses available today, it should be
noted that:

(i) TEs (or viruses) are more frequently domesticated/exapted than any other type of
sequence;

(ii) DNA elements seem to be recruited more frequently than other types of TE (retro-
transposons, etc.);

(iii) Some elements exhibit recurrent domestication/exaptation, such as P in drosophila [171],
hAT or pogo in vertebrates [169,172], or piggyback in a wide variety of organisms [160,173].

If such trends are subsequently confirmed from the analysis of a larger number of
genomes, it will be interesting to try to identify factors responsible for these biases. For the
moment, only a few clues can be proposed.

The answer to the first question probably comes from the repetitive nature of TEs,
but also from our ability to identify the ancestral states before domestication. Indeed, it is
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easier to reconstruct the initial structure of the sequences when a large number of copies is
available. Such an exercise has already been performed for other purposes. For example,
an active copy of Sleeping Beauty has been rebuilt from the analysis of a large number of
inactive copies in salmonids [174,175]. So, identifying TE-derived genes is probably simpler.
Beyond this problem of detection, another question arises. Does domestication/exaptation
occur more frequently in some genomes than in others? Is it a matter of genome size,
assuming that TEs in larger genomes should be more prone to domestication/exaptation?
We have to be careful with this type of argument, since it can lead to circular reasoning
because there is a strong positive correlation between genome size and the proportion
of TEs hosted [176–179]. Thus, before drawing any conclusion, TE composition of the
genomes must be analyzed in detail, and the frequency of domestication/exaptation must
be weighted by the proportion of the genome occupied by each type of TE (at least the
relative proportion of DNA vs. RNA elements).

In the opposition, DNA vs. RNA elements (our second question), other explanations
could be related to a less deleterious effect of a DNA element, due to its smaller size, about
two to three time shorter than RNA elements. If so, how can we explain that, in some
species, such as Saccharomyces cerevisiae, only LTR retroelements can be observed (from
Ty1 to Ty5; 91)? However, many other reasons can be put forward, such as their different
transposition mechanisms (see, for instance, [127]). Nonetheless, the situation is not so clear,
since many short sequences present in LTR of retrotransposons are similar to transcription
factor (TF) binding sites found in the regulatory regions of genes, particularly of genes
induced by stress [180–182]. Such an observation raises a new question: are these short
sequences an acquisition of TE from the regulatory region of genes or, on the contrary, an
acquisition of genes from TE sequences? Today, no argument supports the first hypothesis,
while several observations clearly favor the second hypothesis [180,183]. Moreover, the
origin of transcription factors is not restricted to LTR retroelements, but can come from all
the different types of TE, some of them suggesting that TE could be “hubs” of TF [127,184].
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