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 Abstract: Background: Glycogen synthase kinase-3 (GSK3) is associated with various key biological pro-
cesses and has been considered as an important therapeutic target for the treatment of many diseases. Great 
efforts have been made on the development of GSK3 inhibitors, especially ATP-competitive GSK3β in-
hibitor, but it is still a great challenge to develop selective GSK3β inhibitors because of the high sequence 
homology with other kinases. 

Objective: In order to reveal the selectivity mechanisms of GSK3β inhibition at the molecular level, a series 
of ATP-competitive GSK3β inhibitor was analyzed by a systematic computational method, combining 3D-
QSAR, molecular docking, molecular dynamic simulations and free energy calculations.  

Methods: Firstly, 3D-QSAR with CoMFA was built to explore the general structure activity relationships. 
Secondly, CDOCKER and Flexible docking were employed to predicted the reasonable docking poses of 
all studied inhibitors. And then, both GSK3β and CDK2 complexes were selected to conduct molecular dy-
namics simulations. Finally, the free energy calculations were employed to find the key selective-residues. 

Results: CoMFA model suggested the steric, hydrophobic fields play key roles in the bioactivities of inhib-
itors, and the binding mechanisms were well analyzed through molecular docking. The binding free ener-
gies predicted are in good agreement with the experimental bioactivities and the free energy calculations 
showed that the binding of GSK3β/inhibitors was mainly contributed from hydrogen bonding and hydro-
phobic interaction. 

Conclusion: Some key residues for selective binding were highlighted, which may afford important guid-
ance for the rational design of novel ATP-competitive GSK3β inhibitors. 
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1. INTRODUCTION 

Glycogen synthase kinase-3 (GSK3) is a ubiquitously ex-
pressed serine/threonine protein kinase implicated in the regu-
lation of many physiological responses in mammalian cells by 
phosphorylating a variety of cytoplasmic and nuclear proteins, 
that modulates many fundamental signaling pathways in-
cluding processes of glucose metabolism, Wnt signaling, 
abnormal excessive phosphorylation of tau protein 
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etc. [1, 2]. Moreover, the kinase GSK3 can be divided into 
GSK3α and GSK3β, which is inhibited by external phos-
phorylation of Ser21 in α isoform and Ser9 in β, respectively 
[3]. Since GSK3 has multifaceted roles in many signaling 
pathways, an elevation or relegation of its normal activity 
level is associated with several diseases, such as type-2 dia-
betes and Alzheimer’s disease. GSK3 has recently emerged 
as a potential therapeutic target [4-10]. 

In the past decades, GSK3β has received more attention 
and a number of GSK3β inhibitors have been designed and 
reported successively, and these inhibitors are mainly divid-
ed into two types: ATP competition and non-ATP competi-
tion inhibitors [11-14]. In the last couple years, significant 
effort has been devoted to the development of ATP competi-
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tion GSK3β inhibitors, but so far, none of these inhibitors 
have advanced to clinical trials. There could be two reasons 
for this failure [15]: On the one hand, the two isoforms of 
GSK3 show 97% identical in sequence within the catalytic 
domain [11]; on the other hand, most ATP competitive 
GSK3β inhibitors potentially inhibit other kinases, especially 
CDK2 (Cyclin-dependent kinase) [11, 16, 17]. Therefore, it 
would be a great challenge to develop specific GSK3β inhib-
itors. Compared with traditional structure-activity relation-
ship studies, computer-aided drug design (CADD) methods 
may provide systematic investigations on the selective 
GSK3β binding mechanism of the ATP competitive inhibi-
tors at the molecular level [18-24]. As an important technol-
ogy and tool for drug design, CADD, including quantitative 
structure-activity relationship (QSAR) analysis, molecular 
docking, molecular dynamics (MD) simulation and free en-
ergy calculations etc., has been widely used to design or dis-
cover novel GSK3β inhibitors [19, 25-27]. But the theoreti-
cal studies on the selectivity mechanisms of GSK3β through 
these simulation techniques are quite limited. Therefore in 
this study, a computational strategy, which combined 3D-
QSAR, molecular docking, MD simulation, free energy cal-
culations and decomposition, was employed to reveal the 
mechanisms of GSK3β binding selectivity. Our findings may 
provide some useful enlightenment for the development of 
high selective GSK3β inhibitors. 

2. MATERIALS AND METHODS 

2.1. 3D-QSAR 

2.1.1. Data Set 

Thirty-one compounds were selected for the generation of 
CoMFA model based on the GSK3β inhibitory activity as 
reported (Table 1) [28]. Based on the diversity and activity 
range of molecular structure, the whole data set was divided 
into training set containing 24 compounds for 3D-QSAR 
model generation and testing set containing 7 compounds for 
model checking through the Generate Training and Test Data 
module of Discovery Studio 3.5 (DS3.5). In this process, Split 
method is modified to random, and the ratio of the training set 
to the test set is approximately 3:1. All the inhibitors were 
sketched by sybyl-x2.0, and the energy minimization proce-
dure was used in sybyl-x2.0 to achieve stable conformations 
and the parameters were set as follows: all molecular charges 
using Tripos force field loading Pullman method, and the big-
gest iterations were set to 10000, energy gradient will be lim-
ited to 0.005 kcal/(mol·Å), other parameters as the default 
values. The related IC50 values were converted to PIC50 values 
(-log IC50) as the response variable for QSAR studies, the 
structures and PIC50 experimental values of all compounds are 
shown in Table 1 (the test set molecules labeled with asterisk). 
Then, two alignment protocols were respectively built: the first 
approach was based on the guidelines provided by Sybyl, the 
compounds of the training and test sets were superimposed with 
the common skeleton [21] (Fig. S1a) of the Cpd25, which was 
selected as the template molecule with the highest active, and 
the superimposed model is shown in Fig. S1b; another approach 
was based on the conformational poses from molecular dock-
ing, and the superimposed model is shown in Fig. (S2f). 

2.1.2. CoMFA Model Building 

In the CoMFA analyses, the following CoMFA fields 
were evaluated: traditional steric and electrostatic fields, H-
bond donor and acceptor fields, indicator steric and electro-
static fields. Partial least squared (PLS), which is a kind of 
multiple linear regression, was used to construct a 3D-QSAR 
model with the link between the biological activity and mo-
lecular description. In order to get a more accurate and test 
the reliability of the model, then leave-one-out (LOO) cross-
validation method was adopted to get the statistical parame-
ters including conventional correlation coefficient (r2), 
standard error of estimate (SEE) and F-test values, the opti-
mum principal component number (N) and the coefficient of 
cross validation (q2). When the q2 > 0.5, r2 > 0.9, the model 
has significant statistical criteria (other related values, F val-
ue > 100, SEE as small as possible). After internal valida-
tion, the test set was used for external validation to evaluate 
the ability of model prediction. Subsequently, the biological 
activities of test set compounds were predicted by the CoM-
FA mode and the predictive ability was expressed by the 
predictive correlation coefficient (R2

test). 

2.2. Molecular Docking 

2.2.1. Preparation of Inhibitors and Protein 

The four crystal structures of GSK3β (PDB entry: 4ACC, 
4ACD, 4ACG, 4ACH) [28] were used as the initial receptor 
for molecular docking protocol. Preparation of protein mac-
romolecules and small ligands is required before molecular 
docking. First, the protein was prepared by the prepare pro-
tein module in DS3.5 with the default parameter, the pre-
pared proteins would be added polar hydrogen, removed 
water molecules, repaired the broken chain and added the 
CHARMm field. And then, all inhibitors were processed us-
ing the prepare ligands module in DS3.5 all ligands were 
protonated and generated a series of conformations to facili-
tate better docking. 

2.2.2. Setting of Molecular Docking Parameters 

Two docking protocols, CDOCKER (CD) and Flexible 
docking (FD), were employed to predict the binding mode 
between GSK3β and the inhibitors. CD, a semi-flexible 
docking, is a relatively accurate docking method. In this pro-
cess, Top Hits are modified to 10, and Use Full potential is 
modified to False, as well as the default active pocket radius 
and the active pocket radius of 5 Å size. FD is a flexible 
docking method and allows greater realism than other dock-
ing formalisms in that flexibility of the ligand and receptor 
side-chains is permitted during the docking procedure. In FD 
study, the amino acids in the range of 4 Å around the origi-
nal ligand were defined as active residues, and then, the 
Maximum Number of Generate protein conformations was 
set to 100, the Generate Ligand Conformation method was 
set as fast and the Max Hits to save was set to 3. The remain-
ing parameters were set as default. 

2.3. Molecular Dynamics Simulation 

Four complexes (PDB: 4ACC, 4ACG, 4ACH, 4ACM) 
[28] were used as the initial structures of MD simulation by  
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Table 1. The structures and experimental activities of GSK3β inhibitors. (Positions other than para substitution of R3 are indicated 

explicitly in the table by ortho or meta, Where the R3 group of the Cpd8 is in the meta position of R2, the R3 group of 

Cpd9 is in the ortho position of R2). 

 
No. R1 R2 R3 IC50/(nm) PIC50 

5 H H H 41 7.387 

8 H H 

 

74 7.131 

9 H H 

 

300 6.523 

10 F H 

 

1.3 9.114 

11 CH3 H 

 

0.46 9.337 

12 CF3 H 

 

1.1 8.959 

13 CH3 CH3 

 

1.5 8.824 

14 H F 

 

9 8.046 

15 H CH3 

 

6.3 8.201 

16 H H 

 

2 8.699 

*17 H H 

 

18 7.745 

*18 H H 

 

4.9 8.31 

Table 1. Contd… 

N

N NH2

HN

O

N

R2

R1R3

N N S

O

Ometa

*

N N S

O

O
*

ortho

N N S

O

O
*

N N S

O

O
*

N N S

O

O
*

N N S

O

O
*

N N S

O

O
*

N N S

O

O
*

S
O

O N
H

O*

O
N

*

N N S

O

O
*



20     Current Computer-Aided Drug Design, 2020, Vol. 16, No. 1 Zhu et al. 

No. R1 R2 R3 IC50/(nm) PIC50 

*19 H H 

 

4.4 8.357 

20 H H 

 

0.4 9.398 

21 H H 

 

12 7.921 

22 H H 

 

0.67 9.174 

*23 H H 

 

20 7.699 

*24 H H 

 

8.4 8.076 

37 H H 

 

3.1 8.509 

38 H H 

 

16 7.796 

 

No. R X Y IC50/(nm) PIC50 

27 NH2 C C 120 6.921 

28 NH2 N C 64 7.194 

41 H N N 370 6.432 

 

Table 1. Contd… 
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No. R3 R5 IC50/(nm) PIC50 

25 

 

 

0.22 9.658 

26 

 

 

0.48 9.319 

44 

  

12 7.921 

45 

  

690 6.161 

46 

 
 

0.99 9.004 

49 

  

74 7.131 

*50 

 
 

90 7.046 

*51 

 
 

22 7.658 

* The test set molecules. 

the SANDER program in Amber14 [29]. Then, the general 
Amber force field (gaff) [30] was used for the ligands and the 
Amber ff03 force field [31] was used for the proteins. The 
semi-empirical AM1 method in GAUSSIAN09 [32] was used 
to optimize small molecule inhibitors, partial of the atomic 
charge is obtained by using the RESP (restrained electrostatic 
potential) fitting technique to calculate the electrostatic poten-
tial at the HF/6-31G* level. The tleap module in AMBER14 
was used to generate the topological structure and parameter 
files of the proteins and ligands studied. Each system was neu-
tralized with Na+ ions, meanwhile, immersed in a rectangular 
box filled with TIP3P water molecules at a distance of 10 Å 
from any solute atom. The Particle Mesh Ewald (PME) 
scheme was used to deal with the long range electrostatics, in 
the range of 10 Å for van der Waals interactions. 

Before the MD simulation, there are three steps to mini-
mize the energy of each system using the SANDER program 
[33, 34]. First of all, under the condition of the principal car-
bon constraint (50 kcal /mol/Å2), 1000 minimization cycles 
(500 fastest descent cycles and 500 conjugate gradients) 
were performed. Secondly, 1000 cycles of minimizations 
with a weaker harmonic potential (10 kcal/mol/Å2) were 
carried out. Finally, in the absence of any constraints, the 

entire system is covered by 5000 minimum cycles (1000 
steepest descent cycles and 4000 conjugate gradient cycles). 
During the MD simulation stage, each system is gradually 
heated gradually from 0 to 300K over 50 ps in the NPT en-
semble. and then performed a 50-ps MD simulation in NPT 
ensemble with a temperature of 300 K and pressure 1 atm. 
At last, a 30 ns NPT MD simulation was performed, using 
the SHAKE algorithm to bind all the bonds involving hydro-
gen and the time step was set to 2.0 fs. Coordinates were 
saved every 10 ps [35]. 

2.4. MM/GBSA Free Energy Calculations and Decomposition 

Each system is the combination of free energy calcula-
tion (ΔGbind) by MM/GBSA method, the following Equation 
(1) [36-39]. 

ΔGbind = Gcomplex - Gprotein - Gligand 

= ΔH + Δ Gsolvation - TΔS                                                      (1) 

= ΔEMM + ΔGGB + ΔGSA - TΔS 

The binding free energy of GSK3β and inhibitors was 
calculated by MM/GBSA method. In this method, the struc-
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ture of a frame system is extracted every 10 ps from the last 
10 ns MD simulation trajectory of the composite for free 
energy calculation. Where ΔGcomplex, ΔGprotein and ΔGligand are 
the free energies of the complex, protein and inhibitor re-
spectively. The free energy of gas phase (ΔEMM) can be di-
vided into electrostatic free energy (ΔGele) and van der 
Waals free energy (ΔGvdw), and the free energy of solvation 
(ΔGsol) can be divided into polar solvent free energy (ΔGGB) 
and non-polar solvent free energy (ΔGSA). The contribution 
of polar solvent free energy to solvent free energy can be 
calculated by Generalized Born. In the calculation, the  
dielectric constant of solute and the permittivity of solvent 
are set to 1 and 80 respectively. The contact surface area of 
solvent was calculated by LCPO method. 

The binding free energy was decomposed using the 
GBSA (Generalized Born/Surface Area) method, which de-
composed the binding free energy of ligand-binding recep-
tors into the contributions of the backbone atoms and side 
chain atoms of each residue. Equation (2) shows that pro-
teins interact with small molecules in four different ways 
[17, 37, 40-45]. 

ΔGinhibitor-residue = ΔEvdw + ΔGele + ΔGGB + ΔGSA                   (2) 

3. RESULTS AND DISCUSSION 

3.1. 3D-QSAR Results Analysis 

3.1.1. CoMFA Model Analysis 

The CoMFA model based on superposition was used for 
the prediction of a series of pyrazine inhibitors in the follow-
ing study. Five models based on the traditional (electrostatic 
and steric) fields and the “Advanced CoMFA” module con-
taining H-bond fields and indicator fields were both investi-
gated [46]. The results of these CoMFA models were sum-
marized in Table 2. It is remarkable that CoMFA(1) and 
CoMFA(3) show  better results than the other models, the q2 
values are 0.594 and 0.510, respectively. And then, the bio-

activities of the compounds in the testing set were predicted 
by these models, and the predictive correlation coefficients 
(R2

test) were all calculated to evaluate the accuracies of these 
models. Meanwhile, the root mean-square error (RMSE) of 
all inhibitors were calculated, respectively. As shown in Ta-
ble 2, although CoMFA(1) and CoMFA(3) both show satis-
factory results (q2 > 0.5), CoMFA(1) contains the best pre-
dictive ability (R2

test = 0.756). Therefore, CoMFA(1) was 
chosen to the following analysis. The CoMFA(1) model 
demonstrated a q2 value of 0.594, with optimal principal of 
components 5. PLS analysis provided conventional r2 value 
of 0.975, SEE value of 0.189, and F value of 140.387, which 
indicated that the model contained a good predictive ability 
(q2 > 0.5 and r2 > 0.9). In CoMFA model, the contributions 
of steric and electrostatic fields were 64.7% and 35.3% re-
spectively, it suggested that the steric field contributed most 
to the GSK3β inhibitory activity. In addition, the experi-
mental PIC50 and predicted PIC50 of all inhibitors are shown 
in Table S1 and the predicted correlation coefficient (R2) 
between them are illustrated in Fig. (1a). (R2

training = 0.975 

and R2
test = 0.756), these results suggested that the developed 

CoMFA model has a robust predictive capability for subse-
quent QSAR analysis. 

3.1.2. Analysis of CoMFA Model Contour Maps 

The contour maps of CoMFA model can directly reflect 
the effects of steric and electrostatic field parameters on the 
activity of compounds, and further guide the rational design 
of compounds. In the contour maps of the steric field, the 
yellow area indicates that the introduction of larger groups 
will reduce the activity, while the green area indicates that 
the introduction of larger groups will increase the activity of 
compounds. While in the electrostatic field, the red region 
represents that the introduction of negative groups can im-
prove the activity of compounds, and the blue region repre-
sents that the introduction of positive groups can improve the 
activity of compounds. In order to facilitate the analysis and 

Table 2. Statistical results of the CoMFA models. 

CoMFA(1) CoMFA(2) CoMFA(3) CoMFA(4) CoMFA(5) 

q2 0.594 0.157 0.510 0.359 0.267 

r2 0.975 0.630 0.938 0.978 0.964 

SEE 0.189 0.670 0.290 0.177 0.220 

F 140.347 18.108 71.819 160.441 128.241 

Components 5 2 4 5 4 

Steric 0.647 - - 0.278 - 

Electrostatic 0.353 - - 0.230 - 

Steric (indicator) - - 0.612 - 0.280 

Electrostatic (indicator) - - 0.388 - 0.202 

H-bond acceptor - 0.605 - 0.340 0.350 

H-bond donor - 0.395 - 0.152 0.168 

R2
test 0.756 0.418 0.412 0.467 0.477 

aRMSE 0.337 0.640 0.313 0.274 0.271 

aRMSE (root mean-square error) = 
���������������

�

�
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discussion of the CoMFA model equipotential diagram, 
Cpd25 (Fig. 1b), with the highest inhibitory activity, is dis-
played in the maps to aid in visualization.  

The steric fields of CoMFA are shown in Fig. (1c), a 
large green contour was mapped near 3 and 4 positions of 
piperazine ring, indicating that this area was suitable for the 
introduction of bulky groups substituents. For example, 
Cpd18 (PIC50 = 8.310) had a bulkier substituent (methylpi-
perazinyl group) at position 3, and that significantly in-
creased the activity compared to Cpd8 (PIC50 = 7.131) or 
Cpd9 (PIC50 = 6.523). Similarly, one large green area in the 
30th and 31st attachments suggest that the introduction of 
large volume substituents nearby has a great improvement in 
biological activity. For example, Cpd25 (PIC50 = 9.658) has a 
higher activity than Cpd26 (PIC50 = 9.319) because of the 
introduction of 4-pyrrolidin-2-plpyridine group at R5 substi-
tution. Finally although there is just a small green contour 
between the 16 and 17 sites, a bulky group still would im-
prove the biological activity, like Cpd27 (PIC50 = 6.921), 
along with the introduction of a polyatomic cycloalkyl 
group, showed higher inhibition than Cpd41 (PIC50 = 6.432). 
On the contrary, three small yellow contours surrounding 
carbon terminal of the site 3 indicated that a bulky group at 
this position would decrease the potency. By checking the 
analogues, it could be observed that Cpd20 (PIC50 = 9.398) 
had higher activity than Cpd18 (PIC50 = 8.310) substituted 
with bulky methyl groups at 6-position. Meanwhile, there are 
several yellow areas around the 21-nitrogen-connected pyri-

dine, in the case of Cpd46 (PIC50 = 9.004), the activity is 
significantly higher than that of Cpd44 (PIC50 = 7.921), 
Cpd45 (PIC50 = 6.161) and Cpd49 (PIC50 = 7.131). The 
above statement also can be confirmed by Cpd25, due to the 
introduction of the large substituted cyclopentane in the 
green region at R5 substituent (Table 1), the activity of 
Cpd25 was significantly improved. 

The electrostatic fields of CoMFA is shown in Fig. (1d). 
one small red contour appears near 3 and 4 positions, sug-
gested their affinity to electron-withdrawing substituents. If 
these positions were replaced by electron donating groups, it 
would result in a decrease of inhibitory activity. For exam-
ple, when Cpd22 (PIC50 = 9.174) introduced oxygen atoms at 
3 positions, the biological activity increased by about 7 times 
compared with Cpd18 (PIC50 = 8.310). By contrast, a large 
blue area was covered around the piperazine ring, indicating 
that the introduction of electropositive groups was a benefit 
to biological activity. For example, the activity of Cpd18 is 
significantly higher than that of Cpd21 (PIC50 = 7.921), be-
cause N-methylpiperazinyl sulfonyl is more positive than 
sulfonamide. There are  red region and  larger blue region 
near  position 7, suggesting that the area of electrical factors 
is more complex, which needs specific analysis. For Cpd25, 
position 8 was substituted by piperazine sulfonyl group, and 
it is clearly observed from Fig. (1d) that the electro negativi-
ty of sulfonyl is in the red areas, while the location of the 
piperazine ring in the blue area, observed to have increased 
activity. In addition, there is one small blue region between 

 
Fig. (1). (a) Plots of predicted PIC50 values versus experimental PIC50 values for the CoMFA models (training set colored in red and test set 
colored in green); (b) the structure of Cpd25; (c) steric contour maps; (d) electrostetic contour maps. 
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16 and 17 sites, which indicated that the introduction of a 
positive group in the vicinity was profitable to the enhance-
ment of biological activity. For example, Cpd28 bearing 
electro-withdrawing groups at position 17 displayed distinct 
improvements in potency which compared with Cpd41. Be-
tween Cpd25 and 26 located the blue area, such as Cpd46 
(PIC50 = 9.004) whose activity was significantly higher than 
the Cpd49 (PIC50 = 7.131). 

3.2. Molecular Docking Analysis 

3.2.1. Comparison of Two Docking Methods 

Molecular docking studies are widely used as a method of 
predicting the potential binding mechanisms between the bio-
active compound and the protein [17, 47]. Firstly, in order to 
investigate the “docking power” [48, 49] of all crystal struc-
tures of GSK3β, the ligands extracted from four crystal struc-
tures were re-docked into the corresponding GSK3β proteins. 

And the RMSD (root mean square deviation) values between 
the re-docked complex and the initial crystal structure was 
calculated to compare. As illustrated in Fig. (S2a-d), the dock-
ing pose of Cpd18 superimposed onto the crystal structure 
better than the other complexes (RMSD = 0.93 Å, Fig. S2b), 
thus Cpd18 was selected to perform the next docking proto-
cols. Secondly, to verify the accuracy of two docking proto-
cols, the crystal structure of 4ACD coupled with Cpd18 was 
re-docked by FD, and as shown in Fig. (S2e), the FD docked 
pose of Cpd18 superimposed better (RMSD = 0.56 Å) than 
CD (RMSD = 0.93 Å), it implicated that FD would perform 
well for this system. On the other hand, the correlation coef-
ficients (r2) of both docking protocols were evaluated to de-
tect the relationship between the observed experimental val-
ues (PIC50) against the predicted docking scores of the pro-
tein-ligand complexes. As shown in Figs. (2a and b), the 
predicted scores obtained by FD show greater liner correla-
tion (r2 = 0.588) than CD docking (r2 = 0.333), which means 

 
Fig. (2). (a) The correlations between the experimental PIC50 and the docking scores by (a) CDOCKER and (b) Flexible Docking; Flexible 
docking model of (c) Cpd25 and (d) Cpd45 in the active site of GSK3β; 2D presentations of the interactions between GSK3β and (e) Cpd25; 
(f) Cpd45. 



Selective Inhibition Mechanisms of GSK3β Current Computer-Aided Drug Design, 2020, Vol. 16, No. 1    25 

the flexibility of protein is crucial for binding between 
GSK3β and the inhibitors. The overall results proved that FD 
more accurate than CD for the next analysis. 

3.2.2. Analysis of Docking Results 

Based on the above docking results, the discussion was 
mainly focused on the FD re-docked complexes. Fig. (S2f) 
shows the alignments of all docked structures in the binding 
site of GSK3β, and all the docked molecules share similar 
binding modes. In order to evaluate the effects of different 
molecular alignments on CoMFA model [50], the FD dock-
ing poses of all the inhibitors (Fig. S2f) were constructed 
using CoMFA models with different fields, and the results 
are summarized in Table S2. Some models showed the good 
q2 values, such as CoMFA (1) = 0.561, CoMFA(5) = 0.556, 
but it is disappointing that all of them exhibited poor predic-
tive abilities (Table S2). Be that as it may, these docking 
poses still provide valuable information for exploring the 
structure-activity relationship between GSK3β and the inhib-
itors. In the case of Cpd25 and Cpd45 (Figs. 2c and d), the 
docking results revealed that Cpd25 and Cpd45 bound to the 
same position of GSK3β and the residues Phe67, Ala83, 
Lys85, Val110, Leu132, Asp133, Tyr134, Val135, Arg141, 
Cys199 constructed the ATP pocket almost surrounded by 
both inhibitors. Meanwhile, Fig. (2c) showed that Cpd25 
formed two hydrogen bonds (H-bond) with Asp133 and 
Arg141, while these H-bonds lost between GSK3β and 
Cpd45, these H-bond interactions could keep strong affinity 
to GSK3β and that is consistent with the large difference of 
bioactivities between them. The pyridine ring and piperazine 
ring of Cpd25 and 45, respectively formed π-π stacking and 
π-cation interactions with Phe67, Tyr134 (Figs. 2e and f). 
The above results indicate that the H-bonds and π-cation 
interactions play important roles in maintaining the stability 
of binding interactions between the ligand and GSK3β [17]. 
In addition, the structure of GSK3β minor changes adapts to 
different inhibitors. For example, compared with Cpd25 
(Figs. 2e and f), when interacting with Cpd45, several resi-
dues, including Phe67, Val70, Asp133 and Arg141, showed 
major conformational changes to adapt the structure of 
Cpd45. This further shows the importance of the flexibility 
of GSK3β for inhibitor-target recognition. 

3.3. Molecular Dynamics Simulation 

3.3.1. Binding Free Energy Calculations  

In order to evaluate the dynamic binding process of the 
studied inhibitors and rationality of the simulated complex 
system, the RMSD variation of the complex structure with 

respect to the initial structure skeleton atoms during the sim-
ulation process was calculated and the results are shown in 
Fig. (S3). The plots showed that all studied systems reached 
equilibrium within 10 ns, with an average about 1.5Å RMSD 
fluctuation. Based on the MD simulations, to explore the 
most favorable binding mechanism of the studied complex, 
the binding free energies for the four inhibitors were calcu-
lated and the results are summarized in Table 3. Simultane-
ously, non-polarity bond was significantly stronger than that 
of the polarity bond of all the studied inhibitors. Van der 
Waals force and electrostatic terms are quite favorable for 
inhibitor binding to GSK3β, while the polar solvation term is 
unfavorable for binding in all four complexes. Non-polar 
contribution (Δvdw + ΔSA) of 4ACG/Cpd25 (-88.400 
kcal•mol-1) is significantly stronger than that of 
4ACC/Cpd23 (-51.480 kcal•mol-1), 4ACH/Cpd51 (-74.300 
kcal•mol-1) and 4ACM/Cpd23 (-54.020 kcal•mol-1), which 
agreed with the GSK3β inhibitory activities assayed in vitro. 

3.3.2. Analysis of the Inhibitors Binding Mechanism 

For the sake of quantitatively identify the contribution of 
each residue to inhibitors, the total binding free energies for 
four complexes were further decomposed into individual 
residue contributions. The comparison of the inhibitor-
residues energy difference is illustrated in Figs. (3, 4 and 
S4). As Fig. (3) appears at a first glance, all three complexes 
share several similar interaction patterns with the active site 
residues, such as Val70, Asp133, Tyr134, Val135, Arg141 of 
GSK3β, their contributions to ΔGpred are all lower than -2.0 
kcal•mol-1 (Figs. (3a-c), respectively). Obviously, the majority 
of these residues are all hydrophobic amino acids, that makes 
the non-polar interactions become the dominating force for the 
inhibitor binding. Meanwhile, some of the other residues that 
give rise to the difference in their bioactivities which are 
summarized in Figs. (3a-c), such as Ile62, Lys85. Then, in 
order to explore the detail effects of different substituents, the 
comparison of the inhibitor-receptor for three groups 
(4ACC/Cpd23 and 4ACG/Cpd25, 4ACH/Cpd51 and 
4ACG/Cpd25, 4ACC/Cpd23 and 4ACM/ Cpd23) were illus-
trated in Fig. (3). 

Compared to Cpd23, modifications at two sites were 
found in Cpd25, the ethylene diamine group at the 6-position 
(Fig. 1b) in Cpd23 was replaced by N-methylpiperazinyl-
sulfonyl group, and the hydrogen atom at the 28-position in 
Cpd23 was replaced by an methylprrolidinyl group. These 
changes enhance the activity from 20 nM (Cpd23) to 0.220 
nM (Cpd25). As illustrated in Table 3, the energy contribu-
tion of van der Waals interactions for Cpd25 is -57.400 

Table 3. MM/GBSA energy components and binding free energies (ΔGpred) versus experimental data. 

Complex    ΔEvdw     ΔEele    ΔGSA    ΔGGB   ΔGPred PIC50 

4ACC/23 -47.19 ± 0.95 -34.43 ± 0.32 -4.29 ± 0.17 47.16 ± 0.57 -38.75 ± 0.02    7.699 

4ACG/25 -57.40 ± 0.48 -31.00 ± 0.32 -5.00 ± 0.24 46.37 ± 0.33 -47.03 ± 0.12    9.658 

4ACH/51 -48.84 ± 0.47 -25.46 ± 0.49 -4.39 ± 0.28 43.20 ± 0.44 -35.49 ± 0.01    7.658 

4ACM/23 -49.65 ± 0.14 -29.14 ± 1.65 -4.37 ± 0.21 50.66 ± 0.29 -32.52 ± 0.46    7.432 
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kcal•mol-1 and that for Cpd23 is -47.190 kcal•mol-1, it shows 
that the van der Waals interactions are important for the in-
hibitors binding. Followed by Figs. (3a and b), it is easy to 
observe that Lys85 and Arg141 are significant for the inter-
actions both Cpd23 and Cpd25. Meanwhile, the energy con-
tribution of Lys85 for Cpd25 is -2.270 kcal•mol-1, which is 
more favorable than that of Cpd23 (-1.610 kcal•mol-1), the 
Arg141 works in a similar way. The difference in the contri-
butions of Lys85 and Arg141 for Cpd23 and Cpd25 is main-
ly caused by the strong van der Waals interactions, which 
leads to a closer contact between the sulfonyl group of 
Cpd25 and Arg141 than that the corresponding Lys85 of 

Cpd23 (Fig. 3d). As displayed in Figs. (3a and b), both 
Cpd23 and Cpd25 formed favorable interactions with 
Tyr134. However, the energy contribution of Tyr134 in the 
4ACC/Cpd23 complex (-1.870 kcal•mol-1) is lower than that 
in the 4ACG/Cpd25 complex (-2.590 kcal•mol-1). Tyr134 
formed hydrophobic interaction with Cpd25, while that in-
teraction lost in Cpd23 system. According to the previous 
molecular docking analysis, pyridine ring formed the key H-
bond interactions with residue Lys85 in the GSK3β active 
site. Therefore, Lys85 is a critical residue for inhibitor bind-
ing to GSK3β. 

�

�
Fig. (3). Contd… 
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Fig. (3). The changes of inhibitor-residue spectrum for (a) GSK3β/Cpd23; (b) GSK3β/Cpd25; (c) the GSK3β/ Cpd51 (The black columns 
represent the total binding free energy, the red columns represent the non-polar energy (Δvdw + ΔSA) and the blue columns represent the polar 
energy (Δele + ΔGB); the binding mode of (d) GSK3β/Cpd23; (e) GSK3β/Cpd25; (f) GSK3β/Cpd51. 

Besides, Cpd51 also was chosen to compare with Cpd25. 
The difference of structure between Cpd25 and Cpd51 just lie 
in the groups at the 22-position (Fig. 1b). Cpd25 contained a 
4-pyrrolidin-2-plpyridine group at 22-position while Cpd51 
had a methyl propyl ether group (Table 1). However, Cpd25 
showed better inhibitory activity (IC50 = 0.220 nM) than 
Cpd51 (IC50 = 22 nM). The reason for the difference mainly 
depends on the various contributions formed by several key 
residues, including Lys85, Tyr134 and Val135. The modifica-
tion at the 22-position enhanced the inhibitors interaction with 
the residue Lys85. The energy difference of Val134 between 
Cpd25 and Cpd51 is 0.630 kcal•mol-1 (Fig. 3b and c), and it is 
primarily contributed from the differences between the van der 
Waals interactions (-2.450 kcal•mol-1 and -2.080 kcal•mol-1, 
respectively). As illustrated in Figs. (3c and d), the 2-
Phenylpiperazine group in Cpd25 and Cpd51 was close to 
Val134 and therefore they both formed strong interactions 
with Val134. The interactions between the inhibitors and 
Tyr135 are similar to the above discussion. However, Val70 
share more favorable contributions to the binding affinity of 
Cpd25 than that of Cpd51. This can also be explained by the 
position of the pyrrolidine of Cpd25 in Fig. (3e). Overall, we 
can draw the conclusion that a large group at the 22-position 
would enhance the ligand-protein interactions, which is con-
sistent with 3D-QSAR result discussed above. 

In addition, to explore the selectivity mechanism between 
GSK3β and CDK2, two complexes 4ACC and 4ACM, con-
taining the same inhibitor (Cpd23) were investigated. Table 
3 showed that predicted binding free energy for 
4ACC/Cpd23 is weaker than that for 4ACM/ Cpd23, sug-
gesting that Cpd23 formed stronger interactions with GSK3β 
than CDK2, which is consistent with the experimental data. 
To better understand the distinction in the binding affinity 
between 4ACC/Cpd23 and 4ACM/Cpd23, the data from the 
binding energy decomposition analysis also should be con-
sidered. According to Figs. (4a-c), the residues Ile62/Ile10, 
Val70/Val18, Ala83/Ala31, Leu132/Phe80, Tyr134/Phe82, 
Leu188/Leu134, share strong contributions to the interac-
tions between GSK3β and CDK2. It is interesting to observe 
that all these important residues are hydrophobic, which all 

can form strong van der Waals interactions with the inhibi-
tors. Among these residues, Ile62/Ile10 are more essential to 
determine the difference in the binding affinity of both two 
complexes. The van der Waals interaction between Cpd23 
and Ile62 (-3.160 kcal•mol-1) is more favorable than that 
between Cpd23 and Ile10 (-2.390 kcal•mol-1). The enhanced 
van der Waals interactions between Ile62/Ile10 and Cpd23 
are mainly caused by the change position of the 2-
(dimethylaminoethyl)-ethylamino. Besides, the Cpd23 can 
form H-bonds with the Asp133 and Arg141 of GSK3β and 
the H-bonds also could be observed between Cpd23 and 
Glu81 and Asp86 of CDK2. But the H-bond formed by 
Asp133 of GSK3β (-1.500 kcal•mol-1) stronger than that of 
Glu81/CDK2 (-0.590 kcal•mol-1). Meanwhile, both of the 
polar and non-polar interactions between Cpd23 and Arg141 
(-1.260 kcal•mol-1) are stronger than those between Cpd23 
and Asp86 (-0.380 kcal•mol-1). Overall, Ile62/Ile10, 
Asp133/Glu81 and Arg141/Asp86 are more essential to de-
termine the difference of the binding affinity of both com-
plexes. In a word, Ile62, Asp133, Arg141 may be the key 
residues for GSK3β selectivity inhibition.  

CONCLUSION 

In this work, a computational analysis, integrating 3D-
QSAR, molecular docking and molecular dynamics simula-
tion was conducted to explore the specific binding mecha-
nisms of GSK3β ATP competition inhibitors. The CoMFA 
model with high liner correlation R2

Pred provides reliable 
predictive ability and the three-dimensional isopotential 
maps delicately revealed the structure-activity relationships. 
The results of molecular docking show that the introduction 
of the flexibility of GSK3β may significantly improve the 
accuracy of prediction and FD provides appropriate binding 
modes of the inhibitors. And then, MD simulations were 
performed to deeply understand the dynamic binding mode 
between GSK3β/ligand complexes and some key residues 
for improving the affinities to GSK3β were identified. At 
last, the inhibitor specificity between GSK3β and CDK2 is 
determined by the additive contributions of multiple amino 
acids, such as Ile62, Asp133 and Arg141. In conclusion, all 
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the above results provide useful information to understand 
the mechanism of inhibitor binding and specificity and may 
provide useful information for the rational design of novel 
and selective GSK3β ATP competition inhibitors.  
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