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Abstract: Intestinal barrier injury and hyperglycemia are common in patients with sepsis. Bacteria translocation and systemic
inflammatory response caused by intestinal barrier injury play a significant role in sepsis occurrence and deterioration, while
hyperglycemia is linked to adverse outcomes in sepsis. Previous studies have shown that hyperglycemia is an independent risk factor
for intestinal barrier injury. Concurrently, increasing evidence has indicated that some anti-hyperglycemic agents not only improve
intestinal barrier function but are also beneficial in managing sepsis-induced organ dysfunction. Therefore, we assume that these agents
can block or reduce the severity of sepsis by improving intestinal barrier function. Accordingly, we explicated the connection between
sepsis, intestinal barrier, and hyperglycemia, overviewed the evidence on improving intestinal barrier function and alleviating sepsis-
induced organ dysfunction by anti-hyperglycemic agents (eg, metformin, peroxisome proliferators activated receptor-γ agonists,
berberine, and curcumin), and summarized some common characteristics of these agents to provide a new perspective in the adjuvant
treatment of sepsis.
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Summary
Previous study has confirmed that hyperglycemia can independently drive intestinal barrier dysfunction. Since hyper-
glycemia and intestinal barrier dysfunction commonly exist and are associated with poor prognosis in sepsis, they might
be the targets in the management of sepsis. Interestingly, some anti-hyperglycemic agents (eg, metformin, peroxisome
proliferators activated receptor-γ agonists, berberine, and curcumin) have shown positive effects beyond controlling
hyperglycemia, such as improving intestinal barrier function and resisting sepsis-induced organ dysfunction. With the
ability to inhibit systemic inflammatory response and prevent enterogenous infection, agents capable of controlling
hyperglycemia and improving intestinal barrier function might be beneficial in the management of sepsis.

Introduction
Sepsis is a series of pathophysiological events caused by uncontrolled reactions to various infections that result in
multiple organ dysfunction syndrome (MODS) and even death.1,2 Nowadays, sepsis has become a huge burden on global
health. In 2017, nearly 50 million incident cases of sepsis were recorded, and 11 million sepsis-related deaths were
reported, representing about 20% of all global deaths.3 Noteworthy, sepsis is not a single disease but a syndrome
comprising many pathophysiological changes caused by aggravated infectious diseases, and available treatment options
beside antibiotics and supportive care are limited because of the heterogeneity of pathogenic factors in sepsis.4 Therefore,
feasible therapy is vital for sepsis management.5

Intestinal barrier injury is a common phenomenon in sepsis patients and plays an essential role in sepsis occurrence
and deterioration. The intestinal barrier includes a mucosal barrier composed of the intestinal epithelium and secreted
mucus, a biological barrier composed of intestinal microbiota, and an immune barrier composed of intestinal immune

Drug Design, Development and Therapy 2022:16 1697–1711 1697
© 2022 Wang et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.
php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the

work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For
permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

Drug Design, Development and Therapy Dovepress
open access to scientific and medical research

Open Access Full Text Article

Received: 29 January 2022
Accepted: 28 May 2022
Published: 4 June 2022

http://orcid.org/0000-0002-1815-3991
https://www.dovepress.com/terms.php
https://www.dovepress.com/terms.php
http://creativecommons.org/licenses/by-nc/3.0/
https://www.dovepress.com/terms.php
http://www.dovepress.com/permissions.php
https://www.dovepress.com


tissues. Normally, the intestinal barrier participates in absorbing nutrients and, meanwhile, prevents bacteria and toxins
from crossing the barrier from the intestinal tract to the circulation. However, when the intestinal barrier is impaired, the
intestinal permeability of the intestinal contents, such as intestinal bacteria and their metabolites, increases, and some
adverse consequences occur.6 In sepsis, lipopolysaccharide (LPS) generated from intestinal gram-negative bacteria
crosses the impaired intestinal barrier and enters the circulation, aggravating the systemic inflammatory response and
exacerbating the severity of sepsis.7–9 Nevertheless, intestinal barrier injury is not only the accelerator but also the
initiator of sepsis; therefore, intestinal barrier injury caused by reasons besides sepsis can initiate enterogenous infection
and increase the risk of sepsis.10–12 Consequently, blocking the vicious cycle between intestinal barrier injury and sepsis
is a promising strategy for the adjuvant treatment of sepsis.

Another common symptom of sepsis is hyperglycemia. On the one hand, type 2 diabetes mellitus (T2DM) is a cause
of pre-existing hyperglycemia, acting as a frequent complication during sepsis. On the other hand, stress-induced
hyperglycemia occurs under the severe pathophysiological events of sepsis.13 Notably, the occurrence of hyperglycemia
is closely related to worse outcomes in sepsis.14 Interestingly, intestinal barrier injury is independently driven by
hyperglycemia,15 and our previous study has further confirmed the relationship between intestinal barrier injury and
hyperglycemia in humans.16 In addition to the negative effects of hyperglycemia on the intestinal barrier and sepsis, some
anti-hyperglycemic agents have been proven to protect against intestinal barrier injury17 and alleviate sepsis-induced
organ dysfunction in numerous animal experiments.18

Therefore, we assumed that by improving the intestinal barrier function, some anti-hyperglycemic agents could block
or reduce the severity of sepsis. Accordingly, we explicated the connection between sepsis, intestinal barrier, and
hyperglycemia, overviewed the evidence on improving intestinal barrier function and alleviating sepsis-induced organ
dysfunction by anti-hyperglycemic agents (eg, metformin, peroxisome proliferators activated receptor-γ agonists, ber-
berine, and curcumin), and summarized some common characteristics of these agents to provide new a perspective in the
adjuvant treatment of sepsis.

Metformin
Metformin is a widely used anti-hyperglycemic agent in the treatment of T2DM. Recently, the intestine has been
recognized as a major site of metformin pharmacodynamics.19 Sum et al have found that peripheral glucose disposal by
intravenous metformin infusion was not better than that by normal saline infusion as control, indicating that the anti-
hyperglycemic effect of metformin has barely depended on its substance in the circulation.20 Vancomycin is a broad-
spectrum antibiotic, and orally administered vancomycin cannot be absorbed from the intestinal tract21 but induces
drastic and consistent changes in the intestinal microbiota.22 Kim et al have found that after receiving oral vancomycin,
the anti-hyperglycemic effect of metformin was weakened without pharmacokinetics change, while the relative abun-
dance of intestinal microbiota was changed and associated with the anti-hyperglycemic effect. Taken together, the effect
of metformin is more likely to depend on the improvement of intestinal microbiota but not on the concentration of
metformin in circulation.23 Given the close relationship between intestinal microbiota and intestinal barrier,24,25 metfor-
min can provide benefits by improving intestinal barrier function. Moreover, metformin can prevent sepsis-induced organ
dysfunction with the effects of reducing reactive oxygen species and pro-inflammatory cytokines, inhibiting the
activation of transcription factors related to inflammation, decreasing neutrophil accumulation and infiltration, and
maintaining mitochondrial membrane potential.26

The main pharmacological effect of metformin is the activation of adenosine monophosphate-activated protein kinase
(AMPK), and previous studies have demonstrated that AMPK is vital for intestinal barrier function.27 Wu et al have
found that LPS decreased the expression of tight junction (TJ) proteins, causing the pro-inflammatory response, oxidative
stress, and intestinal barrier damage in mice, and those effects were attenuated by metformin through the activation of
AMPK.28 Since C-Jun N-terminal kinase (JNK) is involved in the disruption of the intestinal barrier, Deng et al have
found that metformin prevents intestinal barrier dysfunction by inhibiting the activation of JNK through an AMPK-
dependent signaling pathway in Caco-2 cell monolayers, colitis mice models, and ulcerative colitis patients.29

Besides AMPK, metformin improves the intestinal barrier function through other mechanisms. Mucin 2 is the main
glycoprotein constituting the intestinal mucosal layer. Ke et al have found that metformin restored intestinal barrier
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function by increasing the expression of mucin 2 in mice with ulcerative colitis induced by dextran sulfate sodium
(DSS).30 Myosin light-chain kinase (MLCK) is an enzyme activating the myosin light chain (MLC) and participating in
cytoskeleton contraction and TJ regulation. Zhu et al have demonstrated that metformin stabilizes TJ proteins and
improves intestinal barrier function by inhibiting the MLCK-MLC signaling pathway in Caco-2 cell monolayers.31 Li
et al have found that metformin protects the intestinal barrier function by normalizing the interaction between claudin-4
and zonula occludens (ZO) −1 and preventing the distribution of claudin-4 in rats with irritable bowel syndrome.32

Recently, an increasing number of studies have focused on the relationship between metformin and intestinal microbiota,
and Zhang et al have summarized that metformin was capable of improving intestinal barrier function by maintaining
intestinal microbiota homeostasis.33

Given the advantages of intestinal barrier improvement, metformin can theoretically contribute to the management of
sepsis. Clinical research has shown that metformin exposure is associated with decreased morbidity and mortality in
patients with sepsis and pre-existing hyperglycemia.34–36 Studies on sepsis models have also shown that metformin could
prevent sepsis-induced organ dysfunction, and the specific efficacy and associated mechanisms are summarized in
Table 1.37–51 Surprisingly, Malik et al have found that metformin provides antimicrobial benefits in various infections
in vitro and in vivo,52 fundamentally preventing the occurrence and deterioration of sepsis. In conclusion, metformin
might provide benefits in the adjuvant treatment of sepsis by improving intestinal barrier function. And the application of
metformin in sepsis needs further clinical investigation.

Peroxisome Proliferators Activated Receptor-γ (PPAR-γ) Agonists
PPAR-γ agonists are another class of anti-hyperglycemic agents. As the name implies, PPAR-γ agonists act by increasing
the activity of PPAR-γ.53 PPAR-γ is abundantly expressed in intestinal epithelial cells,54 and its activation can alleviate
intestinal barrier injury.55,56 Zhao et al have found that rosiglitazone effectively promoted the intestinal mucus integrity
and prevented the intestinal barrier injury via an MLCK-dependent mechanism in chronic colitis mice.57

Considering the relationship between intestinal barrier injury and sepsis, PPAR-γ agonists with positive effects on the
intestinal barrier can make a difference in the management of sepsis. Shih et al have found in a nested case–control study
that PPAR-γ agonist exposure was associated with a decreased risk of sepsis in patients with pre-existing
hyperglycemia.58 Hsieh et al have shown in a propensity score matching observational study that over 4-week use of
pioglitazone within three months was associated with decreased mortality in patients with sepsis and T2DM.59 As early
as 2004, Fink et al proposed that PPAR-γ agonists could be useful for adjuvant treatment of sepsis and MODS.60 Li et al
have described the role of PPAR-γ in the regulation of inflammatory response and emphasized the potential efficacy of
PPAR-γ agonists as a novel therapeutic option in sepsis.61 Many studies on sepsis models have also shown the positive
effects of PPAR-γ agonists (rosiglitazone and pioglitazone) on sepsis-induced organ dysfunction, and the specific efficacy
and associated mechanisms are summarized in Table 2.62–74 Given the protective effects of PPAR-γ agonists on the
intestinal barrier and sepsis, the corresponding clinical research is in progress,75 and whether PPAR-γ agonists improve
the prognosis of sepsis will be answered in the future.

Berberine
Berberine, isolated from traditional Chinese medicine, has been used to treat intestinal inflammation for decades. Recent
studies have shown the therapeutic ability of berberine in many parenteral diseases.76 Zhang et al have found in
a randomized, double-blind, placebo-controlled trial that berberine significantly reduced glycosylated hemoglobin
C and improved hyperglycemia in newly diagnosed T2DM patients.77 Additionally, meta-analyses have indicated that
berberine could be used as an anti-hyperglycemic agent in the treatment of T2DM.78,79

Until now, berberine has been proved to improve intestinal barrier function in many intestinal diseases. Xiong et al
have overviewed previous studies and concluded that berberine repairs intestinal barrier injury by promoting differentia-
tion of intestinal stem cells through identifying bitter taste receptors on Tuft cells in ulcerative colitis.80 Li et al have
demonstrated that berberine restores the intestinal barrier homeostasis, maintains the residence of enteric glial cells,
suppresses inflammatory cell infiltrations, and attenuates the overactivation of immune cells in mice with DSS-induced
ulcerative colitis.81 Jing et al have found that berberine improves intestinal barrier function by regulating intestinal
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microbiota-associated tryptophan metabolite and activating the aryl hydrocarbon receptor in rats with DSS-induced
colitis.82 Zhang et al have shown that berberine improves intestinal barrier function by promoting anti-inflammatory and
antioxidative stress responses in mice with DSS-induced colitis.83 Considering that A20, a ubiquitin-modifying enzyme,
can protect cells from necroptosis,84 Hou et al have found that berberine protected intestinal epithelial TJ and repaired

Table 1 Beneficial Effects of Metformin on Sepsis-Induced Organ Dysfunction

Organs Models; Methods Results Associated Mechanisms References

Heart Rats; LPS Metformin inhibited the local innate immune
responses in the isolated heart.

Activating AMPK and suppressing
TLR 4-related pathway.

[48]

Mice; LPS Metformin reversed the histological abnormalities of

the heart and the elevation of myeloperoxidase, CK-
MB, and BNP.

Activating AMPK-dependent anti-

inflammatory mechanism.

[44]

Mice; LPS Metformin rescued myocardial function. Supporting metabolic activity and

allowing efficient energy
utilization.

[47]

Zebrafish; E. coli Metformin reduced heart congestion and swelling,

increased heart rate, and decreased mortality.

Inhibiting inflammatory response. [50]

Mice; E. coli Metformin prolonged life span. Promoting the combination of

PKCε with IRF4 at mitochondrial
microdomain.

[43]

Lung Rats; LPS Metformin reduced BALF protein and lung wet/dry
ratio and inhibited the infiltration of neutrophils and

macrophages.

Alleviating capillary injury and
promoting AMPK-α1 expression.

[51]

Rats; LPS Metformin attenuated congestion and inflammatory
cell infiltration of the alveolar walls.

Resisting TLR4 activation and
upregulating AMPK.

[49]

Mice; CLP Metformin assisted in the clearance of damaged

mitochondria and the killing of bacteria.

Activating Parkin-independent

autophagy by AMPK.

[39]

Mice; LP/hemorrhage

and resuscitation

Metformin alleviated lung injury and prevented

immunosuppression.

Improving the cross-talk between

the AMPK and GSK3β pathways.
[45]

Liver Rats; LPS/Partial

hepatectomy

Metformin blunted hepatic damage and improved

coagulation function.

Decreasing proinflammatory and

controlling hemostatic responses.

[38]

Rats; LPS/D-GalN Metformin protected liver function. Regulating ADMA metabolism. [37]

Kidney Mice; CLP Metformin protected against kidney tubule epithelial

cells injury and improved survival.

Restoring mitochondrial function

and metabolic fitness via Sirt3
signaling.

[42]

Brain Rats; CLP Metformin improved BBB function and attenuated
brain injury.

Inhibiting inflammation and
increasing expression of TJ

proteins.

[40]

Mice; CLP Metformin improved survival, cognitive function, and
BBB and decreased brain edema and neuronal

apoptosis.

Activating PI3K/Akt pathway. [46]

Intestine Mice; Temporary

occlusion of superior

mesenteric artery

Metformin protected barrier function and reduced

oxidative stress and inflammatory response.

Preserving cell pyroptosis via the

TXNIP-NLRP3-GSDMD pathway.

[41]

Abbreviations: LPS, lipopolysaccharides; AMPK, adenosine monophosphate-activated protein kinase; TLR, toll-like receptor; CK-MB, creatinine kinase-myocardial band;
BNP, brain natriuretic peptide; E. coli, Escherichia coli; PKCε, protein kinase C epsilon; IRF4, interferon regulatory factor 4; BALF, bronchoalveolar lavage fluid; CLP, cecal
ligation and puncture; GSK3β, glycogen synthase kinase 3β; D-GalN, D-galactosamine; ADMA, asymmetric dimethylarginine; TJ, tight junction; BBB, blood-brain barrier;
PI3K, phosphatidylinositol 3-kinases; AKT, also known as PKB, protein kinase B; TXNIP, thioredoxin-interacting protein; NLRP3, Nod-like receptor thermoprotein domain 3;
GSDMD, gasdermin D.
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intestinal barrier injury by increasing the expression of A20 in mice with diarrhea-predominant irritable bowel
syndrome.85

Moreover, the protective effects of berberine on the intestinal barrier have also been confirmed in other diseases.
Gong et al have found in T2DM rats that the anti-hyperglycemic effect of berberine might be attributed to the
improvement of intestinal barrier function.86 Shan et al have shown in T2DM rats that berberine effectively repairs
the damaged intestinal mucosa, restores intestinal permeability, and improves endotoxemia.87 Zhang et al have
demonstrated in mice with renal failure and long-term peritoneal dialysis that berberine alleviates intestinal barrier
dysfunction by increasing TJ and adhesion junction proteins, improving the morphology of microvilli, and promoting
cell migration.88 Yu et al have found in rats with uremia induced by the 5/6 kidney resection that berberine prevents
intestinal barrier injury through antioxidant effect.89 Li et al have demonstrated in mice with nonalcoholic fatty liver
disease that berberine restores liver function by ameliorating intestinal barrier function.90 Liang et al have found in
rats with severe acute pancreatitis that berberine improves the intestinal barrier function and maintains the intestinal
membrane permeability by inhibiting MLC phosphorylation.91 Yu et al have shown in blunt snout bream that
berberine alleviates intestinal barrier injury by inhibiting pro-inflammatory response and modulating intestinal
microbiota.92

Table 2 Beneficial Effects of PPAR-γ Agonists on Sepsis-Induced Organ Dysfunction

Organs Models;
Methods

Results Associated Mechanisms References

Heart Mice; LPS Rosiglitazone protected cardiac function and

improved survival.

Increasing fatty acid oxidation and preventing

mitochondria reduction.

[66]

Rats; CLP Rosiglitazone improved myocardial tissue
morphology.

Inhibiting cell apoptosis and TNF-α expression
by NF-κB pathway.

[74]

Rats; CLP Rosiglitazone protected against cardiac dysfunction

and improved survival.

Reducing pro-inflammatory cytokines,

apoptosis, and necroptosis.

[72]

Lung Mice; LPS Rosiglitazone attenuated acute lung injury. Downregulating HMGB1-RAGE pathway. [73]
Mice; CLP Pioglitazone reduced inflammatory response. Inhibiting the NF-κB pathway. [68]

Mice; CLP Pioglitazone prevented lung injury. Retaining anti-inflammatory status of visceral

adipose tissue.

[69]

Liver Rats; CLP Rosiglitazone protected against acute liver injury. Reducing inflammatory response. [64]

Kidney Rats; CLP Rosiglitazone reduced kidney injury. Reducing inflammatory response and decreasing

apoptosis.

[65]

Mice; LPS Rosiglitazone decreased the elevated levels of blood
urea nitrogen and creatinine.

Inhibiting NF-κB pathway and reducing the
expression of ICAM-1 and VCAM-1 in renal

tubular epithelial cells.

[70]

Brain Rats; CLP Rosiglitazone alleviated long-term cognitive

impairment.

Ameliorating mitochondrial function. [71]

Mice; CLP Rosiglitazone protected against microvascular
dysfunction.

Increasing functional capillary density and
decreasing leukocyte rolling and adhesion.

[63]

Intestine Rats; CLP Pioglitazone minimized indicators of intestinal injury
and improved survival.

Maintaining intestinal barrier integrity. [67]

Immunity Mice; CLP Rosiglitazone regulated inflammatory response,
increased bacteria clearance, and improved clinical

status and mortality.

Activating PPAR-γ and promoting the formation
of NET.

[62]

Abbreviations: PPAR-γ, peroxisome proliferators activated receptor-γ; LPS, lipopolysaccharides; CLP, cecal ligation and puncture; TNF-α, tumor necrosis factor-α; NF-κB,
nuclear factor-κB; HMGB1, high mobility group box 1; RAGE, advanced glycation end-product receptor; ICAM-1, intercellular adhesion molecule-1; VCAM-1, vascular cell
adhesion molecule-1; NET, neutrophil extracellular trap.
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Despite the positive effects of berberine in different diseases, the bioavailability of berberine is unexpectedly low; in
other words, berberine either plays biological roles through its metabolites93 or through the positive effects on intestinal
microbiota and intestinal barrier.94,95 Furthermore, all those benefits generated from the improvement of intestinal barrier
function suggest that berberine could be a candidate for the adjuvant treatment of sepsis. Additionally, increasing
evidence has indicated that berberine could resist sepsis-induced organ dysfunction, and the specific efficacy and
associated mechanisms are shown in Table 3.96–111 However, the effects of berberine in patients with sepsis need to
be investigated in the future.

Curcumin
Curcumin, an active component in turmeric, is used as spice, seasoning, and pigment in daily life. Due to its anti-
inflammatory effect, curcumin has displayed treatment potential in various pro-inflammatory chronic diseases.112 Recent
studies have found that curcumin shows an anti-hyperglycemic effect by decreasing insulin resistance, preventing β-cell

Table 3 Beneficial Effects of Berberine on Sepsis-Induced Organ Dysfunction

Organs Models;
Methods

Results Associated Mechanisms References

Heart Rats; LPS Berberine attenuated heart injury and

cardiomyocyte swelling.

Inhibiting TLR4/NF-κB signaling. [109]

Mice; LPS Berberine protected against myocardial

dysfunction.

Inhibiting cardiac I-κBα phosphorylation and apoptosis. [110]

Lung Mice; LPS/

D-GalN

Berberine attenuated lung injury and

improved survival.

Inhibiting NF-κB and IL-6 mediated STAT3 activation. [108]

Mice; LPS Berberine reduced lung edema, neutrophil
infiltration, and histopathological alterations.

Inhibiting TNF-α production and cytosolic
phospholipase A2 expression.

[111]

Liver Rats; CLP Berberine ameliorated liver function. Rectifying glycolysis and nucleic acid metabolism. [104]

Kidney Mice; CLP Berberine improved renal function and

rescued histological injury.

Regulating metabolism via different signaling pathways. [102]

Brain Mice; CLP Berberine alleviated cognitive impairment. Blocking HMGB1/RAGE Signaling. [100]

Intestine Rats; CLP Berberine improved compromised GVB. Modulating the ApoM/S1P pathway. [106]

Rats; CLP Berberine protected against GVB dysfunction. Regulating the Wnt/beta-catenin signaling pathway. [97]

Rats; CLP Berberine attenuated tissue injury and
intestinal barrier dysfunction.

Modulating the TLRs pathway. [105]

Rats; LPS Berberine alleviated intestinal injury and

mucosal hypoplasia.

Normalizing glutamine transport and glutaminase

activity.

[99]

Rats; LPS Berberine improved the expression of TJ

proteins.

Activating IGF-1/IGFBP-3 signaling. [98]

LPS Rats; Berberine inhibited inducible COX-2
overexpression.

Activating PPAR-γ. [101]

Mice; LPS Berberine attenuated TJ disruption. Downregulating the NF-κB and MLCK pathway. [103]

Mice; LPS Berberine protected against intestinal injury. Reducing enterocyte apoptosis and neutrophil
infiltration and inhibiting the TLR4/NF-κB/MIP-2
pathway.

[96]

Immunity Mice; E. coli Berberine enhanced the efficacy of antibiotics

and improved survival.

Inducing immunological alterations. [107]

Abbreviations: LPS, lipopolysaccharides; TLR, toll-like receptor; NF-κB, nuclear factor-κB; D-GalN, D-galactosamine; IL, interleukin; STAT3, signal transducer and activator
of transcription 3; TNF-α, tumor necrosis factor-α; CLP, cecal ligation and puncture; HMGB1, high mobility group box 1; RAGE, advanced glycation end-product receptor;
GVB, gut-vascular barrier; ApoM, apolipoprotein M; S1P, sphingosine-1-phosphate; TJ, tight junction; IGF-1, insulin-like growth factor I; IGFBP-3, insulin-like growth factor
binding protein 3; COX-2, cyclooxygenase-2; PPAR-γ, peroxisome proliferators activated receptor-γ; MLCK, myosin light chain kinase; MIP-2, macrophage inflammatory
protein-2; E. coli, Escherichia coli.
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death, and improving β-cell functions.113 Huang et al have found in T2DM rats that curcumin could ameliorate
hyperglycemia and alleviate metabolic endotoxemia, intestinal microbiota imbalance, and intestinal barrier injury.114

The protective effects of curcumin on the intestinal barrier have also been confirmed in many other studies. Burge
et al have summarized how curcumin alleviated intestinal barrier injury by inhibiting bacteria, modulating immunity, and
regulating intestinal microbiota.115 In the studies on Caco-2 cell monolayers, Wang et al have found that curcumin
prevents epithelial barrier damage and TJ disruption via upregulating the expression of heme oxygenase-1.116 Zhou et al
have shown that curcumin improves intestinal barrier integrity by controlling endoplasmic reticulum stress and sub-
sequent apoptosis.117 Tian et al have found that curcumin maintains the intestinal permeability and restores epithelial
structure by enhancing ZO-1 protein expression through tumor necrosis factor (TNF)-α-related pathway in rats with
intestinal ischemia-reperfusion injury.118 Cao et al have unveiled that curcumin enhanced intestinal barrier and mito-
chondrial function by Parkin-dependent mitophagy through AMPK activation and subsequent nuclear translocation of
transcription factor EB in vitro and in pigs with oxidative stress.119

Similar to berberine with low bioavailability, orally administered curcumin cannot be detected in the circulation; as
a result, any biological effects of curcumin beyond the intestine are the subsequent results from the intestine.120,121 In
other words, all those beneficial effects of curcumin under such a low bioavailability are partly attributed to the
improvement of intestinal barrier function.122,123 Considering sepsis, curcumin has shown its therapeutic potential with
the ability to inhibit inflammation, reduce oxidative coagulation factors, and regulate the immune response.124 Many
studies have proven that curcumin could prevent sepsis-induced organ dysfunction, and the specific efficacy and
associated mechanisms are shown in Table 4.125–139 Besides, Siddiqui et al have found that the anti-inflammatory effect
of curcumin is mediated by the upregulation of PPAR-γ in sepsis rats, while PPAR-γ was the target of another class of
anti-hyperglycemic agents.140 Generally, curcumin might assist the management of sepsis by improving intestinal barrier
function and a series of positive effects generated by the improvement of the intestinal barrier. Whether curcumin can
improve the prognosis of sepsis patients will be answered in the future.

Other Anti-Hyperglycemic Agents
Besides these four above-mentioned agents, some other anti-hyperglycemic agents have displayed positive effects on
sepsis. Insulin is the most commonly used anti-hyperglycemic agent in sepsis. In animals with sepsis, insulin treatment
improves organ dysfunction through different mechanisms (Table 5).141–144 However, whether insulin improves the
intestinal barrier function needs further investigation. Glucagon-like peptide-1 (GLP-1) receptor agonists are another

Table 4 Beneficial Effects of Curcumin on Sepsis-Induced Organ Dysfunction

Organs Models;
Methods

Results Associated Mechanisms References

Heart Rats; CLP Curcumin enhanced myocardial contractility and

restored ejection fraction and fractional
shortening.

Alleviating inflammation and structural damage of

myocardial cells.

[135]

Aorta Rats; LPS Curcumin restored vasoconstrictive function and
alleviated the damage in the intima and media of

the aorta.

Inhibiting TSP-1 and TGF-β1 expression. [130]

Lung Rats; CLP Curcumin protected against acute lung injury. Inhibiting the TGF-β1/Smad3 pathway. [134]

Rats; CLP Curcumin presented antioxidant and anti-

inflammatory effects.

Enhancing antioxidant enzymes, reducing free

radicals and iNOS.

[126]

Rats; CLP Curcumin protected against acute lung injury and

improved survival.

Inhibiting the infiltration of inflammatory cells and

the generation of ROS and regulating cytokines.

[133]

Mice; CLP Curcumin alleviated inflammatory injury. Enhancing the suppressive function of Tregs. [125]
Mice; LPS Curcumin protected against acute lung injury. Enhancing antioxidant effect. [129]

(Continued)
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Table 4 (Continued).

Organs Models;
Methods

Results Associated Mechanisms References

Liver Rats; CLP Curcumin protected liver function. Inhibiting inflammatory response and apoptosis. [136]

Mice; LPS Curcumin attenuated liver injury. Suppressing oxidative stress-related inflammation
through the PI3K/AKT and NF-κB signaling

pathways.

[138]

Kidney Rats; CLP Curcumin protected against acute kidney injury. Improving renal microcirculatory perfusion and

reducing the inflammatory response.

[132]

Mice; CLP Curcumin alleviated inflammatory injury to the
kidney.

Enhancing the suppressive function of Tregs. [125]

Mice; CLP Curcumin protected kidney function. Attenuating inflammation and apoptosis via the

NF-κB and JAK2/STAT3 signaling pathways.

[139]

Mice; LPS Curcumin decreased serum levels of blood urea

nitrogen, creatinine, and cystatin C and reduced

kidney injury.

Inhibiting the JNK/NF-κB pathway through

suppression of lncRNA PVT1.

[128]

Brain Mice; CLP Curcumin ameliorated BBB and improved survival. Modulating leukocyte and platelet adhesion in

cerebral microcirculation and attenuating
P-selectin expression.

[131]

Mice; CLP Curcumin attenuated brain edema, enhanced BBB

integrity, and improved survival.

Inhibiting apoptosis and attenuating mitochondrial

dysfunction.

[137]

Intestine Rats; CLP Curcumin protected the intestinal mucosal barrier. Inhibiting apoptosis. [127]

Abbreviations: CLP, cecal ligation and puncture; LPS, lipopolysaccharides; TSP-1, thrombospondin-1; TGF-β1, transforming growth factor-β1; iNOS, inducible nitric oxide
synthase; ROS, reactive oxygen species; PI3K, phosphatidylinositol 3-kinases; AKT, also known as PKB, protein kinase B; NF-κB, nuclear factor-κB; JAK2, Janus kinase 2;
STAT3, signal transducer and activator of transcription 3; JNK, C-Jun N-terminal kinase; lncRNA, long non-coding RNA; BBB, blood-brain barrier.

Table 5 Beneficial Effects of Insulin and SGLT2 Inhibitors on Sepsis-Induced Organ Dysfunction

Agents Organs Models; Methods Results Associated Mechanisms References

Insulin Heart Rats; LPS Insulin alleviated myocardial

dysfunction and improved

survival.

Attenuating cell apoptosis and stimulating UCP2

expression.

[142]

Liver,

Kidney

Rats; LPS/

Staphylococcus aureus
peptidoglycan

Insulin normalized serum

indicators of organ injury.

Inhibiting the activity of glycogen synthase kinase-

3β.
[141]

Muscle Rabbits; Scald/LPS Insulin alleviated

hyperproteolysis of skeletal

muscle.

Inhibiting the activity of the ubiquitin system. [143]

Intestine Rats; CLP Insulin improved intestinal

microcirculatory.

Improving prostacyclin/thromboxane system and

inhibiting the expression of platelet-activating

factor.

[144]

SGLT2

inhibitors

Kidney Mice; LPS Empagliflozin reduced acute

renal injury and improved
survival.

Reducing systemic and renal inflammation. [150]

Lung Mice; LPS Canagliflozin alleviated lung

inflammation.

Attenuating cytokine storm and reducing

inflammation.

[151]

Blood

vessel

Mice; LPS Canagliflozin protected

against sepsis capillary leak

syndrome.

Acting on the α1AMPK-dependent pathway. [152]

Abbreviations: SGLT2, sodium-glucose cotransporter-2; LPS, lipopolysaccharides; UCP2, uncoupling protein 2; CLP, cecal ligation and puncture; AMPK, adenosine
monophosphate-activated protein kinase.
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class of anti-hyperglycemic agents. While the critical role of GLP-1 in the intestinal barrier has been gradually
recognized,145 the possible application of GLP-1 receptor agonists in sepsis has been well reviewed by Yang.146 Sodium-
glucose cotransporter-2 (SGLT2) inhibitors, a new class of anti-hyperglycemic agents, play the anti-hyperglycemic effect
by increasing urinary glucose excretion. Some SGLT2 inhibitors have shown positive effects on the intestinal barrier.
Zaghloul has found that empagliflozin ameliorated acetic acid-induced intestinal barrier injury in rats via modulation of
the SIRT-1/PI3K/AKT pathway.147 Nozu has demonstrated that ipragliflozin improves intestinal hyperpermeability in rats
with irritable bowel syndrome.148 Preventive effects of dapagliflozin on sepsis-induced organ damage have also been
confirmed in rats.149 The specific effects of SGLT2 inhibitors (empagliflozin and canagliflozin) on sepsis-induced organ
dysfunction and the associated mechanisms are displayed in Table 5.150–152 However, whether the positive effects of
GLP-1 receptor agonists and SGLT2 inhibitors on sepsis are associated with intestinal barrier improvement requires
further investigation, and the efficacy of these anti-hyperglycemic agents in sepsis patients will be evaluated in the future.

Discussion
Previous studies have proven a connection between sepsis, intestinal barrier, and hyperglycemia. Blocking the vicious
cycle of this connection is expected to become a promising strategy for sepsis management.

Although hyperglycemia control can improve the prognosis of infectious diseases,153–155 most clinical studies have
not proven the advantages of intensive glycemic control in sepsis. Moreover, intensive glycemic control increases the risk
of hypoglycemia, which is associated with worse outcomes in sepsis.18 This contradiction forced us to make
a compromise and set the goal of glycemic control at a relatively high level.156 However, the optimal goal of glycemic
control in sepsis is still a pending issue. Noteworthy, the deleterious consequences of hyperglycemia are not limited to
themselves but also to a series of subsequent pathophysiological results; hence, hyperglycemia can induce intestinal
barrier injury, increase intestinal permeability, cause intestinal microbiota imbalance, lead to intestinal mucosal immune
disorder, and increase the susceptibility to infection and the risk of sepsis. Therefore, the benefits beyond the anti-
hyperglycemic effect would bring advantages to sepsis management.157

The significance of intestinal barrier improvement among these benefits is highlighted by some characteristics of
these anti-hyperglycemic agents. First, the effect of metformin does not depend on its concentration in the circulation,
leaving the intestinal barrier the possible target to act on. Second, PPAR-γ is abundantly expressed in the intestinal
epithelial cells, making the intestinal barrier the first target influenced by PPAR-γ agonists. Third, the bioavailability of
berberine and curcumin is extremely low; thus, benefits generated by these agents are attributed to their effects on the
intestinal barrier. Interestingly, both berberine and curcumin are isolated from a natural plant, and their positive effects on
the intestinal barrier can partly explain how some traditional Chinese medicine work without finding a specific bioactive
factor in the circulation.158

In this review, we overviewed the evidence that anti-hyperglycemic agents (eg, metformin, PPAR-γ agonists,
berberine, and curcumin) protect against sepsis-induced organ dysfunction by alleviating intestinal barrier injury.
However, clinical evidence is limited. In further studies, the efficacy, safety, and adverse effects of these agents need
to be evaluated, and whether these agents improve the outcomes in patients with sepsis should be answered. Additionally,
we suggested that other agents capable of controlling hyperglycemia and improving the intestinal barrier might be
candidates for sepsis management.

Abbreviations
ADMA, asymmetric dimethylarginine; AKT, also known as PKB, protein kinase B; AMPK, adenosine monophosphate-
activated protein kinase; ApoM, apolipoprotein M; BALF, bronchoalveolar lavage fluid; BBB, blood-brain barrier;
BNP, brain natriuretic peptide; CK-MB, creatinine kinase-myocardial band; CLP, cecal ligation and puncture; COX-2,
cyclooxygenase-2; D-GalN, D-galactosamine; DSS, dextran sulfate sodium; E. coli, Escherichia coli; GLP-1, gluca-
gon-like peptide-1; GSDMD, gasdermin D; GSK3β, glycogen synthase kinase 3β; GVB, gut-vascular barrier; HMGB1,
high mobility group box 1; ICAM-1, intercellular adhesion molecule-1; IGF-1, insulin-like growth factor I; IGFBP-3,
insulin-like growth factor-binding protein 3; IL, interleukin; iNOS, inducible nitric oxide synthase; IRF4, interferon
regulatory factor 4; JAK2, Janus kinase 2; JNK, C-Jun N-terminal kinase; lncRNA, long non-coding RNA; LPS,
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lipopolysaccharide; MIP-2, macrophage inflammatory protein-2; MLC, myosin light chain; MLCK, myosin light-chain
kinase; MODS, multiple organ dysfunction syndrome; NET, neutrophil extracellular trap; NF-κB, nuclear factor-κB;
NLRP3, Nod-like receptor thermoprotein domain 3; PI3K, phosphatidylinositol 3-kinases; PKCε, protein kinase
C epsilon; PPAR-γ, peroxisome proliferators activated receptor-γ; RAGE, advanced glycation end product receptor;
ROS, reactive oxygen species; S1P, sphingosine-1-phosphate; SGLT2, sodium-glucose cotransporter-2; STAT3, signal
transducer and activator of transcription 3; T2DM, type 2 diabetes mellitus; TGF-β1, transforming growth factor-β1;
TJ, tight junction; TLR, toll-like receptor; TNF-α, tumor necrosis factor-α; TSP-1, thrombospondin-1; TXNIP,
thioredoxin-interacting protein; UCP2, uncoupling protein 2; VCAM-1, vascular cell adhesion molecule-1; ZO, zonula
occludens.
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