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Schizophrenia is a complex psychiatric disorder. Although a number of different hypotheses have been developed to
explain its aetiopathogenesis, we are far from understanding it. There is clinical and experimental evidence indicating that
neurodevelopmental factors play a major role. Disturbances in neurodevelopment might result in alterations of neuroanatomy
and neurochemistry, leading to the typical symptoms observed in schizophrenia. The present paper will critically address the
neurodevelopmental models underlying schizophrenia by discussing the effects of typical and atypical antipsychotics in animal
models. We will specifically discuss the vitamin D deficiency model, the poly I:C model, the ketamine model, and the postnatal
ventral hippocampal lesion model, all of which reflect core neurodevelopmental issues underlying schizophrenia onset.

1. Introduction

Schizophrenia is a complex psychiatric disorder which
is characterized by a defined set of symptoms usually
grouped into positive symptoms, negative symptoms, cog-
nitive impairment, psychosocial impairments, and poor
quality of life. It is commonly described as a developmental
disorder, with onset in the early adulthood or adolescence
and involving several genetic and environmental factors.
The causes of schizophrenia are unknown. However, several
hypotheses have been tested in the recent research. One of
the most accepted theories is the “two hit hypothesis.” Such
a hypothesis proposes that an early disturbance is necessary
but not sufficient to cause an increased vulnerability to
schizophrenia. Thus, an early neurodevelopmental insult
is requested to interact with either normal or abnormal
postpubertal brain maturation to fully produce late neurode-
velopmental brain structural and functional changes [1–4].

Evidence indicating a neurodevelopmental origin of
schizophrenia is grounded on extensive research performed
over the past two decades. In particular, a novel approach has
allowed clinicians to specifically investigate the early phases

of psychosis and to clarify the mechanisms underlying the
onset of the illness. This approach has been variably termed
as ultrahigh risk, at risk mental state, or clinical high risk [5].
This putatively prodromal psychotic phase is associated with
an enhanced risk of developing the illness as compared to the
general population (1%), ranging from 18% at six months
up to 36% after three years [6]. The majority (73%) of the
individuals developing a psychotic illness will transit towards
a schizophrenia spectrum disorder [7]. The clinical high
risk state for psychosis is also characterized by significant
cognitive impairments [8] and deficits in social functioning
and quality of life [5]. These alterations are associated
with underlying neurodevelopmental abnormalities in the
structure [9–11], function [12–14], connectivity [15], and
neurochemistry [16–18] of the brain, resembling those
observed in the established phase of the illness [19]. Interest
in this area has exponentially grown to the extent that a new
diagnostic category is being discussed in the forthcoming
DSM-5 [20]. These findings taken together indicated that
schizophrenia is characterized by dynamic neurobiological
changes since its earliest phases. In theory, the early phases
of schizophrenia can thus be particularly amenable to
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treatments that can impact the underlying neurobiology,
including antipsychotics. The present paper will critically
address this point, focusing on the role played by the effect
of antipsychotics on the neurogenesis during the onset of
schizophrenia. These issues will be discussed in the light of
the recent advances in animal models.

2. Methodological Approach

In the following sections, we will provide an update on
the effects of antipsychotics on cell proliferation in animal
models used in schizophrenia research. This critical paper
is limited to models most traditionally employed in the
laboratories, whereby all models reflect neurodevelopmental
aspects. In Table 1, a selection of most relevant publications
in the last 13 years is given. A survey of effects of neuroleptics
on hippocampal neurogenesis is provided in Table 2.

3. Modelling Schizophrenia with
Animal Paradigms

The development of animal models is a crucial issue
in biological psychiatry for the study of alterations in
neurochemistry, neuroanatomy, and behaviours resembling
those observed in schizophrenia. Similarly, it can be useful
for the discovery and development of effective treatments
such as antipsychotic molecules. However, heterogeneity of
the clinical symptoms of schizophrenia and the incomplete
knowledge about the cause and progression of the illness
make the development of valid animal models particularly
difficult. Moreover, there is scepticism as to what extent
the behaviour of animals can actually reflect highly com-
plex disorders such as schizophrenia. Since each animal
model is developed to target only each specific domain
of schizophrenia, different complementary approaches are
usually needed. Therefore (i) developmental, (ii) genetic, and
(iii) pharmacological models have been used in experimental
schizophrenia research [31–38].

(i) The developmental hypothesis and the respective
animal models proceed from the assumption that mal-
formations at very early stages of neurogenesis result in
structural abnormalities of the adult brain [39–41]. Under
this scenario, the pathogenesis of schizophrenia onset is
attributed to abnormal neuronal development and/or re-
organization of neuronal circuits in the frontal cortex or
in limbic structures. Hippocampal volume reductions [42,
43], hippocampal shape deformation, or abnormalities in
the hippocampal cell density [44] have been consistently
reported. Many of these alterations, however, are essentially
based on genetic deficits impacting the brain development
(see below).

(ii) Genetic animal models are developed by translation
of human genetic mutations into animals (for review:
[33, 45–47]). They include whole-body mutant mouse
strains ([48] (Reelin); [49] (Neuregulin-1)), mutant mouse
strains in which distinct genes have been knocked down
in a tissue- or cell-type-specific manner ([50] (NRG-
1/ErbB); [51] (DISC)), and transgenic mice that overexpress

schizophrenia-relevant genes ([52] (dopamine D2 receptor);
[53] (Neuregulin-1)). More advanced and complex models,
however, are under development. These models combine
several environmental and/or genetic factors to better
account for the complex aetiology of schizophrenia [54]. For
example, combined genetic disruption of the NMDA recep-
tor subunit 1 [55–58], the dopamine D2 and D4 receptors,
the dopamine transporter [59–61], and, the mutants in the
dopamine-degrading enzyme catechol-O-methyl-transferase
[62, 63] may provide a unique tool to study imbalance in
the functional regulation of neurotransmitters implicated in
schizophrenia.

(iii) Finally, the development of schizophrenia-relevant
animal models can also target the pharmacodynamics of
common antipsychotic drugs, to identify their molecular
substrates, and to optimise their pharmacokinetics, to
develop new drugs, or to test potential antipsychotics.

4. Concept of Neurogenesis in Schizophrenia

Neuronal stem cells (NSCs) belong to the class of adult
stem cells. They are multipotent and able to generate
(only) the specific cell lineages of the nervous system:
neurons, astrocytes, and oligodendrocytes [68]. NSCs will
be generated throughout the whole life, but with declining
intensity. NSCs are primarily located in the subgranular
zone (SGZ) of the hippocampal dentate gyrus and in the
subventricular zone (SVZ) of the lateral ventricles. But
there is also evidence that NSCs are present in multiple
areas of the adult brain [69]. Under the influence of their
local microenvironment, that is, their niche, NSCs take
different developmental pathways/roads of life. NSCs in
the SVZ become neuroblasts, migrate towards the rostral
migratory stream into the olfactory bulb, and develop into
interneurons. NSCs in the SGZ, on the other hand, develop
into local dentate granule cells [70].

Even if most evidences were acquired from different
animal models, there is converging consensus that adult
neurogenesis seems to be essential for different processes,
such as learning and memory [71, 72], mood regulation
[73, 74], physiological (maintenance) neuroregeneration,
neurorestoration after mechanical brain injuries [75, 76],
stroke [76, 77], multiple sclerosis [78, 79], and Parkinson’s
disease [80]. Thus it is not surprising that disturbances
of adult neurogenesis are investigated in a wide range
of pathological processes including neurodegenerative dis-
eases, brain tumours, seizures, and mental illnesses such as
schizophrenia, major depression, dementia, and alcoholism
[70].

Because of these reasons, over the past years there
has been a growing interest into neurogenesis-relevant
research on postmortem human tissues of schizophrenic
patients. Arnold and Watt [21] found abnormal neuronal
densities in the olfactory epithelium of schizophrenics. Rioux
and Arnold [81] demonstrated a deregulated expression
of retinoid receptors in schizophrenia and that retinoid
signalling plays a central role in neurogenesis. Reif and
coworkers [22] were able to demonstrate that the first
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Table 1: Critical selection of most relevant papers published in the last 13 years.

Author Year Finding Reason for selection

Bayer et al. [1] 1999

Genetic or environmental first hit
affects brain development, a second
hit later in life initiated the outbreak

of schizophrenia

Comprehensive hypothesis
concerning schizophrenia

etiology

Arnold and Watt [21] 2001
Number of immature cells is

increased in the olfactory
epithelium of schizophrenics

First report on altered cell
density in schizophrenics

Reif et al. [22] 2006
Cell proliferation is diminished in

the dentate gyrus of schizophrenics

First report on altered cell
proliferation in the human

brain

Kippin et al. [23]
Wakade et al. [24]
Wang et al. [25]

2005
2002
2004

Typical and atypical neuroleptics
enhance neurogenesis in the

subventricular zone

Effects of neuroleptics on
neurogenesis in the
subventricular zone

Kodama et al. [26]
Wakade et al. [24]
Halim et al. [27]

2004
2002
2004

Atypical but not typical
neuroleptics interfere with
hippocampal neurogenesis

Effects of neuroleptics on
neurogenesis in the

hippocampus

Piontkewitz et al. [28] 2012
Risperidone partially restored

impaired neurogenesis in poly I:C
offspring

Effect of an atypical
neuroleptic on

neurogenesis in an model
of maternal infection

Keilhoff et al. [29] 2010

Subchronic treatment with
haloperidol ameliorated decreased

neurogenesis and normalised
behaviour in vitamin D-deficient

rats

Effect of neuroleptics on
neurogenesis in the vitamin

D model

Keilhoff et al. [30] 2010

Risperidone and haloperidol
promoted survival in stem cells in

the hippocampus of rats
subchronically treated with

ketamine

Effects of typical and
atypical neuroleptics on

neurogenesis in the
ketamine model

Table 2: Survey of the effects of neuroleptics on hippocampal
neurogenesis.

Model
Effect on neuroleptics on

neurogenesis in the
hippocampus

Literature

Vitamin D deficiency Haloperidol ↑ [29]

Maternal infection
Risperidone ↑ [28]

Clozapine Ø↗ [64]

Ketamine
Haloperidol ↑∗ [30]

Risperidone ↑∗ [30]

Phencyclidine
Risperidone Ø [65]

Clozapine ↑ [66]

Postnatal lesion of
ventral hippocampus

Haloperidol Ø↗ [67], indirect

Ø: no effect, ↑: increase, ↗: increase after application of low doses, ∗: cell
survival.

step of adult neurogenesis, that is, cell proliferation, is
diminished in the dentate gyrus of patients suffering from
schizophrenia. Atz and coworkers [82] found a genotypic
association of NCAM1 polymorphisms with schizophrenia.
NCAM expression is a characteristic feature of the postnatal
neurogenic niche [83].

Beside differentiation into neurons, adult neuronal stem
cells may also undergo gliogenesis. There is an increasing
body of evidence for glial pathology in schizophrenia [84].
Oligodendrocyte and myelin dysfunction are perturbed in
schizophrenia since its earliest phases. Through changes in
synaptic formation and/or function, they can induce cogni-
tive dysfunction, one of the core symptoms of schizophrenia
[85, 86]. The activation of astrocytes has been discussed
as an important pathogenic factor for the development of
schizophrenia [87], and also microglia has been shown to
remodel the CNS during development as well as after injuries
[88–92].

5. Neurogenic Potential of Antipsychotics

Basically, antipsychotic drugs are divided into typical (first-
generation antipsychotics) and atypical (second-generation
antipsychotics). Within the commonly used typical antipsy-
chotics in early psychosis are butyrophenone (e.g., haloperi-
dol) and phenothiazine (e.g., chlorpromazine) derivates and
within the atypical are clozapine, olanzapine, quetiapine,
risperidone (reviewed in [93]).

Antipsychotics interfere with neuronal remodelling.
Thereby dopaminergic effects seem to be involved [23, 94].
It was suggested that stimulation of dopamine D2 receptors
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inhibits the proliferation of neuronal stem cells and that
tonic endogenous dopamine inhibits their proliferation [88].
Moreover, it was reported that blockade of D2 receptors
activates transcription factors which regulate the expression
of genes of neuronal growth factors [95].

Olanzapine, which has less affinity for the dopaminergic
receptors [96], is also able to enhance SVZ [24, 25] and hip-
pocampal neurogenesis [26]. The latter, on the other hand,
is not influenced by haloperidol [24, 27] clearly indicating
that typical and atypical antipsychotics differentially regulate
neurogenesis. In support to this notion, it was also reported
that typical and atypical antipsychotics differentially induce
neuronal plasticity and synaptic remodelling. Atypical but
not typical antipsychotics are effective not only in the stria-
tum but also in the prefrontal cortex and hippocampus [94].
With respect to the schizophrenia-relevant morphometric
changes and cellular abnormalities in the grey matter, the
reported effects of antipsychotics in the prefrontal cortex
are particularly interesting (reviewed in [97]). Interestingly,
long-term antipsychotic treatment induced glial but not
neuronal cell proliferation in monkeys and that with no
difference between typical and atypical antipsychotics [98].
All these results, however, do not challenge the scientific con-
sensus that the adult cortex under physiological conditions
belongs to the so-called nonneurogenic tissue.

6. Mechanisms Underlying the Effects of
Antipsychotics on Neurogenesis

There are different possible mechanisms by which antipsy-
chotics realize their influence on cell proliferation/neuro-
genesis. Earlier studies indicate that a couple of factors, for
example, trophic and transcription factors, can interact in
a fine-tuned network. Clozapine, for example, selectively
increased FGF-2 (fibroblast growth factor-2, belongs to
trophic factors) in the striatum [99]. In the hippocampus,
FGF-2 is induced by quetiapine, but only when the NMDA
receptor system is downregulated [100]. Other studies
addressed the schizophrenia-relevant role of BDNF (brain-
derived neurotrophic factor). However, the findings on
BDNF status in naı̈ve patients as well as in patients treated
with antipsychotics are highly discrepant (reviewed by [101–
105]). In animals, BDNF in the hippocampus was decreased
by haloperidol and high-dosed risperidone [106–108], while
olanzapine therapy enhanced BDNF [109]. It was also shown
that haloperidol reduced NGF (neuronal growth factor)
while olanzapine raised NGF levels and risperidone was
ineffective on NGF [110, 111]. VEGF (vascular endothelial
growth factor, angiogenic neurotrophin) seemed also to be
involved in the action of antipsychotics. Haloperidol and
olanzapine increased its hippocampal levels [112].

Antipsychotics can additionally influence cell prolifera-
tion/neurogenesis via targeting transcription factors impli-
cated in mitotic activity regulation. Thus, it was shown
that haloperidol, risperidone, and clozapine affected phos-
phorylation of extracellular signal-regulated kinases (ERKs)
and cyclic adenosine 3′,5′-monophosphate (cAMP) response
element (CRE) binding protein (CREB), each with different

profiles. In fact, haloperidol and risperidone promoted
phosphorylation [113, 114], while clozapine reduced ERK1/2
and CREB phosphorylation [113]. Furthermore, haloperidol
treatment of mice increased phosphorylation of Akt1. With
respect to the Akt/GSK-3 system, clozapine had similar
effects as haloperidol increasing the Akt1 phosphorylation
[115].

It is important to note that a direct antipsychotic drug-
gene interaction should be taken into close consideration,
even if a direct intervention on genes (belonging to the
glutamate/NMDA receptor family) has been shown only for
haloperidol [116, 117]. Since modulation of progenitor cell
proliferation as well as neurogenesis resulting in NMDA
receptor modulation has been described [118], these findings
set one possible agenda by which a direct antipsychotic drug-
gene interaction can become neurogenic.

Assuming that the pathology of the schizophrenia [119,
120] and the cell proliferation/neurogenesis [70, 121] are
subjected to epigenetic control mechanisms, future research
is needed to address the exact neurogenic mechanisms of
antipsychotics adjusting by epigenetic factors.

A comprehensive summary of questions concerning
neurogenic actions of antipsychotic drugs is given by Newton
and Duman [122].

7. From the Bench: Interplay of Schizophrenia,
Neuroleptics, and Neurogenesis

Several pathophysiological models have been proposed to
explain schizophrenia and may appear to reflect distinct
aspects of this disease. None of the pharmacological, genetic,
and neurodevelopmental models have been evaluated in
detail for translational relevance or to satisfy requirements of
the different levels of validity (face, construct, and predictive
validity; for review see [123]). Pharmacological models
focused on alterations in the dopaminergic, glutamatergic,
serotonergic, and GABAergic neurotransmitter systems [54,
124, 125]. They are based on alterations in these neurotrans-
mitter systems, mimicking the in vivo conditions which are
clinically relevant for schizophrenia. These alterations may
be manipulated by drug challenges.

8. First Lesson: The Aspect of
Maternal Vitamin D Deficiency

Given the apparent polygenic nature of schizophrenia and
the limited translational significance of the available phar-
macological models, neurodevelopmental models may offer
a better chance of success [126]. Different animal models in
schizophrenia research were developed to shed light on the
developmental aspects of the disease.

In the course of ontogenesis there are two critical
phases when the organism is susceptible to disturbances
which can contribute to schizophrenia, that is, the embry-
onic/postdelivery phase (first hit) and during puberty (sec-
ond hit). The vitamin D deficiency model appears to be
useful to study the impact of brain disturbances during
embryonic/fetal development [127, 128]. Interestingly, some
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of the vitamin D deficiency effects could be related to
later gestational periods thus possibly expanding the haz-
ardous time window for the neurobiological development
of schizophrenia [129]. Moreover, it was shown that the
neurosteroid can impact brain development by affecting
migration and survival of developing neurones in the brain,
by influencing brain levels of neurotrophins and their
receptors [130], by altering brain apoptotic activity [131],
and by exerting immunoregulatory and neuroprotective
effects (for review see [127]).

The vitamin D deficiency model is one of the most
commonly explored and used also in our lab [29, 132].
Generally, animals from a normal diet control group which
were left untreated revealed a basal level of 5-bromo-2′-
deoxyuridine (BrdU) immunolabelling in the hippocampal
subgranular zone which was in line with previous reports
[133]. Cell typing 5 days after BrdU application offered a
large pool of BrdU-labelled cells costained with DCX, a
marker for immature neurons (∼55%). A colabelling with
NeuN, a marker for mature neurons, was only rarely found.
The second largest group of BrdU-positive cells (∼10%)
were round or oval, medium-sized, and immunopositive
for nestin, an intermediate filament that is expressed in
neuronal stem or progenitor cells, identifying these cells as
granule cell precursors. The remaining BrdU-positive cells
expressed the common astroglia marker GFAP (∼4%), the
NG2 proteoglycan, a marker for oligodendroglial precursor
cells and/or synantocytes (∼4%), or were free of any co-
labelling (∼7%). There were no obvious differences in
the distribution of BrdU-immunoreactive cells at different
longitudinal levels of the dentate gyrus.

When cell typing was done 3 weeks after the last BrdU
application, about 75% of the BrdU-labelled cells could be
identified as granule cells. They had a small round soma,
were immunopositive for NeuN, and some of them were
shifted from the subgranular cell layer towards the middle
part of the granule cell layer. Now, DCX co-labelling was
found to be poor. Saline treatment did not alter this BrdU-
labelling/costaining pattern.

Prenatal vitamin D deficiency reduced cell proliferation
in the subgranular zone. The loss was proportionally dis-
tributed between the different cell types. Due to the very little
counts of BrdU-positive cells marked with all nonneuronal
markers, only the loss of DCX-positive cells was numerically
evident.

In control animals, the typical (first-generation) neu-
roleptic haloperidol significantly increased the total num-
ber of BrdU-labelled cells. In vitamin D-deficient mice,
the deficiency-induced reduction of cell proliferation was
completely normalized by haloperidol resulting in a mitotic
activity adequate to the untreated control level. In both cases,
haloperidol treatment revealed tendentially more DCX-
expressing cells. Moreover, a cytoskeletal hypertrophy of
radial glia-like GFAP-positive astrocytes, possibly serving as
climbing frame for the migrating neuronal newcomers, was
found.

There is general consensus that neuroleptic drugs
improve the psychopathology of schizophrenia. Treatment
with typical neuroleptics is considered to result in minimal

improvement or in worsening of cognitive processes [134],
but there are also reports showing that typical neuroleptics
provide modest gains in multiple cognitive domains [135].
As hippocampal neurogenesis plays an important role in
learning and memory processes [74], we speculate that
the previously demonstrated normalization of a vitamin D
deficiency-induced habituation deficit in the hole board by
haloperidol [136] could result from an at least partially
restored mitotic activity. This idea is supported by findings
that vitamin D depletion depressed promitotic genes [131,
137]. It is also plausible that there is some kind of exhaustion
of the mitotic cell potency due to the overshooting activity
in young animals, as it was demonstrated for the vitamin
D deficiency model [131] and the NOS knock-out model
[138]. Using learning paradigms dependent on hippocampal
integrity in subsequent experiments, effects of APDs on both
learning behaviour and neurogenesis should be studied in
detail.

9. Second Lesson: The Aspect of
Maternal Infection

Epidemiological studies have shown that maternal infection
and inflammation in definite periods of pregnancy are sig-
nificantly associated with an increased risk of schizophrenia
in the offsprings. Infection with influenza virus [139] or
application of polyriboinosinic-polyribocytidylic acid (poly
I:C), an inflammatory agent which mimics inflammation
by stimulation cytokine release through Toll-like recep-
tor TLR3 activation is accepted models in schizophrenia
research (for review see [140]). Prenatal immune stimulation
reduces hippocampal neurogenesis [141–144]. The beneficial
effects of atypical neuroleptic drugs (APDs), on the other
hand, have been attributed to their capacity to increase
neurogenesis [22, 145–147]. Together with the group of
Weiner and Piontkewitz [28], some of the present authors
studied the effects of adolescent poly I:C and risperidone
treatment by analyzing a battery of cellular markers referring
to cell proliferation and differentiation of hippocampal
cell populations. The offspring of poly I:C-treated dams
were characterized by an impaired neurogenesis including a
decrease of calretinin-positive neurons, disturbed microvas-
cularization and granular cell density in the dentate area, and
a reduction of parvalbumin-expressing interneurons, whose
deficit is a well-replicated neuropathological finding in
schizophrenia [148]. Risperidone normalized the disturbed
cell proliferation and/or survival, the number of calretinin
and parvalbumin-expressing cells, and counteracted the
disturbance in angiogenesis.

Together with previous reports on deficient hippocampal
neurogenesis in offspring of poly I:C-exposed mice [64,
144] and LPS-exposed rats [141], our findings confirm
the hypothesis that impaired neurogenesis is an important
aetiopathological factor for hippocampal abnormalities and
related cognitive dysfunctions in animal models and in
patients with schizophrenia [22, 30, 74, 123, 141, 145–147,
149, 150]. Studies concerning an influence of antipsychotics
in the poly I:C model are rare. Thus, Meyer et al. [64]
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demonstrated that chronic clozapine treatment had no effect
on poly I:C-hampered neurogenesis.

With respect to neurogenesis, our findings about a
risperidone-mediated normalization of the byprenatal poly
I:C disturbed angiogenesis are of special interest. In general,
angiogenesis and neurogenesis are closely linked with each
other [151]. Thus, VEGF modulates neurogenesis directly
and also subsequently releasing neurotrophic factors such
as BDNF [145, 152, 153]. Moreover, in a previous study
we showed that administration of risperidone was able to
increase VEGF expression [30] and angiogenesis [28] in
the hippocampus of rats. Given that alterations of brain
capillaries have been observed in schizophrenia [154], the
demonstrated angiogenic effect of risperidone might be a
partial mechanism by which antipsychotics realized their
action.

Deficit of parvalbumin-expressing interneurons is an
accepted feature in schizophrenia [148, 155], also demon-
strable in animal models [156–160]. Our findings that
risperidone counteracts this induced by prenatal poly I:C
deficiency may also have important implications for under-
standing its antipsychotic mechanism.

To fully complete the present section, it is important to
note that, in line with previously reported findings [161,
162], we found no effects of prenatal poly I:C treatment
and/or risperidone intervention on astrocytes, oligodendro-
cytes, and microglial cells.

10. Third Lesson: The Aspect of Imbalances in
Central Glutamatergic Neurotransmission

Glutamatergic alterations have been consistently showed in
psychosis, since its earliest stages [54]. Repeated adminis-
tration of noncompetitive NMDA receptor antagonists like
ketamine, dizocilpine, and phencyclidine (PCP) to neonatal
and pubertal rats leads to a number of molecular, neuro-
chemical, and behavioural alterations that resemble those
observed in schizophrenia [156, 163, 164]. Administration
of the NMDA receptor antagonist dizocilpine and PCP in
late fetal and early postnatal period of life in the rat will
increase neuronal death by apoptosis [165]. On the contrary,
administration of these substances to rats at an adult age will
increase neuronal damage by necrosis with subsequent gliosis
[166] which results in enduring alteration in the neuronal
circuitry. Maeda and coworkers [66] showed that PCP-
induced decreased adult neurogenesis was counteracted by
coadministered glycine and D-serine confirming the involve-
ment of NMDA receptors in disruption of neurogenesis.
Moreover, they were able to demonstrate a reconstruction of
neurogenesis by clozapine, but not haloperidol.

However, we found that acute application of ketamine
in sub-anaesthetic doses had no effect on cell proliferation.
Animals, decapitated 3 weeks after ketamine application,
however, showed a significant increased number of BrdU-
labelled nuclei in the subgranular zone compared to saline-
treated and untreated animals, whereby the cell-type assign-
ment did not differ between the groups. There was no
difference between the left and the right hippocampus, but

significantly more BrdU-labelled cells were found in the
lateral than in the medial blade of the dentate gyrus. In
our first respective paper [167], this was interpreted as
stimulating effect of ketamine on neurogenesis. Later on
[30], however, we speculated that the withdrawal rather than
the application of ketamine was essential and that beside
an increase of cell proliferation there was a better survival
of proliferated cells. These effects were accompanied by an
enhanced mRNA level of BDNF.

Haloperidol and the atypical antipsychotic risperidone
increased the total number of BrdU-labelled cells surviving
for three weeks within the granule cell layer in untreated
animals. Hereby, VEGF (vascular endothelial growth fac-
tor, signalling protein involved in angiogenesis and cell
proliferation in general), MMP2 (matrix metallopeptidase
2 (Gelatinase A)), a proteolytic enzyme involved in cell
proliferation, adhesion, and migration), CREB, and p38
MAP kinase seemed to be involved at mRNA as well as
protein levels. The ketamine withdrawal-induced changes
in proliferation/survival, however, were not additionally
affected by the neuroleptics [30].

Malberg and Monteggia [168] showed that chronic
administration of haloperidol increased the level of BDNF
in the frontal cortex and amygdala, a possible mechanism for
the neuroproliferative potency of haloperidol. Together with
its direct effect on MMP2 and the subsequent effect on VEGF
(possibly by processing the VEGF binding proteins HARP
(heparin affine regulatory peptide)) and CTGF (connective
tissue growth factor), the cell proliferative/protective potency
of haloperidol is plausible.

Nevertheless, the demonstrated haloperidol effect on
cell proliferation is in agreement with some, but not all,
previous reports [24, 25, 27, 169]. The differences can reflect
methodological heterogeneity across different experimental
settings (dosage, application regime, and used rat strain).

Interestingly, in the PCP model risperidone was unable
to reverse the PCP-induced decreases in parvalbumin expres-
sion in the prefrontal cortex [65]. This indicates that the
antipsychotic effects of risperidone differ (prenatal poly I:C
insult (see above) versus chronic administration of PCP to
adult animals).

11. Fourth Lesson: The Aspect of
Mechanical Lesions

Lesion models such as the neonatal ventral hippocam-
pal lesion result in schizophrenia-related alterations in
behaviour, neurochemistry, and neuropathology when per-
formed on postnatal day (PD) 7, but not on PD 14 or
PD 21 [32]. Interestingly, lesions performed in adolescent
rats result in less pronounced and qualitatively different
schizophrenia-related alterations [170–173]. However, only
few data suggesting a link between brain lesion and neuro-
genesis are available. Lipska et al. [174] and Ashe et al. [175]
studied the expression of BDNF mRNA in rats with neonatal
lesions of the ventral hippocampus and found consistently
a suppressed BDNF level in the dentate gyrus. From that
and from the BrdU incorporation studies, they concluded
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that “a transient disconnection in the CA1 and CA2 area
of the hippocampus may have long-lasting consequences
for neurogenesis in the dentate gyrus” [176]. Negrete-Dı́az
et al. [67] showed that nitric oxide (NO) levels in the
prefrontal cortex, the occipital cortex, and the cerebellum
are higher in the damaged animals and that haloperidol, in
part, attenuates these altered NO levels. NO itself is known
to be anti-proliferative and it should be allowed to suppose a
connection between the enhanced NO level and the reduced
BrdU incorporation in animals with ventral hippocampus
lesions. It is not clear, however, how haloperidol-induced
reduction in NO may lead to a restored cell proliferation.
This might be, at least partially, a mechanism by which
haloperidol decreased stereotypy in ventral hippocampus
damaged rats [177].

12. Conclusions/Outlook

Clinical and experimental researches indicate that neuroge-
nesis is disturbed in schizophrenia, since its earliest phases.
Moreover, antipsychotics specifically interact with these
alterations, affecting the neurogenesis. By increasing the
neurogenesis it may be possible to provide beneficial gains for
processes related with learning and memory formation. The
regulation of neurogenesis may be a promising novel target
for the treatment and the prevention of schizophrenia.
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[101] F. Angelucci, S. Brenè, and A. A. Mathé, “BDNF in
schizophrenia, depression and corresponding animal mod-
els,” Molecular Psychiatry, vol. 10, no. 4, pp. 345–352, 2005.

[102] P. F. Buckley, A. Pillai, D. Evans, E. Stirewalt, and S. Mahadik,
“Brain derived neurotropic factor in first-episode psychosis,”
Schizophrenia Research, vol. 91, no. 1–3, pp. 1–5, 2007.

[103] P. F. Buckley, A. Pillai, and K. R. Howell, “Brain-derived
neurotrophic factor: findings in schizophrenia,” Current
Opinion in Psychiatry, vol. 24, no. 2, pp. 122–127, 2011.

[104] M. J. Green, S. L. Matheson, A. Shepherd, C. S. Weickert,
and V. J. Carr, “Brain-derived neurotrophic factor levels
in schizophrenia: a systematic review with meta-analysis,”
Molecular Psychiatry, vol. 16, no. 9, pp. 960–972, 2011.

[105] O. Guillin, C. Demily, and F. Thibaut, “Brain-derived
neurotrophic factor in schizophrenia and its relation with
dopamine,” International Review of Neurobiology, vol. 78, pp.
377–395, 2007.

[106] J. Chlan-Fourney, P. Ashe, K. Nylen, A. V. Juorio, and X.
M. Li, “Differential regulation of hippocampal BDNF mRNA
by typical and atypical antipsychotic administration,” Brain
Research, vol. 954, no. 1, pp. 11–20, 2002.

[107] N. M. Dawson, E. H. Hamid, M. F. Egan, and G. E. Meredith,
“Changes in the pattern of brain-derived neurotrophic factor
immunoreactivity in the rat brain after acute and subchronic
haloperidol treatment,” Synapse, vol. 39, no. 1, pp. 70–81,
2001.
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