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Genome-wide meta-analysis identifies five new
susceptibility loci for pancreatic cancer
Alison P. Klein et al.#

In 2020, 146,063 deaths due to pancreatic cancer are estimated to occur in Europe and the

United States combined. To identify common susceptibility alleles, we performed the largest

pancreatic cancer GWAS to date, including 9040 patients and 12,496 controls of European

ancestry from the Pancreatic Cancer Cohort Consortium (PanScan) and the Pancreatic

Cancer Case-Control Consortium (PanC4). Here, we find significant evidence of a novel

association at rs78417682 (7p12/TNS3, P= 4.35 × 10−8). Replication of 10 promising signals

in up to 2737 patients and 4752 controls from the PANcreatic Disease ReseArch (PAN-

DoRA) consortium yields new genome-wide significant loci: rs13303010 at 1p36.33 (NOC2L,

P= 8.36 × 10−14), rs2941471 at 8q21.11 (HNF4G, P= 6.60 × 10−10), rs4795218 at 17q12

(HNF1B, P= 1.32 × 10−8), and rs1517037 at 18q21.32 (GRP, P= 3.28 × 10−8). rs78417682 is not

statistically significantly associated with pancreatic cancer in PANDoRA. Expression quan-

titative trait locus analysis in three independent pancreatic data sets provides molecular

support of NOC2L as a pancreatic cancer susceptibility gene.
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Pancreatic cancer is currently the third leading cause of
cancer-related deaths in the United States and the fifth
leading cause in Europe1,2, and is predicted to become the

second leading cause of cancer-related deaths in the United States
by 20303,4. Incidence rates of pancreatic cancer have also gra-
dually increased1. Genetic susceptibility plays an important role
in pancreatic cancer risk through mutations in known genes for
hereditary cancer or hereditary pancreatitis5–11, and common
genetic variants identified through genome-wide association
studies (GWAS)12–16.

With the aim of identifying additional common pancreatic
cancer risk loci, the Pancreatic Cancer Cohort Consortium
(PanScan: https://epi.grants.cancer.gov/PanScan/) and the Pan-
creatic Cancer Case-Control Consortium (PanC4: http://www.
panc4.org/) have performed GWAS of pancreatic ductal adeno-
carcinoma (PDAC) in populations of European ancestry. These
studies, namely PanScan I12, PanScan II13, PanScan III14,15, and
PanC416, have led to the identification of 13 genomic loci car-
rying 17 independent pancreatic cancer risk signals on chromo-
somes 1q32.1 (two independent signals in NR5A2), 2p14
(ETAA1), 3q28 (TP63), 5p15.33 (three independent risk loci in
the CLPTM1L-TERT gene region), 7p14.1 (SUGCT), 7q23.2
(LINC-PINT), 8q24.1 (two independent risk loci in the MYC-
PVT1 gene region), 9q34.2 (ABO), 13q12.2 (PDX1), 13q22.1
(non-genic), 16q23.1 (BCAR1), 17q24.3 (LINC00673), and
22q12.1 (ZNRF3)12–16. A fourth independent risk locus at
5p15.33 (TERT) was identified through a candidate gene analysis
by the PANcreatic Disease ReseArch (PANDoRA) case–control
consortium17,18. GWAS in populations from China19 and Japan20

have identified eight additional GWAS significant pancreatic
cancer risk loci on chromosomes 5p13.1 (DAB2), 6p25.3
(FOXQ1), 7q36.2 (DPP6), 12p11.21 (BICD1), 10q26.11 (PRLHR),
21q21.3 (BACH1), 21q22.3 (TFF1), and 22q13.32 (FAM19A5)19.
The overlap among loci identified in the European and Asian
ancestry scans with current sample sizes is limited14,16,21.

Here we report the findings of the largest Pancreatic Cancer
GWAS study to date. Five novel regions of association were
identified. A locus at rs78417682 (7p12/TNS3, P = 4.35 × 10−8)
was identified in meta-analysis of the PanScanI/II, PanScanIII,
and PanC4 data. Four additional loci, rs13303010 at 1p36.33
(NOC2L, P = 8.36 × 10−14), rs2941471 at 8q21.11 (HNF4G, P =
6.60 × 10−10), rs4795218 at 17q12 (HNF1B, P = 1.32 × 10−8), and
rs1517037 at 18q21.32 (GRP, P = 3.28 × 10−8) were identified after
replication in additional cases and controls from the PANDoRA
consortium.

Results
Association analysis. In the current study, we performed the
largest association analysis of pancreatic cancer risk to date,
including 9040 individuals diagnosed with pancreatic cancer and
12,496 control individuals of European ancestry (Supplementary
Table 1) from four GWAS studies (PanScan I, PanScan II, Pan-
Scan III, and PanC4). These individuals were previously geno-
typed on the Illumina HumanHap550, 610-Quad, OmniExpress,
and OmiExpressExome arrays, respectively12–16. Because of the
extensive overlap of variants on the arrays, data from PanScan I
and PanScan II were analyzed jointly, while PanScan III and
PanC4 were each analyzed separately. Imputation was performed
using the 1000 G (Phase 3, v1) reference data set22. After quality
control 11,381,182 variants were analyzed for 21,536 individuals
(7167 in PanScan I+II, 6785 in PanScan III, and 7584 in PanC4).
A quantile–quantile plot (Supplementary Figure 1) showed little
evidence of systematic inflation (λ = 1.002 for PanScan I+II, λ =
1.051 for PanScan III, λ = 1.025 for PanC4, and λ = 1.05 for the
meta-analysis).

In a fixed-effect meta-analysis of PanScan I+II, PanScan III,
and PanC4, we observed robust associations at our previously
identified susceptibility loci in individuals of European ances-
try12–16 (Supplementary Table 2). We also noted one novel locus
that met the genome-wide significance threshold
(P< 5 × 10−8: Wald test) at chromosome 7p12 in the TNS3 gene,
and nine additional promising loci (P< 1 × 10−6: Wald test).
These 10 loci were carried forward to an independent replication
in up to 2737 pancreatic cancer cases and 4752 control
individuals from the PANcreatic Disease ReseArch (PANDoRA)
consortium23. In a combined meta-analysis of up to 11,537
pancreatic cancer cases and 17,107 control individuals from
PanScan I+II, PanScan III, PanC4, and PANDoRA, we identified
three additional loci of genome-wide significance: rs13303010 at
1p36.33 (NOC2L, odds ratio (OR) = 1.26; 95% confidence interval
(CI) 1.19–1.35, P = 8.36 × 10−14: Wald test), rs2941471 at 8q21.11
(HNF4G, OR = 0.89, 95% CI 0.85–0.93, P = 6.60 × 10−10: Wald
test), and rs4795218 at 17q12 (HNF1B, OR = 0.88, 95% CI
0.84–0.92, P = 1.32 × 10−8: Wald test). A locus that was previously
reported to be suggestive in the PanC4 study at 18q21.32 in the
GRP gene16 also surpassed the significance threshold (rs1517037,
OR = 0.86, 95% CI 0.80–0.91, P = 3.28 × 10−8: Wald test) in our
meta-analysis. (Table 1 and Fig. 1). The single-nucleotide
polymorphism (SNP) at 7p12 in TNS3 (rs73328514) was not
significantly associated with pancreatic cancer in PANDoRA (OR
= 0.94, PPANDoRA = 0.31; OR = 0.85, PCombined = 1.35 × 10−7: Wald
test).

The marker SNP at 1p36.33 (rs13303010) maps to the first
intron of the NOC2L gene, which encodes the nucleolar complex
protein 2 homolog (NOC2-like protein, also known as novel
INHAT repressor), an inhibitor of histone acetyltransferase
(HAT) activity and transcriptional repressor24. This protein also
directly binds to p53, stabilizing an interaction between the
mitotic kinase Aurora B and p53, resulting in inhibition of p53-
mediated transcriptional activation24,25. Likewise, NOC2-like
protein binds and inhibits transcriptional activity of the closely
related tumor suppressor protein, p63 (TAp63)26. Notably, we
have previously identified a pancreatic cancer risk locus intronic
to the TP63 gene16.

At chromosome 8q21.11, the newly associated SNP
(rs2941471) is intronic to HNF4G, which encodes hepatocyte
nuclear factor 4 gamma, a transcription factor (TF) of the nuclear
receptor superfamily. Mice lacking Hnf4g have higher numbers of
pancreatic β-cells, increased glucose-induced insulin secretion,
and improved glucose tolerance27. Of the multiple GWAS that
have reported association signals at this locus for other
conditions, the variant with the highest linkage disequilibrium
(LD) with our pancreatic cancer-associated variant, rs2941471,
has been significantly associated with variations in serum urate
concentrations (rs294148428, r2 = 0.56, in 1000 G EUR). Interest-
ingly, we have previously shown that urate levels are associated
with pancreatic cancer risk29. Additional variants in the HNF4G
gene region, including those significantly associated with body
mass index (BMI)30, obesity31, and breast cancer32 are less
correlated with rs2941471 (r2 = 0.02–0.12).

The signal at 17q12 (rs4795218) maps to the fourth intron of
HNF1B, encoding another member of the hepatocyte nuclear
factor family. HNF1B plays an important role in pancreatic
development, acting in a transcriptional network that controls the
differentiation of multipotent progenitor cells to acinar, ductal,
and endocrine cells33,34. Mutations in HNF1B account for a small
percentage (1–2%) of maturity onset diabetes of the young
(MODY)35. In addition, variants in the HNF1B gene region that
are modestly linked with rs4795218 have previously been
associated with the development of prostate cancer (rs4794758,
r2 = 0.59 in 1000 G EUR)36. Although additional variants in this
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region have been associated with other cancers including
prostate36, endometrial37, and testicular38 cancers, they do not
appear to mark the same signal (rs4430796, rs11263763,
rs7501939, respectively, r2 with rs4795218 ≤ 0.005 in 1000 G
EUR).

The two novel risk loci in genes of the hepatocyte nuclear
factor family are intriguing in light of our previously published
suggestive evidence of association with other members of this
family, including a locus at 12q24.31 in the HNF1A gene
(rs1182933, OR = 1.11, P = 3.49 × 10−7: Wald test) and a locus on
20q13.11 ~20 kb downstream of the HNF4A gene (rs6073450,
OR = 1.09, P = 4.55 × 10−6: Wald test; Supplementary Table 3)16.
Members of this family of TFs play important roles in pancreatic
development and regulate specific gene expression programs in
pancreatic acini, pancreatic islets, and hepatocytes in adults39–42.
Importantly, HNF1A appears to be a critical member of a
signaling network that maintains homeostasis in the adult

pancreas40,43. We have also previously shown that HNF1A may
be a tumor suppressor gene in the pancreas44,45. Inherited
mutations in several genes of this family cause pancreatic beta cell
dysfunction resulting in MODY: HNF4A (MODY 1), HNF1A
(MODY 3), and HNF1B (MODY 5)35. Common variants in or
close to some of these genes have also been significantly
associated with type 2 diabetes (T2D) and body mass index
(BMI)/obesity, both known epidemiologic risk factors for
pancreatic cancer46. However, the low LD between those signals
on 8q21.11/HNF4G (PDAC-rs2941471 and BMI-rs1740581947,
r2 = 0.05), 17q12/HNF1B (PDAC-rs4795218 and T2D-
rs443079648, r2 = 0.0007), and 12q24.31/HNF1A (PDAC-
rs7310409 and T2D-rs1242735348, r2 = 0.18) indicates that the
underlying functional mechanism for the pancreatic cancer
GWAS signals may differ from those for adult-onset T2D and
BMI.

Table 1 Novel pancreatic cancer susceptibility loci

Chra SNP
Positionb

gene

Effect allele
(minor)/
reference
allele

Statistic PanScan I/II
3535 cases
and 3642
controls

PanScan III
1582 cases
and 5203
controls

PanC4 3933
cases and

3651
controls

ALL GWAS
9040 cases
and 12,496
controls

PANDoRA
2497 cases
and 4611
controls

GWAS
+PANDoRa

11,537 cases and
17,107 controls

1p36.33
rs13303010
894,573
NOC2L

G/A MAFc cases;
controls

0.14; 0.13 0.12; 0.10 0.13; 0.11 0.14; 0.10 –

Infod 0.42 g g g –
OR (CI) 1.15 (1.01–1.26) 1.22

(1.09–1.33)
1.16

(1.07–1.24)
1.20 (1.12–1.29) 1.45

(1.33–1.57)
1.26 (1.19–1.35)

P value 3.64 × 10−2 1.48 × 10−3 9.54 × 10−4 7.30 × 10−7 6.00 × 10−10 8.36 × 10−14

Heterogeneity
P valuee

6.49 × 10−1 4.57 × 10−2

7p12
rs73,328,514
47488569
TNS3

T/A MAF cases;
controls

0.09; 0.11 0.10; 0.12 0.10; 0.12 0.10; 0.11 –

Info 0.93 0.97 0.97 g –
OR (CI) 0.80

(0.71–0.89)
0.88

(0.76–1.02)
0.82

(0.74–0.92)
0.83

(0.77–0.88)
0.94

(0.83–1.06)
0.85 (0.80–0.90)

P value 8.38 × 10−5 9.31 × 10−2 3.61 × 10−4 4.35 × 10−8 3.08 × 10−1 1.35 × 10−7

Heterogeneity
P value

5.98 × 10−1 2.35 × 10−1

8q21.11
rs2941471
76,470,404
HNF4G

G/A MAF cases;
controls

0.40; 0.43 0.41; 0.42 0.41; 0.43 0.40; 0.43

Info 1.0 1.0 1.0 g
OR (CI) 0.87

(0.79–0.94)
0.91

(0.80–1.01)
0.89

(0.82–0.96)
0.89

(0.86–0.94)
0.87

(0.79–0.94)
0.89 (0.85–0.93)

P value 2.39 × 10−4 8.30 × 10−2 2.19 × 10−3 4.73 × 10−7 2.42 × 10−4 6.60 × 10−10

Heterogeneity
P value

7.73 × 10−1 7.87 × 10−1

17q12
rs4795218
36,078,510
HNF1B

A/G MAF cases;
controls

0.20; 0.23 0.22; 0.23 0.21; 0.23 0.21; 0.23

Info 0.96 0.96 0.95 g
OR (CI) 0.87

(0.80–0.95)
0.88

(0.78–0.98)
0.88

(0.81–0.95)
0.88

(0.82–0.93)
0.90

(0.82–0.98)
0.88 (0.84–0.92)

P value 1.12 × 10−3 2.29 × 10−2 1.11 × 10−3 2.73 × 10−7 1.38 × 10−2 1.32 × 10−8

Heterogeneity
P value

9.96 × 10−1 9.78 × 10−1

18q21.32
rs1517037
56,878,274
GRP

T/C MAF cases;
controls

0.16; 0.19 0.17; 0.19 0.17; 0.18 0.17; 0.19

Info g g g g –
OR (CI) 0.82

(0.75–0.89)
0.92

(0.82–1.04)
0.90

(0.83–0.98)
0.87

(0.82–0.93)
0.87

(0.79–0.97)
0.86 (0.80–0.91)

P value 7.56 × 10−6 1.90 × 10−1 1.64 × 10−2 8.81 × 10−7 1.17 × 10−2 3.28 × 10−8

Heterogeneity
P value

1.87 × 10-1 7.73 × 10-2 1.03 × 10-1

a Cytogenetic regions according to NCBI Human Genome Build 37
b SNP position according to NCBI Human Genome Build 37
c Minor allele frequency
d Quality of imputation metric. See online methods for more detail. If a SNP is genotyped and not imputed, a “g” is reported
e P value from test of heterogeneity
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At 18q21.32, the signal marked by rs1517037 is ~10 kb
upstream of the GRP gene, which encodes a member of the
bombesin-like family of gastrin-releasing peptides that stimulates
the release of gastrointestinal hormones, including amylase49, a
marker of acute pancreatitis. Correlated variants at this locus (r2

= 0.82–1.00) are associated with inflammatory bowel disease
(IBD)50 and BMI47.

The locus at 7p12 is marked by an intronic SNP (rs73328514)
in TNS3. This gene encodes Tensin-3, a member of a family of
focal adhesion-associated proteins (Tensin-1 through Tensin-4)
that regulate cell adhesion and migration51 and may play a role in
metastasis52.

We identified suggestive evidence for additional risk loci in the
meta-analysis of PanScan and PanC4 data; at 9q31.1 in the SMC2
gene (rs2417487, P = 1.49 × 10−7: Wald test), at 4q31.22 near
EDNRA (rs6537481, P = 1.15 × 10−7: Wald test), and at 16q24.1
near LINC01081/LINC00917 (rs7200646, P = 1.39 × 10−7: Wald
test) but these were not significantly associated in PANDoRA (P
= 0.38, 0.91 and 0.93, respectively: Wald tests; Supplementary
Table 4). SMC2 encodes a subunit of condensin and is necessary
for chromosome organization, cell division, and DNA repair53.
EDNRA encodes the endothelin-1 receptor and has been
associated with pancreatic cancer prognosis54. The locus on
16q24.1 lies ~200–300 kb upstream of a cluster of genes of the
forkhead family of TFs (FOXF1, FOXC2, and FOXL1), known for

their roles in development, cell proliferation, and several diseases,
including cancer55.

We further estimated a polygenetic risk score (PRS) for
pancreatic cancer using the 22 independent genome-wide
significant risk SNPs in the Caucasian population12–16. The OR
for pancreatic cancer among individuals above the 90th percentile
the risk distribution was 2.20 (95% CI 1.83–2.65) compared with
those with a PRS in the 40–60th percentile (Supplementary
Table 5). We also assessed eight pancreatic cancer risk loci
identified in Chinese and Japanese individuals in our data and
noted one nominally significant locus in the combined PanScan
and PanC4 results (6p25.3, rs9502893, OR = 0.94, 95% CI
0.92–0.97, P = 0.009: Wald test; Supplementary Table 6).

Pathway enrichment analysis. Pathway enrichment analysis for
genes in currently known pancreatic cancer risk loci was per-
formed using gene set enrichment analysis (GeneCodis; http://
genecodis.cnb.csic.es/analysis)56 and Data-Driven Expression
Prioritized Integration for Complex Traits (DEPICT; https://data.
broadinstitute.org/mpg/depict/)57. The most significant enrich-
ment was seen for the terms “Maturity onset diabetes of the
young” (Kyoto Encyclopedia of Genes and Genomes (KEGG), P
= 5.5 × 10−9, Hypergeometric distribution test), “Sequence-spe-
cific DNA-binding transcription factor activity” (GO Molecular

790,465 1,015,8171p36.33, 225.4 kb region

Combined
PANDoRA
PanScan I+II+III+PanC4

0

0.2

0.4

0.6

0.8

1
r 2

LOC100130417 PLEKHN1 ISG15
FAM41C SAMD11 PERM1 AGRN

LINC01128 NOC2L KLHL17 HES4 RNF223 0

12

24

36

48

60

0

2

4

6

8

10

12

14 rs13303010
–l

og
10

 (
P

 v
al

ue
)

76,224,183 76,602,4278q21.11, 378.2 kb region

HNF4G

0
12

60

96

132

168

0

1

2

3

4

5

6

7

8

9 rs2941471

–l
og

10
 (

P
 v

al
ue

)

Combined
PANDoRA
PanScan I+II+III+PanC4

0

0.2

0.4

0.6

0.8

1
r 2

35,961,918 36,139,42317q12, 177.5 kb region

SYNRG
DDX52

MIR378J

HNF1B

0

12

36

60

84

108

Li
ke

lih
oo

d 
ra

tio

Li
ke

lih
oo

d 
ra

tio

Li
ke

lih
oo

d 
ra

tio

0

1

2

3

4

5

6

7

8

9
rs4795218

–l
og

10
 (

P
 v

al
ue

)

Combined
PANDoRA
PanScan I+II+III+PanC4

0

0.2

0.4

0.6

0.8

1
r 2

a b c

47,331,860 47,640,2217p12.3, 308.4 kb region

TNS3
SNORD151

0
12

48

84

120

0

2

4

6

8 rs73328514

–l
og

10
 (

P
 v

al
ue

)

Combined
PANDoRA
PanScan I+II+III+PanC4

0

0.2

0.4

0.6

0.8

1
r 2

Li
ke

lih
oo

d 
ra

tio

Li
ke

lih
oo

d 
ra

tio

56,814,236 56,959,03718q21.32, 144.8 kb region

SEC11C GRP RAX

0
12

48

84

120

156

0

2

4

6

8 rs1517037

–l
og

10
 (

P
 v

al
ue

)

Combined
PANDoRA
PanScan I+II+III+PanC4

0

0.2

0.4

0.6

0.8

1
r 2

d e

Fig. 1 Association results, recombination hotspots, and LD plots for new pancreatic cancer susceptibility regions. The top half of each panel shows the
association results for the meta-analysis of PanScan I+II, PanScan III, and PanC4 (gray diamonds). The results for the replication of the marker SNP at each
locus are shown for PANDoRA (light blue diamonds) and the combined meta-analysis results (red diamonds). Overlaid are likelihood ratio statistics
estimating putative recombination hotspots across the region based on the inference using the CEU 1000 G Phase 3 data. Genomic coordinates are plotted
on the x axis (Genome build hg19), P values for the association analysis are shown on the left y axis, and recombination hotspot likelihood ratio on the right
y axis. The bottom half of each panel shows LD heat maps based on r2 values from the 1000 G Phase 3 CEU population for all variants included in the
analysis. Shown are results for chromosomes 1p36.33 (a), 8q21.11 (b), 17q12 (c), 18q21.32 (d), and 7p12 (e)
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Function, P = 3.1 × 10−4), “Cellular response to UV” (GO Biolo-
gical Process, P = 4.2 × 10−4, Hypergeometric distribution test) as
well as multiple gastrointestinal tissues (DEPICT, P = 5.1 × 10−5

−0.004, Welch’s t-test; Supplementary Tables 7 and 8).

Expression analysis. To begin unraveling the functional con-
sequences of the newly discovered risk alleles, we performed
expression quantitative trait locus (eQTL) analyses in three
independent pancreatic tissue sample sets. We first assessed
eQTLs in the publicly available Genotype-Tissue Expression
(GTEx) project data for 149 histologically normal pancreatic
tissue samples (including genes in a 1MB window centered on the
marker SNP at each locus). Nominally significant eQTLs (P<
0.05) from this analysis (Supplementary Table 9, Supplementary
Figure 2) were then carried forward to replication in two addi-
tional sample sets: (1) 95 histologically normal pancreatic samples
(Laboratory of Translational Genomics, Laboratory of Transla-
tional Genomics (LTG) set58) and (2) 115 pancreatic tumors (The
Cancer Genome Atlas, TCGA, Pancreatic Adenocarcinoma,
PAAD, samples58; Table 2). The most notable eQTL in this
analysis was seen for 1p36.33, where the risk-increasing allele at
rs13303010 was associated with higher NOC2L expression in all
three data sets (GTEx: P = 0.01, β = 0.39; LTG: P = 0.019, β = 0.41;
TCGA: P = 0.043, β=0.49: T-statistic; Fig. 2b). An additional
eQTL for a nearby gene, KLHL17, was significant in GTEx (P =
2.1 × 10−5, β = −0.42: T-statistic) but not in LTG (P = 0.131, β =
−0.32: T-statistic) or TCGA (P = 0.654, β = −0.11: T-statistic). At
8q21.11, the risk allele (rs2941471-A) was associated with higher
expression of HNF4G in GTEx (P = 0.038, β = 0.15: T-statistic)
and LTG (P = 0.024, β = 0.28: T-statistic) samples, but not in
TCGA (P = 0.80, β = −0.029: T-statistic).

At 1p36.33/NOC2L, we analyzed the set of variants most likely
to be functional (LR> 1:100, n = 10) for overlap with transcrip-
tionally active chromatin and effects on predicted TF-binding
sites. The most notable variant in this analysis was rs13303160
(r2 = 0.93 with rs13303010) that overlaps open chromatin and
prominent histone modification marks in ENCODE data (Fig. 2a,

Supplementary Table 10) and where the risk allele is predicted to
strongly disrupt TF-binding motifs for SMARCC1 (also known as
BAF155) and several AP-1 proteins (Fig. 2c, Supplementary
Table 11). These analyses suggest that altered SMARCC1 or AP-1
binding at rs13303160 may lead to higher levels of NOC2L
mRNA. An increase in NOC2L protein would be expected to
result in lower levels of histone acetylation and repression of p53
and p63 transcriptional activity24–26,59. We also assessed
differential expression of NOC2L (and additional genes at the
five novel loci) in pancreatic tumors44 and noted a 3.98-fold (P =
9.69 × 10−10: EdgeR, Exact test) increased expression in pancrea-
tic cancer cell lines (n = 9) as compared with histologically normal
pancreatic tissue samples (n = 10; Supplementary Table 12).

Discussion
This study demonstrates the power of large-scale collaborations
in identifying new risk loci for pancreatic cancer, a deadly disease
that presents challenges in accruing large sample sets for genetic
studies. We herein add to the number of pancreatic cancer risk
loci in or close to genes involved in MODY. As these genes also
play roles in pancreatic development and acinar homeostasis,
they may help explain underlying mechanisms at these loci.
However, due to the low LD with BMI and T2D GWAS variants,
the underlying mechanisms may differ between these epidemio-
logically and pathophysiologically associated conditions. We also
describe potential functional underpinnings of risk loci, in par-
ticular for the locus on chromosome 1p36.33 in NOC2L, that
require further detailed investigation.

Methods
Study participants. Participants were drawn from the Pancreatic Cancer Cohort
Consortium (PanScan) and the Pancreatic Cancer Case-Control Consortium
(PanC4) and individuals were included from 16 cohort and 13 case–control studies
genotyped in four previous GWAS phases, namely PanScan I, PanScan II, PanScan
III, and PanC412–14,16. Samples from the PANDoRA case–control consortium were
used for replication23. The details on cases (individuals with PDAC) and controls
have been previously described12–14,16.

All studies obtained informed consent from study participants and Institutional
Review Board (IRB) approvals including IRB certifications permitting data sharing
in accordance with the NIH Policy for Sharing of Data Obtained in NIH Supported
or Conducted GWAS. The PanScan and PanC4 GWAS data are available through
dbGAP (accession numbers phs000206.v5.p3 and phs000648.v1.p1, respectively).

Genotyping, imputation, and association analysis. Genotyping for PanScan was
performed at the Cancer Genomics Research Laboratory (CGR) of the National
Cancer Institute (NCI) of the National Institutes of Health (NIH) using the Illumina
HumanHap series arrays (Illumina HumanHap550 Infinium II, Human 610-Quad)
for PanScan I and II, respectively, and the Illumina Omni series arrays (OmniExpress,
Omni1M, Omni2.5, and Omni5M) for PanScan III12–14. Genotyping for the PanC4
GWAS was performed at the Johns Hopkins Center for Inherited Disease Research
(CIDR) using the Illumina HumanOmniExpressExome-8v1 array. Imputation was
performed using the 1000 Genomes (1000 G) Phase 3, Release 1 reference data set22

and IMPUTE2 (http://mathgen.stats.ox.ac.uk/impute/impute_v2.html)60 as pre-
viously described14,18. Because of the large overlap of variants on genotyping arrays
for PanScan I and II, these data sets were imputed and analyzed together. The
PanScan III and PanC4 GWAS data sets were each imputed and analyzed separately.
For quality control, variants were excluded based on (1) completion rate <90%; (2)
MAF <0.01; and (3) low-quality imputation score (IMPUTE2 INFO score <0.3).
After quality control, 11,381,182 SNPs genotyped or imputed in 5107 pancreatic
cancer patients and 8845 controls of European ancestry were included in the analysis
for PanScan I-III and 3933 cases and 3651 controls for PanC4 (Supplementary
Table 1). The association analysis was performed using SNPTEST (http://mathgen.
stats.ox.ac.uk/genetics_software/snptest/snptest.html)61 based on probabilistic geno-
type values from IMPUTE260, with parallel covariate adjustments: study, geographical
region, age, sex, and principal components (PCA) of population substructure as were
used in PanScan12–14 and study, age, sex, and PCA population substructure as were
used in PanC416. The score statistic of the log additive genetic association magnitude
was used. Summary statistics from PanScan I and II, PanScan III, and PanC4 were
used for a meta-analysis using the fixed-effects inverse-variance method based on β
estimates and SEs (http://csg.sph.umich.edu/abecasis/metal/). Heterogeneity was not
observed for the SNPs identified as GWAS significant or suggestive in the combined
study (Pheterogeneity ≥ 0.32). IMPUTE2 information scores were above 90% for SNPs
(P< 1 × 10−6), except for rs13303010 in the PanScan I+II data (INFO = 0.42;

Table 2 Expression quantitative trait loci (eQTLs) for
marker SNPs on chromosomes 1p36.33 and 8q21.11 in
histologically normal pancreatic tissue samples from GTeX
(n= 149) and LTG (n= 95) as well as pancreatic tumor
samples from TCGA (PDAC, n= 115)

Chr1p36.33: eQTLs for rs13303010

GTeX pancreas LTG pancreas TCGA PDAC

Gene
name

P value Effect
size*

P value Effect
size*

P value Effect
size*

KLHL17 2.10 × 10-5 −0.42 0.131 −0.32 0.654 −0.11
NOC2L 0.001 0.39 0.019 0.41 0.043 0.49
SAMD11 0.023 −0.26 0.500 0.14 0.397 −0.18
DVL1 0.042 −0.14 0.280 0.18 0.085 −0.37

Chr8q21.11: eQTLs for rs2941471

GTeX pancreas LTG pancreas TCGA PDAC

Gene
name

P value Effect
size*

P value Effect
size*

P value Effect
size*

HNF4G 0.038 0.15 0.024 0.28 0.803 −0.029

Expression QTLs were assessed in GTeX pancreatic tissue samples for all RefSeq genes within a
1MB region centered on the marker SNP at each locus. Nominally significant findings were
attempted for replication in the LTG and TCGA pancreatic tissue samples. *Effect size is the
estimated eQTL effect size or beta (β) and its direction is shown for the risk increasing allele at
each locus
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Table 1). The estimated inflation of the test statistic, λ, was 1.002 for PanScan I+II,
1.051 for PanScan III, and 1.024 for PanC462.

A Polygenic Risk Score (PRS) was constructed for each individual by summing
the number of risk alleles carried for all established pancreatic cancer risk loci
identified by GWAS, weighted by their estimated effect size. Individuals were
grouped by percentiles, and the association of the PRS (as percentile groupings)
with pancreatic cancer was estimated using logistic regression.

DEPICT analysis was used to prioritize causal genes at currently known
pancreatic cancer risk loci12–16 identify gene sets enriched across risk loci, and
tissues in which genes at risk loci are highly expressed57. No genes or SNP–gene
pairs were significant at false discovery rate (FDR) < 0.05 (data not shown) but
significant tissue enrichment is shown in Supplementary Table 7. Additional gene
set enrichment analysis was performed using GeneCodis3 (http://genecodis.cnb.
csic.es/). Genes (n = 65) were located in the currently known pancreatic cancer risk
loci identified in subjects of European descent (for genes located +/−100 kb from
the most significant SNP at the 22 risk loci) based on KEGG, Gene Ontology
(Biological Process and Molecular Function) annotations using GeneCodis3 with
reporting of FDR-corrected hypergeometric P values (Supplementary Table 8)56.

Replication. Ten promising signals (P< 10−6) were selected for replication in
samples from the PANDoRA consortium23. Genotyping was performed by custom
TaqMan genotyping assays (Applied Biosystems) at the German Cancer Research
Center (DKFZ) in Heidelberg, Germany, for 2770 pancreatic cancer patients and
5178 controls, of which 2737 cases and 4753 controls had complete age and clinical
data and did not overlap with other study individuals. Duplicate quality-control
samples (n = 607 pairs) showed 99.48% genotype concordance. SNP quality metrics

were performed for each SNP by plate; plates with <80% genotype completion
rates were dropped from the analysis. Individuals were excluded if they were
missing data on two or more SNPs after excluding SNPs on plates with low
genotype completion rates. The association analysis for PANDoRA was adjusted
for age and study in the same manner as previously described14–16. Heterogeneity
between studies was assessed using the Cochran’s Q-test. Association analysis was
also performed for the set of variants previously replicated in PANDoRA as part of
the PanScan III14 and PanC416 GWAS studies (Supplementary Table 3).

Using SequenceLDhot, recombination hotspots for association plots were
generated as previously described12–14. Recombination hotspot inference was
performed using the 1000 G CEU samples (n = 99). The LD heatmap was prepared
using the 1000 G Phase 3 CEU data, and the snp.plotter R software package63.

eQTL analysis. The publicly available GTEx data64 (http://www.gtexportal.org/;
version 6) were used to assess eQTLs in pancreatic tissue samples (n = 149). RefSeq
genes located within +/−500 kb of the marker SNP for each GWAS significant locus
were assessed for cis-eQTL effects. Nominally significant eQTLs from this analysis
(P< 0.05) were then taken forward to further analysis in two additional pancreatic
tissue sample sets58: (1) the LTG and (2) The Cancer Genome Atlas (TCGA)
pancreatic adenocarcinoma (PAAD) samples.

The LTG set included 95 histologically normal pancreatic tissue samples from
participants of European ancestry collected at three participating sites: Mayo Clinic
in Rochester, MN (45 samples, adjacent to tumor); Memorial Sloan Kettering
Cancer Center in New York City, NY (34 samples, adjacent to tumor); and Penn
State College of Medicine, Hershey, PA (16 samples, from tissue donors via the Gift
of Life Donor Program, Philadelphia, PA) as previously described58. Samples were
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Fig. 2 Functional analysis of the 1p36.33 risk locus. a The set of most likely functional variants at 1p36.33 and their P value rank (1–10, in red) is shown as
well as overlapping RefSeq genes on chr1: 885,555-904,522 (NCBI GRCh37/Hg19). ENCODE data for histone modification marks (H3K4me1, H3K4me3,
H3K27Ac) are indicated by colored density plots. Open chromatin (DNase hypersensitivity regions, DNase clusters) and binding of transcription factors
(TF ChIP) are indicated by horizontal bars. The numbers next to each bar indicate the number of cell lines with DNase clusters, or the number of different
transcription factors bound across all tested cell lines. The panel is adapted from the UCSC Genome Browser. b Expression QTLs in histologically normal
autopsy-derived pancreatic tissues (n= 149) from the GTEx consortium (GTEx), the Laboratory of Translational Genomics histologically normal adjacent-
to-tumor pancreatic tissue set (LTG, n= 95), and the TCGA pancreatic cancer tissue set (TCGA/PAAD, n= 115). Normalized NOC2L expression is shown
on the y axis and genotypes at the marker SNP at 1p36.33 on the x axis. Risk-increasing alleles are marked in red. Note that no samples in the LTG and
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transcription factor motifs for rs13303160 (r2= 0.93 with rs13303010 in 1000G EUR). The risk allele (C) at this marker alters predicted DNA-binding
motifs for SMARCC1 and AP-1 proteins
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confirmed to be non-tumorous with ≥80% epithelial component by histological
review and macro-dissected when needed. The project was approved by the
Institutional Review Board of each participating institution as well as the NIH.

In short, RNA (RIN >7.5) isolated from fresh frozen histologically normal
pancreatic tissue samples (LTG samples) with the Ambion mirVana kit was poly-
A-enriched and subjected to massively parallel paired-end sequencing (Illumina’s
HiSeq2000/TruSeq v3 sequencing). MapSplice was used to align reads and RSEM
(v1.2.14) for gene expression quantification (TPM)65,66 using the hg19/GRCh37-
based UCSC “RefSeq” track for gene annotation. DNA for genotyping was isolated
from blood (Mayo Clinic samples), histologically normal fresh frozen pancreatic
tissue samples (Penn State samples), or histologically normal fresh frozen spleen or
duodenum tissue samples (MSKCC samples) using the Gentra Puregene Tissue Kit
(Qiagen). DNA samples were genotyped on the Illumina OmniExpress or Omni1M
arrays at the CGR of the Division of Cancer Epidemiology and Genetics, NCI, NIH.
After quality control, genotypes were imputed using the 1000 G (Phase 1, v3)
imputation reference data set and IMPUTE 267. Pre-imputation exclusion filters of
Hardy Weinberg Equilibrium P< 1 × 10−6, minor allele frequency (MAF) <0.01,
genotype missing rate >0.05, A/T and G/C pairs on ambiguous DNA strand (MAF
> 0.45), and significantly different allele frequency between sample data and the
1000 G reference data (P< 7 × 10−8: Fisher’s exact test) were used. Post-imputation
variants (single-nucleotide variants (SNP) and small insertion-deletion (indel)
polymorphisms) with MAF < 0.05 or imputation quality scores (INFO score) <0.5
were removed from the final analysis58.

The second sample set included RNA-sequencing (RNA-seq) and genotype data
from tumor-derived pancreatic samples obtained from TCGA PAAD data set by
permission through the TCGA Data Access Committee. We excluded samples of
non-European ancestry, with history of neo-adjuvant therapy prior to surgery, or
with histological subtypes other than PDAC, leaving a total of 115 tumor samples
for analysis58. TCGA mRNA-seq data (level 1 read data, generated using Illumina’s
HiSeq2000) for pancreatic cancer samples (TCGA PAAD) were processed in the
same manner as the histologically normal LTG samples described above. Blood-
derived DNA samples for TCGA PAAD samples were genotyped on Affymetrix 6.0
arrays and processed in the same manner as for the LTG samples58.

The eQTL analysis was performed separately in histologically normal (LTG)
and tumor-derived (TCGA PAAD) pancreatic samples using the Matrix eQTL
(http://www.bios.unc.edu/research/genomic_software/Matrix_eQTL/) software
package68. We tested associations between genotyped and imputed SNPs and the
expression of genes evaluated by mRNA-sequencing after upper quantile
normalization within samples and normal quantile transformation for each gene
across samples by regressing the imputed dosage of the minor allele for each
variant against normalized gene expression values68. Linear models were adjusted
for age, sex, study, and the top five principal components (PCs) each for genotypes
and gene expression to account for possible measured or hidden confounders58.
The T-statistics from the linear regression is reported. For the tumor samples, we
further adjusted for tumor stage and sequence-based tumor purity as per
information provided by TCGA.

Bioinformatic analysis of functional potential. Variants at the new risk loci were
assessed for potential functionality by examining their location in open (DNase
Hypersensitivity Regions, DHS) and active chromatin (as per promoter and
enhancer histone modification marks) in the ENCODE data. For this, we used
HaploReg 4.1 (http://www.broadinstitute.org/mammals/haploreg/haploreg.php)
and the UCSC Genome Browser (http://genome.ucsc.edu/). Variants correlated
with the most significant variant at each locus at r2> 0.7 in 1000 G EUR popu-
lations were included, except for 1p36.33/NOC2L where P value LR> 1:100 was
used.

Candidate functional variants at 1p36.33 were selected by comparing the
likelihood of each variant from the association analysis with the likelihood of the
most significant variant. Ten variants had likelihood ratios, LR > 1:100 relative to
the most significant SNP: rs13303010 (P value rank 1), rs13303327 (rank 2),
rs113491766 (rank 3), rs3935066 (rank 4), rs111748052 (rank 5), rs10465242 (rank
6), rs13303160 (rank 7), rs7524174 (rank 8), rs13302957 (rank 9), and rs4970445
(rank 10). They were all highly correlated with rs13303010 (r2 = 0.52–1.00, 1000 G
EUR data). These 10 variants were considered the set of variants most likely to
contain the functional variant(s) at 1p36.33. Possible allelic effects of these top 10
variants on TF-binding motifs were determined using PrEdict Regulatory
Functional Effect of SNPs by Approximate P value Estimation (PERFECTOS-APE;
http://opera.autosome.ru/perfectosape/) analysis that determines the probability of
a TF motif (using position weight matrices, from HOCOMOCO-10, JASPAR, HT-
SELEX, SwissRegulon, and HOMER databases) in the DNA sequence overlapping
each variant. The fold change in probability of there being a TFBS present for each
allele of a variant is then calculated69. Two dbSNP variants at 1p36.33 with the
same bp location, rs111748052 (−/ATTTT) and rs10465241 (C/T), may be two
independent variants (as indicated in dbSNP), or a single tri-allelic marker (alleles
are shown as C/CATTTT/T in 1000 G). As PERFECTOS-APE does not analyze
indel variants, we analyzed the two indels among the 10 potential functional
variants, rs111748052 and rs113491766, using a different program, sequence TF
Affinity Prediction. This program calculates the total affinity of a sequence for a TF
(as given by TRANSFAC and JASPAR databases) on the basis of a biophysical
model of the binding energies between a TF and DNA70. The probability for a

given TFBS for each variant of the indel was then compared as in PERFECTOS-
APE to determine the fold change effect of the indel on the presence of the TFBS.

Gene expression analysis. Gene expression was assessed for genes that are closest
to the reported variants at chromosomes 1p36.33: NOC2L, KLHL17, and
PLEKHN1; 7p12: TNS3; 8q21.11: HNF4G; 17q12: HNF1B; 18q21.32: GRP, as well
as two additional genes at 1p36.33 exhibiting nominally significant eQTLs in GTEx
(1p36.33/SAMD11/DVL1). We assessed differential expression of these genes in
pancreatic tumor samples (PDAC, n = 8), histologically normal (non-malignant)
pancreatic tissue samples (n = 10), and pancreatic cell lines (n = 9) by RNA-seq as
described previously44. We compared gene expression in tumors (T) and cell lines
(C) to histologically normal pancreatic tissue samples (N) by EdgeR analysis. P
values for differential expression in tumor vs. normal (TvN) and Cell lines vs.
normal (CvN) represent an exact statistic using the normalized pseudo-counts and
tagwise dispersion estimates per gene.

Data availability. The PanScan and PanC4 genome-wide association data that
support the findings of this study are available through dbGAP (accession numbers
phs000206.v5.p3 and phs000648.v1.p1, respectively).
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